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Abstract. Croplands cover about 12 % of the ice-free terres-1  Introduction
trial land surface. Compared with natural ecosystems, crop-

lands have distinct characteristics due to anthropogenic in- ) . . .
fluences. Their global gross primary production (GPP) isThe terrestrial biosphere assimilates an estimated 120-—

1 .
not well constrained and estimates vary between 8.2 an(}s_o PgCyr (B_eer etal,, 2010; Welp et al., 2011) as gross
14.2PgCyrl. We quantified global cropiand GPP using a primary production (GPP). Roughly, half of the GPP is used

light use efficiency (LUE) model, employing satellite ob- for plant mamtenange processes and |s_gener_ally re_ferred to
as autotrophic respirationkRf). The remainder is available

servations and survey data of crop types and distribution. . . S
Y bop %or plant growth as net primary production (NPP), which is

novel step in our analysis was to assign a maximum light us )
efficiency estimates(;,p) to each of the 26 different crop sub_sequenftly consumed mostly by heterotro_pmgénd fire.
Biochemical processes of photosynthesis at cell or leaf

types, instead of taking a uniform value as done in the past ) :
Thesesgpp values were calculated based on flux tower,CO level are relatively well kn(_)wn, but accurate esUmates Of_
é.}PP at larger scales (regional or global) are still uncer

exchange measurements and a literature survey of field stu X in Direct s of net ; h NEE:
ies, and ranged from 1.20 to 2.96 g C™MJGlobal cropland ain. DIrect measurements ot net ecosystem exchange ( |
GPP— Rh— Ry), such as eddy covariance measurements, suf-

GPP was estimated to be 11.05 Pg Clyin the year 2000. ) L
fer from the large spatial heterogeneity in the G8ichange

Maize contributed most to this (1.55 Pg Cy}, and the con- b | 4 th h hich mak i
tinent of Asia contributed most with 38.9 % of global crop- gtyveen plants and the atmosphere w Ich makes upscaiing
ifficult. Therefore, current global GPP estimates still mainly

land GPP. In the continental United States, annual croplancﬁj . g
GPP (1.28 Pg C yr') was close to values reported previously fely on model re_sults. Hoyvever, considerable differences ex-
(1.24 Pg Cyrl) constrained by harvest records, but our es. ISt between various studies (Zhao et al., 2005; Ryu et al.,

timates ofepp values were considerably higher. Our results 2011; Koffi et al., 2012; Beer et al., 2010), in particular for

are sensitive to satellite information and survey data on Cropcroplands. For example, Beer et al. (2010) reported global

type and extent, but provide a consistent and data-driven ap(;ropland GPP of 14.8PgCytusing flux tower measure-

proach to generate a look-up table &, for the 26 crop men.ts based on eddy covariance_ methods and several diag-
types for potential use in other vegetation models. nqstlc models. In contrast, Saugier et al. (2001) estimated
this number to be 8.2 Pg Cyt.
Croplands cover about 12 % of the ice-free land surface
globally (Ramankutty et al., 2008), contributing considerably
to the global carbon cycle (Hicke et al., 2004). Additionally,
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the area occupied by croplands changes over time with consuggesting also a strategy for improvement of the estimates.

sequences for global carbon stocks. For example, a large ca®ne is the paucity of land cover data, most of which does

bon sink was found in the abandoned croplands of the Soviehot offer sufficient detail to separate plant or crop types. The

Union (Vuichard et al., 2008). Vice versa, deforestation is of- other is how to adequately use the large number of studies

ten related to the expansion of cropland (Morton et al., 2006)that have aimed to parameterigeusing site level measure-

which leads to a decrease in aboveground biomass. Howevements.

