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Abstract. Nitrate–nitrogen (NO3–N) as well as dissolved
organic carbon (DOC) and nitrogen (DON) concentrations
and losses were studied for three and two years, respec-
tively, in a small catchment dominated by a degraded peat-
land used as intensive grassland. Concentrations in the shal-
low groundwater were spatially and temporally very vari-
able, with NO3–N being the most dynamic component
(7.3± 12.5 mg L−1) and ranging from 0 to 79.4 mg L−1.
Average NO3–N concentrations of 10.3± 5.4 mg L−1 (0 to
25.5 mg L−1) in the ditch draining the catchment and annual
NO3–N losses of 19, 35 and 26 kg ha−1 confirmed drained
peatlands as an important source of diffuse N pollution.
The highest NO3–N losses occurred during the wettest year.
Resulting from concentration of 2.4± 0.8 mg L−1 (0.7 to
6.2 mg L−1), DON added a further 4.5 to 6.4 kg ha−1 to the N
losses and thus formed a relevant (15 %) component of the to-
tal N losses. Ditch DOC concentrations of 24.9± 5.9 mg L−1

(13.1 to 47.7 mg L−1) resulted in DOC losses of 66 kg ha−1

in the wet year of 2006/2007 and 39 kg ha−1 in the dry year
of 2007/2008. Ditch DOC concentration were lower than
the groundwater DOC concentration of 50.6± 15.2 mg L−1

(14.9 to 88.5 mg L−1). Both DOC and N concentrations were
governed by hydrological conditions, but NO3–N reacted
much faster and clearer on rising discharge rates than DOC,
which tended to be higher under drier conditions. In the third
year of the study, the superposition of a very wet summer and
land use changes from grassland to arable land in a part of the
catchment suggests that, under re-wetting conditions with a
high groundwater table in summer, NO3–N would diminish
quickly, while DOC would remain on a similar level. Fur-
ther intensification of the land use, on the other hand, would
increase N losses to receiving water bodies.

1 Introduction

Worldwide, peatlands are a major store of organic carbon
and nitrogen (Gorham, 1991). In the course of the intensi-
fication of agriculture, most of the peatlands in western Eu-
rope as well as in Mecklenburg-Vorpommern (north-eastern
Germany) have been drained. Nowadays, the majority of the
peatlands in Germany are used as grassland (UBA, 2012).
Lowering the groundwater table by drainage leads to delete-
rious effects such as peat degradation (Zeitz and Velty, 2002);
loss of biodiversity (Succow and Joosten, 2001); and high
emissions of greenhouse gases, especially carbon dioxide
(Höper, 2002; Limpens et al., 2008; UBA, 2012). Further-
more, the water-purifying function of lowland peatlands is
lost as drainage frequently turns them from a nutrient sink
into a nutrient source (Holden et al., 2004).

Due to the waterlogged conditions, nitrate (NO−

3 ) concen-
trations in undisturbed peatlands are – if present at all – very
low (Adamson et al., 1998; Åström et al., 2004). In con-
trast, high nitrate concentrations in the porewater of drained
peatlands are caused by the aeration of the peat and sub-
sequent mineralisation and nitrification of organic nitrogen
(Holden et al., 2004; Olde Venterink et al., 2002; Sapek et
al., 2007). These processes will be particularly intensive in
the case of low groundwater levels (Hacin et al., 2011; Mar-
tin et al., 1997) and of high amplitudes of the groundwater
level fluctuations, which are typical of degraded peatlands
due to the altered hydraulic properties of the peat (Zeitz
and Velty, 2002). Nitrogen supply by fertilisation or atmo-
spheric deposition can enhance mineralisation (Ross et al.,
1995; Verhoeven et al., 1996). In heavily drained peatlands
under intensive grassland use, net N mineralisation rates
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> 200 kg N ha−1 a−1 have been measured (Okruszko, 1989;
Van Beek et al., 2007). However, many of these studies have
been conducted on the scale of lysimeters (Behrendt et al.,
1996; Roberts et al., 1986; Ross et al., 1995) or soil cores
(Cabezas et al., 2012; Martin et al., 1997; Olde Venterink
et al., 2002). The actual NO−3 losses depend on the water
pathways, and denitrification during the passage of nitrate-
rich water through zones of saturated peat might reduce the
amount of NO−3 reaching surface water bodies (Sapek et al.,
2007). However, although the principle processes are well
known, actual numbers of NO3–N losses for small catch-
ments are hard to find in the literature.

At the same time, the European Water Framework Direc-
tive (European Parliament and European Council, 2000) de-
mands a “good ecological status” of all water bodies. Dif-
fuse nutrient pollution has been found to be a major obsta-
cle to this goal. As nitrate is effectively reduced under wet
conditions (Cabezas et al., 2012), re-wetting peatlands has
been suggested as a measure to both reduce diffuse pollu-
tion originating from degraded peatlands themselves and to
clean nutrient-rich water from upstream areas (Davidsson
et al., 2002; Trepel, 2010; Vikman et al., 2010). Especially
strongly degraded peat seems to have a high denitrification
and N retention potential when re-wetted (Cabezas et al.,
2012; Davidsson et al., 2002), although other studies have
found ongoing mineralisation under these conditions (Olde
Venterink et al., 2002). Besides combating diffuse pollution
as required by legislative efforts, the monetisation of ecosys-
tem services of peatlands is increasingly coming into the fo-
cus of attention (Russi et al., 2013; Trepel, 2010). Both top-
ics need baseline data for drained peatlands against which
improvements by re-wetting measures can be evaluated.