croplands may also have a large capacity for carbon seques- This study aims to estimate global cropland GPP, using

tration (Parr and Sullivan, 2011). recently developed global cropland distribution data for the
The light use efficiency (LUE) approach has been widely year 2000 to partition global croplands into 26 crop types. To

used to estimate GPP. Monteith (1972) developed this apimprove the parameterization of thg,, model, both eddy

proach assuming that the growth in plant biomass is directlycovariance flux measurements and a survey of previous re-

proportional to absorbed solar radiation. Since the 1970sportedegpp values are used to generate a look-up table of

this LUE approach was mostly evaluated using field mea-e§ppfor these 26 crop types.

surements of plant dry matter and solar radiation. The LUE

approach was also applied to estimate net primary produc-

tion (NPP) in large-scale models (Field et al., 1995; Knorr2 Methods and data sets

and Heimann, 1995; Potter et al., 1993; Ruimy et al., 1994,

1999). The LUE application was later extended to estimate?-1

GPP mostly because LUE is more likely to be fundamentaIIyWe used a biogeochemical model based on the LUE ap-

related to GPP, the direct outcome of photosynthesis (Prince .
and Goward, 1995; Ruimy et al. 1996PRunni>:"|g etal. (2ooo-pr°aCh’ the Carnegie-Ames—Stanford Approach (CASA,

Landsberg et al., 1997). Potter et al., 1993; van der Werf et al., 2010). Croplands

Inthe LUE approach, NPP or GPP is assumed proportionaYvere separated into 26 crop types based on a new data set

to the absorbed photosynthetically active radiation (PAR) qaescribed in Sect. 2.2. We estimategh, using 16 eddy

. ) ) covariance flux tower sites (FLUXNET) following Chen et
an efficiency rate¢. Because: is affected by environmen-

tal factors, the maximum light use efficienay') (Haxeltine al. (2011) and conducted a literature survey on previously

a L
and Prentice, 1996; Potter et al., 1993), defined as an enwr_gporteds values. A combination of these twd resources

ronmentally optimized, is widely used in models. Numer- }Slzldsg::i)l(o?:i_:g dt?:lﬁ]gfkrgpé’efg”tgi% (\SNcroptypes. These
ous studies have estimatedr ¢* at site level (Supplement P P '

Table S1). In the parameterizations of modetsis more of-
ten used tham because* tends to be more stable between

various plant types. Besides, subsequent environmental rerhe CASA biogeochemical model with the version described
strictions can be calculated using local environmental inputsin van der Werf et al. (2010) was used in this study. GPP
The LUE approach is thus widely used to estimate GPP Okyas calculated by multiplying absorbed photosynthetically

NPP from site level to large scales by combining satellite- 5¢tive radiation (PAR) and a light use efficiency coefficient,
based vegetation index measurements (Goerner et al., 2011;(Monteith, 1972; Monteith and Moss, 1977):

Potter et al., 1993; Xiao et al., 2005; Yuan et al., 2010; Zhao
and Running, 2010; Field et al., 1995; Knorr and Heimann,GPP= PAR x fPAR x egppx T(e) x W(e), (1)
1995; Ruimy et al., 1994, 1996, 1999; Prince and Goward,
1995). Although all these models use the LUE concept, theywhere fPAR (also known as fAPAR) is the fraction of PAR
often use different vegetation indice$,values, and may cal- absorbed by vegetation. Environmental stresses related to
culate environmental stresses in a different way. temperature and water are indicatedBg) and W (e) re-
Observational studies have illustrated thatries widely  spectively. More details about the model structure can be
between crops even when corrected for environmentafound in Potter et al. (1993).
stresses and nutrient limitation (Supplement Table S1). The The monthly distribution of cropland-growth data of
LUE method is an empirical approach, requiring high quan-MIRCA2000 (monthly irrigated and rainfed crop areas; Port-
tity look-up tables of the key parameters to quantify the di- mann et al., 2010) was used as the map of global crop-
versified ecosystems. However, in practice, ¢fien LUE lands at a 5arcmin spatial resolution. The 26 crop types
models is assumed to be identical for all plant types or forwere separated in MIRCA2000. Correspondingly, 5arcmin
major vegetation classes, such as croplands or grasslanasonthly fPAR data from the Joint Research Centre (JRC)
(Goerner et al., 2011; Potter et al., 1993; Xiao et al., 2005;were prepared based on original finer grid records (Gobron
Yuan et al., 2010; Zhao and Running, 2010). Usually crop-et al., 2010) which is further described in Sect. 23,,was
lands have only one* value in models to represent the av- set crop specific, using the values estimated as described in
erage condition, which introduces inevitable biases at localSect. 2.3. International Satellite Cloud Climatology Project
scales. This situation is largely due to two main constraints(ISCCP) solar radiation data from the Goddard Institute for

Introduction

2.2 LUE model and croplands data

Biogeosciences, 11, 3872880 2014 www.biogeosciences.net/11/3871/2014/



T. Chen et al.: Global cropland monthly GPP in the year 2000 3873

Space Studies (GISS) (Zhang et al., 2004) were used to gen-

erate PAR. Precipitation of the Global Precipitation Clima- N 1/2

tology Project (GPCP) version 1.1 (Huffman et al., 2001) ppSE= [EZ(NEECASA_ NEEECFT)Z] . )
and temperature of the GISS surface temperature analysis N~

(Hansen et al., 1999) were employed to force environmen-

: : . This approach yielded direct estimatessgf,, for 8 crop
tal stress functions as described in Potter et al. (1993). e TePP
uncti I I ( ) types out of 26 crops due to the distribution of the FLUXNET

2.3 The maximum light use efficiencyg®p siteg. To fill in the gaps we cond_ucted a survey of previous
studies that reported across a wide variety of crop types.

To fulfill the model requirements for the crop types, we However, these previous studies were quite different in their
needed to estimate and assigjt),, to these 26 crop types methodology. For example, solar radiation, intercepted PAR
of the MIRCA2000 mapegppbased on direct field measure- and absorbed PAR were interchangeably used to indicate ra-
ments is ideal to ensure that the parameters in our model ardiation. Direct measurements of dry matter were often used
consistent with regard to the vegetation index and environto calculate production while we focused on GPP here. For
mental factors. Therefore, we applied a similar procedureconsistency, we therefore used a conversion equation:

as in our previous work (Chen et al., 2011) by constrain-g* e % Ree x R=L 5 R 3)
ing CASA modeled GPP with field GPP measurements from" GPP— “biomass> HCB * &g = [ES
FLUXNET. where Rcp is the carbon content per unit of dry biomass,

Eddy covariance instrumentation directly measuresRyg is the ratio between NPP and GPP aRgk indicates
ecosystem net exchange (NEE), which can then be partienvironmental stresse®cg was found to be quite stable
tioned into GPP and respiration using various approachesvithin a 45-50 % range (Schlesinger, 1991). Magnussen and
(Reichstein et al., 2005; Lasslop et al., 2010). CombiningReed (2004) suggested a conversion rate of 0.475 which was
satellite and eddy covariance tower measuremesfts,  used here Rcg = 0.475). GPP could be roughly estimated
can be directly estimated. FLUXNET offers a high level by doubling NPP because autotrophic respiratifg) Usu-
of global consistency between individual flux tower mea- ally takes about half of GPP (Waring et al., 1998), but with
surements (sedttp://www.fluxdata.ory The FLUXNET  substantial variability across plant types and sites (DeLucia
data set contains about 30 cropland sites. To accomplislet al., 2007; Litton et al., 2007; Luyssaert et al., 2007). NPP
our purpose of LUE evaluation, we included only those is usually treated as half the value of GPP in most analyses
sites where PAR, temperature and precipitation recordgBeer et al., 2010). Therefore, we uskds = 0.5 in this pa-
were available. Besides that, we also collected the rotatiorper.
histories with details of growing periods and plant types Most biomass measurements only consider aboveground
from individual FLUXNET PI's. The information of the dry matter (ADM). To calculate total dry matter (TDM) we
sites used in this study is listed in Supplement Table S2.  used an ADM/TDM ratio of 0.8 (Gallagher and Biscoe,