Dissolved organic carbon (DOC) may play an important
role in the carbon cycle of peatlands and beyond: DOC losses
may form an important part of the carbon balance (Dinsmore
et al., 2010; Rowson et al., 2010), act as a transport vector for
organically bound substances (Rothwell et al., 2007) and in-
fluence biogeochemical cycling in and drinking water quality
of the receiving water bodies (Chow et al., 2003). While the
governing processes and influence factors for nitrate are quite
well known, the effects of drainage and re-wetting on DOC
and dissolved organic nitrogen (DON) losses are less clear.
Several factors determining DOC concentrations in the pore-
water and the groundwater of peatlands – such as the ground-
water levels (Frank et al., 2014), the temperature (Koehler
et al., 2009), the ionic strength (Evans et al., 2006) and the
pH (Clark et al., 2005) – have been proposed, but effects are
sometimes confounding or interacting. For example, higher
temperatures might cause a water table drawdown, subse-
quent sulphate release and thus a change in both the ionic
strength and the pH (Clark et al., 2005). Furthermore, as
in the case of nitrate, different processes govern DOC con-
centrations within and losses from the peatland. While DOC
release and consumption are mainly controlled by biogeo-
chemical processes, hydrology – particularly the water bal-

ance – becomes an important factor when comparing losses
from different peatlands (Fraser et al., 2001; Gibson et al.,
2009). Drainage has frequently been found to increase DOC
concentrations in peatlands due to increased microbial ac-
tivity (Frank et al., 2014). In contrast to these results, some
boreal peatlands have shown decreasing DOC concentrations
after drainage (Åström et al., 2004).

Overall, most authors suggest re-wetting as an effective
measure to reduce DOC concentrations and/or losses (Frank
et al., 2014; Wallage et al., 2006). However, some studies
have found – sometimes temporary – increasing DOC con-
centrations or losses after re-wetting, especially for highly
degraded peat soils (Kalbitz and Geyer, 2002). These field
observations are supported by laboratory studies (Cabezas et
al., 2013; Zak and Gelbrecht, 2007), so at least some pre-
caution should be taken when recommending re-wetting to
reduce DOC concentrations. As most field studies on DOC
focus on bogs and/or re-wetted sites (Austnes et al., 2010;
Dinsmore et al., 2010; Dawson et al., 2002; Frank et al.,
2014; Fraser et al., 2001; Gibson et al., 2009; Wallage et al.,
2006), there is a distinct lack of baseline data for temperate
lowland peatlands with fen peat under agricultural use. Even
less is known on DON than on DOC, although some stud-
ies suggest that DOC and DON do not necessarily follow the
same dynamics (Kalbitz and Geyer, 2002).

In this study, we want to show how hydro-meteorological
conditions influence the DOC, NO3–N and DON concen-
trations in and losses from an artificially drained lowland
catchment with organic soils. The catchment represents a
situation typical for central Europe – artificially drained in-
tensive grassland – and thus provides baseline data lacking
up to now. Due to extreme weather conditions and land use
changes from permanent grassland to arable land during the
course of the study, we can estimate how the hydrochemi-
cal dynamics might develop under a changing hydrological
regime or intensified agriculture.

2 Material and methods

2.1 The study site

The study area is situated in the Pleistocene lowlands of
north-eastern Germany (10 km southeast of the city of Ro-
stock). The landscape is characterised by gently sloping
ground moraines and by peatlands in the river and stream
valleys. Long-term mean annual precipitation, reference crop
evapotranspiration and temperature are 642 mm, 561 mm and
8.7◦C, respectively. The study site is a small (85 ha) catch-
ment of a drainage ditch (Fig. 1). The catchment consists of
intensive grasslands mainly on organic soils and arable land
on mineral soils. The boundary between mineral and organic
soils was determined by soil augering (Blume, 2005). Or-
ganic soils cover around 50 % of the catchment.
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Due to a hydrogeologically complex setting, the peatland
has developed as a combination of terrestrialisation and per-
colation mires (Edom et al., 2010). The properties and depths
of the organic soils are spatially highly variable, but they are
all drained by ditches and occasional tile drains. Peat thick-
ness varies between a few cm and 1.50 m. The peat is par-
tially underlain by a confining layer of either calcareous or
organic gyttja and partially directly overlies an aquifer of
coarse sand. The soil organic carbon (SOC) content of the
topsoil varies between 8 and 409 g kg−1 (Tiemeyer et al.,
2007). This is reflected by a variety of soil types such as Eu-
tric and Sapric Histosols, Histic Gleysols and Histic Stag-
nosols (World Reference Base for Soil Resources (WRB)
classification; IUSS Working Group WRB, 2007). Nowa-
days, the hydrology of the peatland is heavily influenced by
anthropogenic changes by tile drains and ditches, which par-
tially cut into the mineral layers. After a particularly wet
summer (2007), some of the ditches and drains were reno-
vated (Fig. 1).

At the beginning of the study, the organic soils were
used as grassland. The grassland is managed as an inten-
sive meadow with four to five cuts per year. The average
yield of grass is 330 dt ha−1 a−1 (fresh mass). The sward is
regularly re-sown and mainly consists of ryegrass (Lolium
perenneL.), common meadow grass (Poa pratensisL.) and
couch grass (Elymus repensL.). In wetter parts, meadow fox-
tail (Alopecurus pratensisL.), reed canary grass (Phalaris
arundinaceaL.) and Yorkshire fog (Holcus lanatusL.) are
found as well. In spring 2007, a part of the grassland was
ploughed and converted to arable land for maize (Zea mays
L.) production (Fig. 1).

Until 2007, the arable land in the catchment was situ-
ated on mineral soils such as Luvisols and Cambisols, which
are not artificially drained. The arable land is used for in-
tensive conventional crop production dominated by winter
wheat (Triticum aestivumL.), winter rape (Brassica napus
L.), winter barley (Hordeum vulgareL.) and maize. At the
grassland, nitrogen was applied only in the form of min-
eral fertiliser, while cattle slurry was also used for the arable
land. Table 1 summarises the field nitrogen budget compris-
ing fertilisation, harvest and atmospheric deposition accord-
ing to Behrendt (1996). Values for volatile losses and the
nutrient contents of the mineral fertilisers, of the harvested
crops and of the crop residues were taken from MELFF MV
(2004). The amounts and dates of fertiliser application, the
crop yields and the nutrient content of the organic fertiliser
were provided by the farmer. Details of the budget calcula-
tion are described by Tiemeyer et al. (2006).