Satellite-based fPAR was used to indicate vegetation ac1978; Steingrobe et al., 2001) whervalues reported were
tivity in our study, using JRC collocated fPAR products over based on ADM measurements only. The maximum light use
the FLUXNET sites, available ohttp://fapar.jrc.ec.europa. efficiency concept assumes no environmental stresses, there-
eu/Home.php JRC-fPAR data are generated based on thefore, only the well-watered sites and those without diseases
data collections of the SeaWiFS (Sea-viewing Wide Field-of-or drought were included in this studRgs~ 1). As a re-
view Sensor) sensor on the SeaStar satellite and the MERISult, 89, values using Eq. (3) were converted based on
(Medium Resolution Imaging Spectrometer) sensor on thditerature, covering 21 crop types (Supplement Table S1).
Envisat (Environmental Satellite) platform of the European
Space Agency. These collections have a 10-day temporal
scale and cover 3 by 3 pixels, about 6 k6 km, around the S Results
central pixel where the FLUXNET sites are located. These . - *
data arepspecifically designed for validation of remote sens—?"1 Light use efficiencyegpp

ing products and models or for characterization of field siteSq girect estimates of* using FLUXNET crop sites
Because usually there are not sufficient fPAR observations, e jisted in Table 1. At these sites. the ratios between

on the ground, fPAR from the center pixel is assumed {0 rép,qdeled and observed GPP varied between 0.86 and 1.23
resent the fPAR influencing the footprint of the tower. ~ and were on average 1.840.08 (standard deviation — SD).

To optimizeegpp we iteratively changed its value with g corresponding correlation coefficients of monthly mod-
steps of 0.05g CMJ" and choose thegpp with the low-  eled and observed GPP over each site were on average
est RMSE (root mean square error) between CASA andy gs+0.14. We summarized these measusgd,, and the
FLUXNET GPP: ones derived from the literature for the 26 crop types in

MIRCAZ2000 in Table 2. Of the 26 crop types, 8 were di-
rectly calculated in this paper, covering 55% of the global

www.biogeosciences.net/11/3871/2014/ Biogeosciences, 11, 3BB3-2014
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Table 1. Statistics of GPRasa to GPRLuxNET relation andséppestimates at FLUXNET sites.

Site Crop Correlation  Standard  Centered CREA/ SEPP
code types coefficient  deviatibn RMSE!  GPRuxneT (gCMJID)
BE_Lon Sugar beet 0.47 0.46 0.88 1.00 2.90
Winter wheat 0.72 0.75 0.69 0.95 2.40
Potato 0.98 0.39 0.61 1.12 1.50
CN_Dul  Wheat 0.83 0.56 0.62 1.10 1.65
DE_Geb Rapeseed 0.94 0.89 0.36 1.04 2.30
Winter barley 0.72 0.79 0.70 0.86 1.55
Sugar beet 0.90 0.84 0.43 1.23 1.00
DE_KIi Rapeseed 0.81 0.87 0.59 0.94 1.80
Winter wheat 0.95 0.83 0.33 1.20 2.45
DK_Ris Winter wheat 0.92 0.98 0.41 0.95 2.25
ES_ES2 Rice 0.94 0.94 0.33 1.01 2.90
FR_Gri Winter wheat 0.92 0.93 0.40 0.96 2.80
IE_Cal Spring barley 0.83 0.66 0.58 1.09 1.90
JP_Mas Rice 0.90 0.53 0.57 1.07 2.60
NL_Lan Maize 0.47 0.52 0.88 1.00 2.35
US_ARM Wheat 0.96 1.02 0.30 0.94 1.25
US_Bol Soybean 0.87 0.75 0.51 1.12 1.55
Maize 0.96 0.85 0.31 1.06 2.00
US_Bo2 Maize 0.99 0.87 0.16 1.09 2.90
Soybean 0.96 0.85 0.29 1.07 1.45
US Nel Maize 0.90 0.61 0.53 1.11 2.95
US_Ne2 Maize 0.92 0.71 0.45 1.10 3.45
Soybean 0.79 0.63 0.63 1.07 1.75
US_Ne3 Maize 0.84 0.65 0.58 1.10 3.40
Soybean 0.74 0.64 0.68 1.03 1.80