2.2 Hydrological measurements and sampling

At the catchment outlet (Fig. 1), a sampling station mea-
sured the water level via a pressure sensor (UGT GmbH,
Müncheberg, Germany) and collected, depending on the flow
conditions, daily to weekly composite (3 h sampling inter-

Figure 1. The study area.

val) water samples with an automatic sampler (Teledyne
Isco, Inc., Lincoln, NE, USA). The discharge was measured
weekly with an inductive flow meter (Flo-MateTM, Marsh-
McBirney, Inc., Frederick, MD, USA) to develop a rating
curve. Air temperature, humidity, wind speed (UGT GmbH,
Müncheberg, Germany) and precipitation (Seba Hydrometrie
GmbH, Kaufbeuren, Germany) were recorded at a climate
station at a distance of 1.5 km.

The dip wells (DWs) used in this study are PVC pipes
with an internal diameter of 5.2 cm, which are slotted and
filtered with a nylon mesh at a depth of 0.5 to 1.5 m be-
low ground. Twelve dip wells were installed in transects A
and B on shallow organic soils and six dip wells in tran-
sect C on deep organic soils. Topsoil (0–30 cm) SOC con-
tent is 112± 114 (transect A), 211± 116 (transect B) and
368± 39 g kg−1 (transect C) (Tiemeyer et al., 2007). The
dip wells were sampled weekly during the winter season
(November to April), while the groundwater level was ad-
ditionally measured fortnightly during summer (May to Oc-
tober) unless a DW fell dry. Groundwater samples were taken
with a bailer after nearly emptying the DW and allowing the
water level to recover. The bailer was rinsed with deionised
water after each use. Sample bottles were filled immediately

www.biogeosciences.net/11/4123/2014/ Biogeosciences, 11, 4123–4137, 2014



4126 B. Tiemeyer and P. Kahle: N and DOC losses from an artificially drained grassland on organic soils

Table 1.Management.

N N field N field
Period fertilisation balance balance

grassland grassland catchment

kg ha−1

2002/2003 230 90 93
2003/2004 230 90 100
2004/2005 228 87 103
2005/2006 184 54 92
2006/2007 159 62 49
2007/2008 240 102 54

and completely. In addition to the groundwater samples and
the samples at the catchment outlet, weekly grab samples
were taken from the ditch adjacent to transect C (Fig. 1).
Samples were not further treated.

Details on the study site and the field methods can be
found in Tiemeyer et al. (2007), who discussed the spatial
variability of a number of ions (but of neither DOC nor DON)
in the groundwater during winter 2005/2006. Here, we report
on results from November 2005 to October 2008, and focus
on nitrogen and DOC. To highlight the effects of extreme cli-
matic conditions and land use change in the catchment, the
results of the first year are also included in this study.

2.3 Laboratory methods

Nitrate (NO−

3 ) and ammonium (NH+4 ) were analysed by ion
chromatography (Metrohm GmbH, Herisau, Switzerland)
with chemical suppression for anion analysis. Measurements
were accepted when reference standards were within 1 % of
the desired value.

The electrical conductivity (EC) and the pH of the water
samples were measured with the probes LF 196 and pH 196
(WTW, Weilheim, Germany). Unfortunately, EC and espe-
cially pH measurements are missing for a number of sam-
ples.

DOC and total nitrogen (TN) were determined from
filtered samples (0.45 µm PET filter, Macharey-Nagel,
Dühren, Germany) by combustion and infrared detection
(DIMATOC© 2000; Dimatec GmbH, Essen, Germany) and
chemiluminescence detection (TN-100; Mitsubishi Chemi-
cal Corporation, Kanagawa, Japan), respectively. DOC and
TN were measured at three to five replicates each. Measure-
ments were accepted when the coefficient of variation of the
replicate measurements was< 2 %. The errors of the refer-
ence standards needed to be< 5 %.

DON was calculated as the difference of TN and min-
eral N (NO3–N+ NH4–N). DOC and TN concentrations
were determined for ditch samples of the hydrological years
2006/2007 and 2007/2008. Additionally, DOC in the ground-

water from transect C was measured at selected (n = 30)
samples from 2006/2007 and at all samples from 2007/2008.

2.4 Statistics

All statistical analyses were carried out in R (R Core Team,
2013). To account for the residence time of the water and
to identify additional explanatory parameters for the DOC,
NO3–N and DON concentrations, a cross-correlation anal-
ysis of the concentrations in the ditch and the average dis-
charge over the last 1 to 90 days was conducted. The dis-
charge was square-root-transformed before analysis to im-
prove the linearity between the concentrations and the dis-
charge.

During the study period, there was a relatively dry and
a very wet period. Differences between these periods were
evaluated with generalised least square (GLS) and linear
mixed effects (LME) models from the nlme (Linear and
Nonlinear Mixed Effects Models) package (Pinheiro et al.,
2013). Analyses were done separately for concentrations (c)
of DOC, DON and NO3–N. In a first step, a GLS model
explaining the concentrations only by the fixed effect pe-
riod was set up. Following the procedure outlined by Zuur et
al. (2009), a suitable variance structure was added next. Dif-
ferent variance structures (varIdent, varPower and varExp)
were tested. In the case of the concentrations in the ground-
water, adding a random structure (i.e. using a LME model
instead of a GLS model) with dip well as a random factor
was additionally tested. As a further step, a first-order au-
tocorrelation structure (corAR1) was added. The improve-
ment of the model due to each addition was evaluated by
the Akaike information criterion (AIC) and, after re-fitting
the model with the maximum likelihood method, by an anal-
ysis of variance (ANOVA) between the first model and the
model in question. Additionally, at each step, the residuals
were visually checked for homogeneity. An example for the
resulting model is given in Eq. (1).

gls(c ∼ period,weights= varIdent(form =∼ 1|period), (1)

cor= corAR1(form =∼ date|period))

The final model was then tested against a reference model
in which the fixed effect period was replaced by 1, which
represents the mean of all data. If the AIC for the reference
model was significantly higher, a significant difference be-
tween the two periods is assumed. For this final ANOVA,
p values are reported.

Influence factors on the concentrations at the catchment
outlet and in the groundwater were also analysed with GLS
and LME models following the same general procedure start-
ing with the most complex model including all meaningful
interactions (Zuur et al., 2009). Next, the necessity of includ-
ing the random factor dip well (in the case of the ground-
water concentrations) was evaluated followed by the choice
of suitable variance and autocorrelation structures. Both a
variance and an autocorrelation structure were necessary for
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nearly all model setups. Afterwards, the model structure was
reduced stepwise depending on the AIC and the parameter
significance: if an ANOVA indicated that the reduced model
is not significantly worse than the full model, a parameter or
a parameter interaction could be dropped. As GLS and LME
models cannot deal with missing data, separate models had to
be set up for the complete data set and those data with pH and
EC measurements. To evaluate the explanatory power of the
final models, the Nash–Sutcliffe coefficient (NSC) or “model
efficiency” was calculated (Nash and Sutcliffe, 1970). The
NSC can range from−∞ to 1. A value of 1 indicates a per-
fect fit between the modelled and the measured data, while
values lower than zero mean that the average of the measured
data is a better predictor than the model itself.

3 Results

3.1 Hydrology

Table 2 summarises the hydrological conditions during the
study period. While the first hydrological year (1 Novem-
ber 2005 to 31 October 2006) was fairly average, the follow-
ing two years were unusual. Both years were warmer than
average, and annual precipitation sums of 934 and 554 mm
marked exceptionally wet and dry conditions. While the pre-
cipitation and the discharge were similar during the winter
periods, the summer made the difference between the last
two years. Given the long-term summer precipitation average
of 372 mm, the summer of 2007 was extraordinarily rainy
with a precipitation of 551 mm. In contrast to other summers
during which the ditch fell dry in May or June (Fig. 2), the
summer discharge in 2007 (91 mm) was higher than that of
dry winters (Tiemeyer et al., 2007). On an annual basis, 24 to
32 % of the precipitation left the catchment as discharge. In
the following, 1 November 2005 to 31 May 2007 is referred
to as the “dry period”, and the remainder of the study period
as the “wet period”. Technically, the summer of 2008 is dry
again, but as both the ditch and the dip wells quickly dried
out there are nearly no data on this summer period.

Whereas during winter the groundwater level was fre-
quently near the ground surface, it dropped during dry spells
deeper than 1.00 m even in the wettest places, demonstrating
the heavy disturbance of the peatland. The wet summer of
2007 had a lasting effect even on the groundwater table in
the subsequent winter, when the average water table depth
(WTD) was, despite slightly less precipitation, higher and
more homogenous in time than during the preceding win-
ters (Fig. 4, Table 2). Thus, the wet summer might anticipate
possible short-term effects of re-wetting.

Due to drainage, soil and topographical heterogeneity,
there was high spatial variability of the WTD, with mini-
mum and maximum averages over the whole study period
of 0.27 (DW 13) and 1.13 m (DW 4), respectively (Fig. 4). In
summer 2008, groundwater wells quickly fell dry or had to

Figure 2.Discharge (mm d−1) and concentrations (mg L−1) of dis-
solved organic carbon (DOC) and nitrate–nitrogen (NO3–N) in the
ditch.

be removed. Due to the spatially heterogeneous groundwa-
ter table dynamics, heterogeneous biogeochemical processes
can be expected, especially as not only the mean WTD but
also the amplitude differed even in the wetter winters as a
result of heterogeneous soil properties. The ditch integrates
all these responses together with groundwater flow from the
non-drained part of the catchment (and, given the heteroge-
neous geological situation of the area, possibly also deeper
groundwater).

3.2 DOC and nitrogen concentrations groundwater

An overview of the DOC and NO3–N concentrations is
given in Table 3. The overall average (±standard devia-
tion) DOC concentration of all measurements in the dip
wells was 50.6± 15.2 mg L−1. The spatial heterogeneity
was relatively weak; in single dip wells, average DOC
concentrations over the complete study period between
40.7± 11.7 and 60.1± 13.6 mg L−1 were measured. Dur-
ing the winter of 2006/2007, overall average concentrations
were 46.8± 17.9 mg L−1. As shown in Fig. 3, the wet con-
ditions from June 2007 to April 2008 had no clear effect on
the groundwater DOC concentrations in the following win-
ter (51.4± 14.6 mg L−1). This was confirmed by comparing
GLS models including or excluding the hydrological period
as a fixed effect (p = 0.30).

The final GLS model (NSC= 0.42) for the DOC con-
centrations in the groundwater (n = 180) was complex. Al-
though the subset of data with pH measurements was only
slightly smaller (n = 162), the resulting GLS model was even
more complex and had an NSC of 0.68. The variables con-
tained in the final models are shown in Table 5.

Overall, the NO3–N concentrations in the ground-
water were highly variable both in space and time
(7.3± 12.5 mg L−1). Minimum and maximum concentra-
tions were 0 and 79.4 mg L−1, respectively. The high stan-
dard deviation of all NO3–N concentrations is caused by
the occurrence of many rather low and a few very high val-
ues (Fig. 4). During the first and the second winter, NO3–N
concentrations were partially extremely high (Fig. 4). Dur-
ing the first year of the study period, NO3–N concentrations
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Table 2. Hydrological and meteorological conditions during the
study period: precipitation (P ), reference crop evapotranspiration
(ETc), discharge at the outlet (Q), mean and standard deviation
(SD) water table depth (WTD) and temperature (T ). Long-term
averages: German Weather Service raster data 1990–2011. No
groundwater level data are available for summer 2008 (n.d.: not de-
termined).