1 Both modeled standard deviation and centered RMSE were nondimensionalized by dividing by the standard deviation of the
corresponding observation. More details are in Sect. 3.2 of Taylor (2001).

cropland areas (Portmann et al., 2010). FLUXNET-based o
egpp Varied between crop types with potatoes having the a)
lowest value (1.5gCMJ') and maize having the highest
(2.84g CMJIY). Our estimates and those of previous studies
(Lobell et al., 2002; Chen et al., 2011; Supplement Table S1)
thus confirm a higher LUE value for maize than most of other
crops. On average out;pp Values are higher than the one 0
used in Zhao and Running (2010) (i.e., 1.044 g C*)Jand

the default values in the CASA model (i.e., 1 g C M), but

are still within the range of values reported based on previ-

e* (g CMIJ-1)

1 3 5 7 9 11 13 15 17 19 21 23 25
crop type ID

: ) =50 D R%=0.49

ous site measurements (e.g., Lobell et al., 2002; Supplement < :
Table S1). %

As shown in Fig. 1a, our direct estimates are generally & 2}
lower than the literature-based values. We prefer to use our § *
direct estimates based on FLUXNET measurements, be- 2 | ; : : ;
cause this enables us to upscale site level results to large 2 25 4 3 3.5 4 45
domains using identical JRC fPAR data. To harmonize literature &7 (g C MJ-1)

our e&pp Values, a linear regression was calculated whengigure 1. Maximum light use efficiencyefsppin g C MJI~1) for (a)

both FLUXNET- and literature-basetf;,, were available different crop types based on FLUXNET sites (orange) and litera-

(Fig. 1b). The linear relation was further applied to gener-ture (green) with error bars representing two standard deviations of

ate thesgpp for the crop types that were not available in egpp The corresponding crop types are given in TabgbPLinear
relation between FLUXNET-based and literature-basgg, esti-
mations for the eight crop types listed in Table 2.

Biogeosciences, 11, 3872880 2014 www.biogeosciences.net/11/3871/2014/



T. Chen et al.: Global cropland monthly GPP in the year 2000 3875

Table 2.5(*3ppused in our study and global cropland GPP estimates for various crop types.

ID Crop SEPH:LUXNET E*GPRiterature Eépﬂegress SEPRnOdeI GPP
types +SD +SD (Pgcyrl
1 Maize 2.84:0.57 4.0740.58 2.87 2.84 1.545
2 Rice 2.75£0.21 2.7H0.28 2.01 2.75 1.514
3 Fodder grasses 3.180.65 2.28 2.28 1.389
4 Wheat 2.13:0.57 2.92+0.45 2.10 2.13 1.384
5 Others perennial 1.60 1.21 1.21 0.795
6 Cassava 4.20 2.96 2.96 0.612
7 Others annual 2.580.85 1.87 1.87 0.508
8 Sugar cane 3.640.50 2.59 2.59 0.494
9 Soybeans 1.640.17 2.36+0.46 1.72 1.64 0.491
10 Pulses 2.8%£1.19 2.06 2.06 0.353
11  Sorghum 4.0%0.66 2.83 2.83 0.272
12 Barley 1.73:0.25 2.88+:0.46 2.07 1.73 0.260
13 Oil palm 2.02+0.17 1.49 1.49 0.210
14 Coffee 1.20 0.158
15 Millet 3.52+0.48 2.51 2.51 0.134
16 Cocoa 2.14 1.57 1.57 0.132
17 Cotton 1.71%0.19 1.28 1.28 0.123
18 Rapeseed 2.060.35 2.62+0.64 1.89 2.05 0.115
19  Sunflower 2.520.50 1.83 1.83 0.112
20 Rye 2.13 0.109
21  Groundnuts 2.340.38 1.71 1.71 0.105
22  Potatoes 1.50 2.680.45 191 1.50 0.091
23 Citrus 1.20 0.064
24  Grapes 1.20 0.041
25 Sugar beet 1.951.34 2.80£0.52 2.02 1.95 0.040
26 Date palm 1.20 0.001
Global 11.05
FLUXNET-baset:§ppas al. (2010), respectively. Maize, rice and wheat had the three
i} . highest GPP values for grains, contributing 40% of the
€GPRLuxneT = 0-6797X €GPReraure T 0-1252. (4)  global cropland GPP. Fodder grasses are the most important