P ETc Q WTD T

Period mean SD

mm m ◦C

2005/2006 701 507 165 0.74 0.18 8.9
Winter 289 68 158 0.51 0.18 1.7
Summer 413 439 17 0.98 0.19 16.0

2006/2007 934 485 270 0.58 0.22 10.0
Winter 383 124 179 0.51 0.17 6.0
Summer 551 361 91 0.65 0.28 14.0

2007/0208 554 515 180 n.d. n.d. 9.0
Winter 346 99 177 0.37 0.10 4.0
Summer 208 416 4 n.d. n.d. 13.9

Long-term mean 642 561 – – – 8.7
Winter 271 130 – – – 3.1
Summer 372 431 – – – 14.3

generally rose with rising GW levels (Tiemeyer et al., 2007),
although the concentration levels differed strongly between
the single dip wells. These patterns were confirmed during
the second year: the NO3–N levels were again very different
between the dip wells, but the temporal concentration pat-
terns were similar. The spatial heterogeneity reflected by dip
well mean concentrations of 0.4± 0.8 to 44.1± 19.7 mg L−1

(dry period) was, especially compared to DOC, very high
(Fig. 4). Average ammonium–nitrogen (NH4–N) concentra-
tions were near zero.

Although some small concentration peaks still occurred in
the third winter after rising groundwater levels, the wet sum-
mer of 2007 had completely changed the NO3–N concen-
tration dynamics in the groundwater (Fig. 4). While winter
groundwater levels remained similar, overall average NO3–
N concentrations dropped from 9.7± 14.3 mg L−1 during the
dry period to 2.5± 4.8 mg L−1 in the wet period. This sta-
tistically significant (p = 0.002) change was especially ev-
ident at dip wells associated with a high SOC content, fur-
thermost at those two dip wells in transect C (deep peat)
where average NO3–N concentrations of 44.1± 19.7 and
25.4± 12.8 mg L−1 in the first two winters decreased to
0.8± 1.2 and 1.5± 2.2 mg L−1 in the third winter (Fig. 4).
As a result, the spatial heterogeneity (dip well means:
0.2± 0.1 to 15.0± 2.7 mg L−1) was strongly reduced com-
pared to the dry period. NH4–N concentrations were still low
(0.4± 0.7 mg L−1).

The final LME model (NSC= 0.45) for the NO3–N con-
centrations was also complex (Table 5). Besides the period,
the depth to the groundwater table, the change of the ground-

Figure 3. Average (±standard deviation) DOC concentrations in
the dry winter of 2006/2007 and in the wet winter of 2007/2008 in
the dip wells of transect C.

water table and the nitrogen content of the peat were the most
important parameters. Higher temperatures intensified these
effects.

3.3 DOC and nitrogen concentrations in the ditch

Discharge, DOC and NO3–N concentrations in the ditch are
shown in Fig. 2, and an overview of the DOC, DON and
NO3–N concentrations is given in Table 4. DOC concentra-
tions in the ditch (24.9± 5.9 mg L−1) were much lower than
in the groundwater (50.6± 15.2 mg L−1). While DOC con-
centrations were slightly lower during the wet period than
during the dry period (Table 3), this difference was only sig-
nificant on a low level (p = 0.049). Visually, the DOC con-
centrations seem to be higher at the beginning of the dis-
charge period and lower during discharge events. However,
the instantaneous discharge was not included in the final
model for the DOC concentrations in our catchment. To ac-
count for the residence time of the water, a cross-correlation
analysis of the DOC, NO3–N and DON concentrations in
the ditch and the average discharge had been conducted.
For the DOC concentrations, the maximum correlation co-
efficient was found for an average discharge over the last
70 days (Fig. 5). Accordingly, the average discharge over
the last 70 days (Q70) was the only significant parameter
in the final GLS models for the full data set (n = 237) and
the data set with EC measurements (n = 224). The NSC of
these models was 0.48. No significant effects of the temper-
ature, the instantaneous discharge or any interactions could
be determined. The data set including pH measurements was
much smaller (n = 88), but had to be described by a more
complicated GLS model (NSC= 0.54) includingQ, Q70,
temperature, pH and EC as well as interaction betweenQ
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Table 3.Dissolved organic carbon (DOC) and nitrate–nitrogen (NO3–N) concentrations in the dip wells (n.d.: not determined).

DOC NO3–N

Period mean± SD min max mean± SD min max

mg L−1

2005/2006 n.d. n.d. n.d. 8.8± 12.9 0 65.4
2006/2007 46.8± 17.9 14.9 80.1 10.3± 15.4 0 79.4
2007/2008 51.4± 14.6 21.4 88.5 2.4± 4.6 0 21.3

Figure 4. (a)Spatial and temporal variability of nitrate–nitrogen (NO3–N) concentrations in the dip wells.(b) Mean and standard deviation
of the water table depth (WTD) during winter. Only sampled dip wells are shown.

and EC and betweenQ and pH. Removing the tempera-
ture (NSC= 0.51), the EC (NSC= 0.25) or the pH value
(NSC= 0.46) from the model would all reduce the NSC.

NO3–N concentrations in the ditch (10.3± 5.4 mg L−1)
were within the range of the concentrations in the dip wells.
In contrast to the dip wells, average winter NO3–N concen-
trations in the ditch were increasing during the study pe-

riod (Table 4). Therefore, the concentrations during the wet
period (11.7± 4.2 mg L−1) were significantly (p = 0.016)
higher than during the dry period (9.5± 5.9 mg L−1). There
was a clear positive correlation between the discharge and
the NO3–N concentrations (Fig. 2), while the maximum cor-
relation coefficient (Fig. 5) was determined for an average
discharge of over 13 days (Q13). During summer, NO3–N
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Figure 5. Cross-correlation between the square root of the aver-
age dischargeQaveragein the ditch and the concentrations of dis-
solved organic carbon (DOC), dissolved organic nitrogen (DON)
and nitrate–nitrogen (NO3–N).

concentrations were clearly lower than during winter in all
years, including the wet summer of 2007 (Table 2). The con-
centration patterns of NO3–N and DOC strongly differed,
resulting in a negative correlation between DOC and NO3–
N concentrations, which suggest different transport mecha-
nisms. NH4–N was not found at the catchment outlet.