N crop type that is not grain and ranked third in all crops. The
Becauseppshould always be larger than zero, we kept the eight crop types withpp based on FLUXNET sites con-

physically unrealistic offset (i.e., 0.1252) to best preserve thetributed 49% of the global cropland GPP
relation within the range of estimates. For five crop types we Figure 2 illustrates the global spatial .distribution of an-

had neither FLUXNET nor literature values available. For ; . !
rye, the same?., of wheat was assigned because rye is nual cropland GPP. High GPP regions extend mostly in the
' GPP warm humid or semi-humid plains of the Northern Hemi-

a member of the wheat tribe. The other four types (citrus, h h h | and f United
date palm, grapes and coffee) were all assigned 1.2 gGMJ sphere, such as the central and eastern part o Unite S_tates,
' ' Europe, the eastern plain of China and the Ganges plain of

which is the lowest value of our estimates for other perennlalSouth Asia. Per unit area, tropical regions had the highest

1 )
crops (1.21g CMJ) rounded to one decimal. GPP, such as in the lower reaches of the Ganges River over
3.2 Global cropland monthly GPP in the year 2000 the contiguous areas of India and Bangladesh, and the lower
reaches of the Niger River in Nigeria.

We calculated monthly GPP for these 26 crop types at Asia produced over one third of global cropland GPP,
5arcmin resolution for the year 2000, the only year for Which is more than two times that of any other continent
which the cropland distribution was available (Portmann et(Table 3). Within the 26 types, rice contributed the most
al., 2010). Global annual GPP amounts for each crop type a§1336.3 Tg Cyr?) to the annual GPP in Asia. GPP of rice in
well as for all cropland combined are listed in Table 2. The Asia contributed 88.3 % of global rice GPP. North America
annual global cropland GPP was 11.05PgChjin the year ~ and Europe accounted for respectively 16.6 % and 16.2 % of
2000. This estimate was between the 8.2 and 14.8 Pg€ yr the global cropland GPP. The United States is the main pro-
reported previously by Saugier et al. (2001) and Beer etducer of maize and soybean in the world, and this is reflected

www.biogeosciences.net/11/3871/2014/ Biogeosciences, 11, 3BB3-2014
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Table 3.Annual GPP (Tg C yrl) for different regions in the year 2000.

Crop North South  Euroge Asia  Africa Oceania
types AmericA  America

Maize 504.2 277.2 204.6 3426 2155 1.0
Rice 22.0 78.1 3.6 1336.3 73.2 0.9
Fodder grasses 494.5 135.6 504.2 205.3 26.0 24.2
Wheat 196.4 87.5 481.6 5254 35.4 58.2
Others perennial 34.2 64.7 55.9 505.1 121.1 14.3
Cassava 9.9 103.9 0 143.6 354.4 0.8
Others annual 31.9 37.2 117.7 215.6 95.8 9.5
Sugar cane 85.2 180.8 0 186.8 30.4 11.0
Soybeans 215.1 198.2 5.5 65.8 5.9 0.2
Pulses 29.8 54.4 25.7 143.8 92.5 6.6
Sorghum 54.1 28.3 14 704  112.0 5.6
Barley 24.5 55 149.4 55.0 9.9 16.2
Oil palm 2.6 6.9 0 138.0 60.8 2.1
Coffee 33.2 56.2 0 36.0 30.7 1.6
Millet 0.9 0.3 3.6 62.7 65.9 0.2
Cocoa 6.2 28.7 0 14.2 80.3 2.9
Cotton 31.6 11.9 15 54.2 21.3 2.2
Rapeseed 16.2 0.4 36.6 56.4 0.1 5.4
Sunflower 9.3 24.4 53.7 19.2 4.5 0.5
Rye 1.7 0.7 98.4 7.2 0.4 0.2
Groundnuts 6.5 3.8 0.1 55.4 394 0.2
Potatoes 3.9 5.1 49.3 28.6 3.8 0.3
Citrus 12.3 18.8 3.3 18.9 10.2 0.3
Grapes 2.5 3.4 27.2 6.0 1.2 1.0
Sugar beet 3.0 0.3 32.0 3.8 0.4 0
Date palm 0 0 0 0.6 0.8 0
Total 1831.7 1412.1 1855.4 4297.0 1492.0 165.5
Percent (%) 16.6 12.8 16.8 38.9 13.5 15

1 North America includes Central America.

2 Europe does not contain Russia east of the Urals.
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Figure 2. Spatial distribution of annual GPP flux (g CtAyr—1)

for each 5arcmin grid cell in the year 2000 with values capped at

1200g Cnr2yr—1. Annual GPP flux values of some grid cells in

the tropics are larger than 2000 g CAyr—1.

the lowest of the continents, due to the small areas of crop-
lands.

4 Discussion

After the initial development of the LUE approach (Mon-
teith, 1972; Monteith and Moss, 1977) to estimate ecosys-
tem production (GPP or NPP), considerable efforts have been
made to evaluate to meet the need of the model param-
eterizations. We chose to estimatg, directly by com-
bining FLUXNET measurements and JRC fPAR, the same
vegetation index as we used in our model. Our estimates of
egpp are within the range reported previously by field mea-
surements (Table 1; Supplement Table S1). In our model

in the proportion of maize and soybean (Table 3). Africa waswe treated the directly estimateg,, as superior to the
the fourth most important region (13.5 %) with the most cas-literature-based values. On average, #fig values based
sava GPP (57.9 %) of the world. The annual cropland GPRon biomass (dry matter) measurements are higher than our
in South America (12.8 %) was very close to that of Africa. estimates based on FLUXNET observations. Therefore, we
Maize and soybean contributed most to the cropland GPP iradjusted the literature-baseg, values using ratios be-
South America (Table 3). The cropland GPP in Oceania wagween the FLUXNET- and literature-based estimates when