The final GLS model for the full NO3–N data set (n =

361) includedQ13 and, with an opposite sign, the instan-
taneous discharge. When including EC into the analysis
(n = 240), this parameter and its interaction withQ13 were
significant according to the procedure outlined by Zuur et
al. (2009), but omitting them from the model only reduced
the NSC from 0.70 to 0.68. As in the case of DOC, the data
set with pH measurements was much smaller (n = 91) and
resulted in a more complex model. However, omitting pH,
temperature and EC did only reduce the NSC from 0.74 to
0.70.

DON concentrations in the ditch of 2.4± 0.8 mg L−1 were
relatively low and less variable than DOC and NO3–N (Ta-
ble 4), although concentrations during the wet period were
significantly higher than during the dry period (p = 0.0006).
The maximum correlation coefficient was found for the dis-
charge on the date of the DON concentration measurement,
but all correlation coefficients were very low (Fig. 5). Fac-
tors influencing the DON concentrations were difficult to de-
termine; depending on the data subset, the discharge and/or
the EC were identified as significant parameters, but the NSC
was always only 0.05.

3.4 DOC and nitrogen losses

Seasonal losses of DOC, NO3–N and DON are shown in
Fig. 6. Annual DOC losses were 66 kg ha−1 in the wet year
of 2006/2007 and 39 kg ha−1 in the dry year of 2007/2008. In
2006/2007, the winter accounted for 65 % of the DOC losses,

Figure 6. Seasonal losses of dissolved organic carbon (DOC), dis-
solved organic nitrogen (DON) and nitrate–nitrogen (NO3–N).

whereas in summer 2008 the ditch fell (and remained) dry
from May onwards. Thus, in 2007/2008, 98 % of the DOC
losses occurred during winter.

Annual total N losses from the catchment amounted to 19
(without accounting for DON), 42 and 31 kg ha−1. NO3–N
was thus the main component of the N losses. In both years
with DON measurements DON accounted for around 15 %
of the TN losses (Fig. 6). As the winter is the main discharge
period (Table 2) and the NO3–N concentrations were lower
during the summer months (Table 3), 96, 75 and 98 % of the
NO3–N losses took place during the winter months.

4 Discussion

4.1 Controls on DOC and NO3–N dynamics in the
groundwater: effects of the changed hydrological
conditions

Average DOC concentrations of 50.6± 15.2 mg L−1 are
within the typical range of degraded peatlands; Fiedler et
al. (2008) measured, for example, average DOC concentra-
tions of 82 mg L−1 in the GW of a deeply drained fen also
used as grassland. Kalbitz and Geyer (2002) found mainly
lower DOC concentrations (20–76 mg L−1), but their soils
did also have lower SOC contents than ours. In drained bog
peats, higher DOC concentrations are common (Frank et al.,
2014). The wet conditions from June 2007 to April 2008 –
which are similar to those of recently re-wetted fens – had no
clear effect on the groundwater DOC concentrations (Fig. 3).
Generally, the effect of re-wetting on DOC concentrations is
inconsistent and seems to depend on a number of factors such
as the type and degradation status of the peat (Cabezas et
al., 2013), the SOC content and the pH. While some authors
found considerably higher DOC concentrations in re-wetted,
highly degraded fens (Kalbitz and Geyer, 2002), others re-
port significantly lower DOC concentrations after re-wetting
(Fiedler et al., 2008; Frank et al., 2014; Wallage et al., 2006)
or no change at all (Gibson et al., 2009).

Those dip wells with higher DOC concentrations in the
wetter year were situated near the ditch (Fig. 3). Due to
the drawdown effect of the ditch, the peat there is probably
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Table 4.Dissolved organic carbon (DOC), nitrate–nitrogen (NO3–N) and dissolved organic nitrogen (DON) concentrations in the ditch (n.d.:
not determined).

Period DOC NO3–N DON

mean± SD min max mean± SD min max mean± SD min max

mg L−1

2005/2006 n.d. n.d. n.d. 8.1± 5.1 0 15.9 n.d. n.d. n.d.
Winter n.d. n.d. n.d. 9.5± 4.6 0 15.9 n.d. n.d. n.d.
Summer n.d. n.d. n.d. 2.5± 2.4 0 7.6 n.d. n.d. n.d.

2006/2007 26.7± 6.6 15.1 47.7 9.6± 6.0 0 25.5 2.3± 0.7 0.7 6.2
Winter 27.3± 6.7 15.4 39.4 10.9± 6.4 0 25.5 2.1± 0.6 0.7 3.8
Summer 25.2± 6.2 15.1 47.7 6.9± 4.1 0 13.0 2.7± 0.8 1.5 6.2

2007/2008 22.6± 3.7 13.1 30.6 12.6± 4.4 0.2 21.2 2.6± 0.8 0.9 5.2
Winter 22.5± 3.7 13.1 30.6 13.1± 3.7 5.6 21.2 2.6± 0.8 0.9 5.2
Summer 24.4± 0.8 23.5 25.5 3.6± 3.1 0.2 9.1 1.9± 0.2 1.7 2.1

more degraded than in the centre of the field. Degraded peat
is especially prone to high DOC losses under re-wetting
conditions (Kalbitz and Geyer, 2002; Zak and Gelbrecht,
2007). Although the number of concentration measurements
in 2006/2007 is too limited to draw final conclusions, the
observed minor changes both in the groundwater and in the
ditch suggest that no large additional DOC losses would have
to be expected under re-wetting conditions.