Biogeosciences, 11, 3872880 2014

www.biogeosciences.net/11/3871/2014/



T. Chen et al.: Global cropland monthly GPP in the year 2000 3877

available. Because both thg, values based on biomass as planting, ploughing and harvesting activities change the
well as the FLUXNET-based values are relatively high, the ecosystems in croplands abruptly and leave land fallow for
values finally used in our model are therefore higher thanlong periods, sometimes even during the growing season.
those used in other models (Zhao and Running, 2010; Lobellherefore, cropland distributions from survey data are the
etal., 2002; Field et al., 1995; Potter et al., 1993). A look-up only option to separate crop rotation and planting times fully
table ofegpp for 26 crop types was created, offering much at present. However, the spatial resolution of these data is still
more sophisticated parameters of the LUE empirical modeldarger than a single field, implying that one cell still contains
than previous studies. several crop yields and types. These crops have different light
Global cropland GPP was estimated to be 11.05 Pg&,yr use efficiencies in reality but are treated in models with the
which is within the range of previous studies (Beer et al., same vegetation index and environmental factors.
2010; Saugier et al., 2001). Several model studies found that Uncertainties in our estimates were due to several aspects.
egpp OF eNpp Values based on site measurements could noFirst, thee* varies between plant types and even changes
be used in models directly because this would lead to exceswithin one crop type with changing environmental condi-
sively high cropland GPP values (Lobell et al., 2002; Pot-tions. More evaluations ofjpp are required to constrain
ter et al., 1993). For example, Potter et al. (1993) foundthe parameters of different crop types. Second, the literature-
that if ejpp would be set to 1.25gC M4 as in Heimann  basece* values depend on the choice of vegetation indices,
and Keeling (1989), annual NPP would be an unrealisticsuch as fPAR, PRI (photochemical reflectance index), EVI
high 185 Pg Cyrl. Therefore, a value of 0.5gC M3 for (enhanced vegetation index), and different environment de-
enpp Was initially used in CASA (Potter et al., 1993). Even scriptions. Satellite fPAR is used &§pp estimations due to
if we double the 0.5gC MJ number to account for the the lack of ground fPAR observation, which brings uncertain-
GPP /NPP ratio of about 2, the value is still much lower thanties in consequence due to scale difference. In most cases, if
theegppvalues we found here. a satellite’s pixel contains roads or other human buildings,
The difference between in situ measurementg’gfand  that may reduce the fPAR value and lead to an overestimated
the values used in models may reflect model structural bi<§pp as well. Finally, we were unable to separate irrigated
ases which have to be compensated for by adjusting paand rain-fed crops in our current approach. The exact mag-
rameters. Inventory-based estimates could be used to valnitude of these uncertainties is impossible for us to quantify,
date and improve crop models from local regions (Bandarubut it should be possible when maréobservations become
et al.,, 2013; Doraiswamy et al., 2007) to the continentalavailable and when a systematic estimate of the error due to
scale (Lobell et al., 2002). Therefore, we echo the findingsdifferent vegetation indices is known in the future.
of Lobell et al. (2002) who used both CASA and harvest
records. Cropland NPP for continental United States (exclud-
ing Alaska and Hawaii) was estimated to be 0.62PgCyr 5 Conclusions
or 1.24 Pg C yr! GPP by doubling NPP (Lobell et al., 2002).
&fippin Lobell et al. (2000) was estimated by constraining theIn this paper, we estimated global cropland GPP using a
model results with NPP based on harvest data across eaddJE model with improved input data and parameterization
county. In our estimations, GPP in the United States wa¥f ¢§pp A total of 26 crop types were separated in our model
1.28 PgCyr?, which is very close to the value obtained in with differents,,values compared to the previously default
Lobell et al. (2002). However, the, values in Lobell et ~ parameterization with a constastp, for all crop types. To
al. (2002) by doubling;;pp are still much smaller than the meet the parameterization requirements, we evalugtggd
values we used here. There is therefore no conflict betweehased on FLUXNET data for eight crop types. We also per-
field-based:{pp and the direct parameterization application formed a literature survey and gatheredsg@, values that
in our model. The main distinction between the current andmet our requirements necessary to harmonize these values.
previous studies are the two main innovations of our study:Our FLUXNET-basecegpp values are within the range of
(1) we used cropland areas distribution data to define thegdrevious studies but are higher than those used in most LUE
cropland types by month in order to distinguish the grow- models. Finally, a look-up table ef;for the 26 crop types
ing and fallow periods; and (2) we assigned each of the 26vas created based on measurements.
crops a differentgppvalue. e&pp(@ssumed equal to 2 timegpp) based on field mea-
Compared with natural ecosystems, usually croplandssurements and the values used in vegetation models dif-
have three important distinct features which influence theirfer widely, as discussed by Potter et al. (1993), Ruimy et
carbon exchange. First, plant (crop) types are much mor&l. (1994) and Lobell et al. (2002). Our previous work (Chen
homogeneous than natural ecosystems due to managemegital., 2011) also highlighted the need to improve the LUE
practice of farmers. Second, the plant types change mucharameterization in vegetation models. In this study, we es-
faster than natural ecosystems due to crop rotation schemdinated global cropland annual GPP at 11.05 PgC yrs-
used, which means the land cover type does not uniquely deng field-basedpp This estimate is in the middle of previ-
termine plant types as in more natural ecosystems. Thirdpus studies indicating 14.2 Pg Cyrby Beer et al. (2010)
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