According to the results of the GLS model (Table 5), deep
groundwater tables and strong changes of the WTD result
in higher DOC concentrations. Furthermore, there is a nega-
tive relationship between the C : N ratio and the temperature.
These results can be explained by higher mineralisation rates
under these conditions and agree with results of other studies
(e.g. Frank et al., 2014). The positive relationship with the
groundwater table changes can be interpreted as a transport
of DOC from the previously unsaturated zone towards the
groundwater under conditions of a risen water table. Includ-
ing the pH value into the analysis yielded an even more com-
plex (and possibly overdetermined) model with high DOC
concentrations corresponding to low pH values.

During the first two winters, NO3–N concentrations in
some dip wells were extremely high (Fig. 4a), also compared
to other studies. High NO3–N concentrations and losses can
be explained by the intensive mineralisation of organic mat-
ter and subsequent nitrification in drained peatlands (Hacin
et al., 2001; Höper, 2002). At our study site, C : N ratios of
9–18 in 0–30 cm depth and additional fertiliser application
create a favourable environment for nitrogen release. This is
supported by the positive relationship between N concentra-
tions of the peat and NO3–N concentrations in the dip wells
(Table 5). Beetz and Glatzel (2013) measured net ecosystem
exchange (NEE) at two grassland sites in our study area. Ex-
cluding harvest, they found gaseous CO2–C losses between
around 4000 and 9000 kg ha−1 a−1. Assuming an average
C : N ratio of 14 this corresponds to N mineralisation rates

of around 300 to 650 kg ha−1 a−1. Thus, high NO3–N con-
centrations are hardly surprising.

Although the concentration levels differed strongly be-
tween the single dip wells, NO3–N concentrations generally
rose with rising GW levels (Table 5), and the temporal pat-
terns were similar between the dip wells. This can be ex-
plained by mineralisation and subsequent nitrification dur-
ing relatively dry periods followed by downward transport
of NO3–N by rainfall events. Savard et al. (2007) showed
in a dual-isotope study that winter nitrification can indeed
be high. Snowmelt events tended to cause a dilution pattern
(Tiemeyer et al., 2007), but significant snowmelt did occur
only once during our study period.

While concentrations in the first two years were compa-
rable, NO3–N concentrations were clearly lower during the
third year of the study period, which can be explained by
different hydrological conditions. Although small concentra-
tion peaks still occurred in the third winter at rising GW
levels – or, better after lower GW levels – the wet summer
of 2007 had by then completely changed the NO3–N con-
centration dynamics towards lower and more homogenous
values in the groundwater. The drop of the NO3–N concen-
trations was especially evident at the dip wells in transect
C (deep peat), while some dip wells in transect A with low
SOC content were less affected (Fig. 4a). Due to the topogra-
phy, these dip wells still showed low groundwater levels. The
lowered NO3–N concentrations can be explained by denitri-
fication during prolonged periods of high groundwater levels.
A high denitrification potential is typical for degraded peat-
lands (Cabezas et al., 2012; Davidsson et al., 2002). In labo-
ratory studies, NO3–N was found to be depleted within days
to weeks (Cabezas et al., 2012; Corstanje and Reddy, 2004).
Additionally, and probably more important, as the GW levels
during the winter of 2007/2008 itself were not exceptionally
high (Table 2), decreased mineralisation during the preced-
ing wet summer period may have led to lower NO3–N con-
centrations. Thus, the effect of the high groundwater table in
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Table 5.Coefficients of the GLS (DOC) and LME (NO3–N) model for the DOC and the NO3–N concentrations in the groundwater samples.
WTD – water table depth;1 WTD – change of the WTD within the last week; WTD30 – average WTD of the last 30 days;T – air
temperature;T30 – average air temperature of the last 30 days; dist – distance to the drainage ditch; N – nitrogen content of the topsoil; SOC
– soil organic carbon content of the topsoil; CN – C : N ratio of the topsoil; period – wet or dry period.

Parameter DOC DOC (with pH) NO3–N

Value p Value p Value p

WTD 66.84 < 0.0001 176.81 < 0.0001 −11.03 < 0.0001
1WTD 63.28 0.0382 136.23 0.0009 −4.30 < 0.0001
WTD30 10.62 0.7850
T −0.30 0.3471 −0.94 0.0008 0.02 0.4634
T30 5.65 0.0001 −18.75 0.0373
dist 0.56 < 0.0001
N 4.91 < 0.0001 8.93 < 0.0001 0.44 0.0001
SOC −0.56 0.0012
CN −13.62 < 0.0001 −25.22 < 0.0001
pH −14.71 0.0536
period 6.48 < 0.0001
WTD : T30 −10.08 0.0007 −51.05 < 0.0001
1WTD : T 21.90 < 0.0001 15.40 < 0.0001 0.69 < 0.0001
1WTD : T30 −35.49 0.0001 −59.46 < 0.0001
WTD30 : T30 36.33 0.0001
T30 : pH 3.57 0.0066
T : N 0.005 0.0003

summer is crucial for re-wetting projects, which should fo-
cus on wet conditions during summer when targeting nitrate
retention.

Besides the wet summer, the variability of the groundwater
table plays an important role for the NO3–N concentrations.
The importance of fluctuating water levels for nitrogen min-
eralisation has been shown in laboratory studies (Corstanje
and Reddy, 2004), but is difficult to quantify in the field.
Compared to transects A and C, the water level fluctuations
in transect B were relatively gentle (Fig. 4b), which resulted
in clearly lower NO3–N peaks even in the first two years of
the study period. In transect C, the groundwater table was
less variable in the last year of the study period (Table 2),
which in addition to the wet summer seemed to prevent min-
eralisation and subsequent nitrification in times of lower wa-
ter tables.

Overall, the LME model seems to summarise these ob-
servations (Table 5): the depth to the groundwater table, the
change of the groundwater table and the nitrogen content of
the peat were the most important parameters. Interactions of
the temperature with the N content of the soil and the ground-
water table change probably indicate the enhanced minerali-
sation and nitrification under warmer conditions.

4.2 Controls on DOC and N dynamics in the ditch:
anthropogenic effects

DOC concentrations in the ditch (Table 4) were lower than in
the groundwater, which is not surprising as the dip wells of

transect C were installed in the part of the catchment with the
highest SOC content (on average, 368 g kg−1 at 0–30 cm and
452 g kg−1 at 60–90 cm depth; Tiemeyer et al., 2007) and the
deepest peat layer.

The average concentrations of 24.9 mg L−1 are quite high
for a lowland peatland, especially given that only a part of
the catchment is covered by organic soils. While in disturbed
bogs sometimes much higher concentrations have been mea-
sured (Frank et al., 2014), undisturbed sites clearly show
lower DOC concentrations in the runoff water (Austnes et
al., 2010; Dawson et al., 2002; Koehler et al., 2009). Kløve
et al. (2010) measured comparable concentration in drainage
pipes of agriculturally used peatlands. Data on comparable
fen sites are largely missing. There is no clear effect of the
dry or wet period on the DOC concentrations, which reflects
the unchanged concentrations in the groundwater. Further-
more, the relatively high – and in the last year nearly undi-
luted – concentrations in the ditch strongly support the inter-
pretation that the part of the catchment with organic soils is
the main source of water for the ditch.

The highest concentrations were measured in the begin-
ning of the study period, suggesting a flush of porewater en-
riched with DOC as soon as flow towards the ditch is initi-
ated. In contrast to some other studies (Austnes et al., 2010)
where DOC concentrations were found to increase with in-
creasing discharge rates, we could not find such a pattern in
our catchment (Fig. 2). The reason for this difference can be
found in the different hydrological processes resulting in dis-
charge generation: while the catchment studied by Austnes
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et al. (2010) was covered by blanket peats with a fast re-
sponse and highly conductive surface layers on sloped ter-
rain, our site is essentially flat and dominated by tile and ditch
drainage. Residence time is suggested as a further controlling
factor for DOC concentrations (Limpens et al., 2008), and
indeed we found the best correlation of DOC to the average
discharge over the last 60 to 80 days (Fig. 5). This is sup-
ported by the GLS model for the complete data set and the
subset with EC measurements whereQ70 was found to be
the only significant influence factor. This permits the inter-
pretation that at higher discharge rates (and high groundwa-
ter level) over weeks the water has a shorter contact time with
the peat, and less DOC is available for transport. If, in con-
trast, the water movement is slow, there will be a longer con-
tact time with the peat, and thus an enrichment of the porewa-
ter with DOC. Additionally, times of slow water movement
frequently coincide with aeration and increased mineralisa-
tion.

Only for the data subset with pH measurements the pH
value, the temperature and the EC were included into the
GLS model. Although removing these parameters from the
model led to a lower NSC, especially the interaction terms
are difficult to interpret, and the model might be overdeter-
mined.

In the ditch, there was a negative correlation between DOC
and NO3–N concentrations. The different pattern can be ex-
plained as, during periods of long residence time, DOC is
accumulated in the groundwater while NO3–N is denitri-
fied, especially if – as in summer – the tile drains are no
longer active and higher temperatures promote biological ac-
tivity. Indeed, low concentrations of NO3–N in the ditch were
mainly measured during summer, especially in the dry sum-
mers 2006 and 2008, when, in addition to the processes in the
groundwater, uptake by plants with a high biomass (Phrag-
mites australisL.) in the ditches might remove nitrogen from
the slowly flowing water, effectively acting as a “treatment
wetland”.

During the complete study period, the NO3–N concentra-
tions in the ditch were high, and 47 % of all samples ex-
ceeded the drinking water limit of 11.3 mg L−1. Only 11 % of
the samples were lower than 2.5 mg L−1, which corresponds
to “moderate pollution” (LAWA, 1998) and the general Ger-
man water quality target also in the context of the Water
Framework Directive (UBA, 2010). These high concentra-
tions are even more serious as there is no dilution at high
discharge rates, but instead a clear positive correlation be-
tween the discharge and the NO3–N concentrations. There-
fore, large volumes of water carry high NO3–N concentra-
tions: 99 % of the water volume leaving the catchment has
concentrations higher than 2.5 mg L−1, and 66 % of it ex-
ceeds the drinking water limit.

Cross-correlation analysis showed the strongest correla-
tion between NO3–N and discharge for a lag time of a few
days, while the highest concentrations generally coincide
with the discharge peak. These seemingly contrasting results

can be explained by a strong hysteresis: at the same discharge
rate, NO3–N concentrations were higher at the falling limb
of the hydrograph. A clear example for the hysteresis is the
discharge event with a peak on 28 March 2006 (Fig. 2). The
hysteresis can be explained by the occurrence of the high-
est NO3–N concentrations in the groundwater during times
of a high groundwater table or directly thereafter during the
first two years. As a result, the temporal NO3–N concentra-
tion patterns in the ditch were similar to the GW during these
years.

The interpretation of the discharge being the most impor-
tant controlling factor for the NO3–N concentrations is sup-
ported byQ13 being the main factor in the GLS model for the
complete data set and the subset with EC measurements. In
both cases, the discharge at the day of the concentration mea-
surement has a negative relationship with the NO3–N con-
centrations, which reflects hysteresis effects. As in the case
of DOC, the data subset with pH measurements seems to be
too small to allow plausible interpretations of the resulting
complex model.

The NO3–N concentration patterns are strongly influenced
by the presence of tile drains in the catchment, which di-
rectly discharge water into the ditches. First of all, ongo-
ing drainage causes peat mineralisation and thus nitrogen
mineralisation, which can be followed by nitrification. Tile
drain discharge is generally highest under high groundwa-
ter levels. These were those phases when, during the first
two years of the study period, NO3–N concentrations were
highest. Thus, tile drainage may cause the water with high
NO3–N concentrations to bypass the deeper anaerobic peat
layers, where denitrification could have happened. Due to
the transit through saturated zones of peat depleted in oxy-
gen, sometimes even in agriculturally used catchments, es-
pecially under acidic soil conditions, low concentrations of
NO3–N were measured (Frank et al., 2014; Sapek et al.,
2007; van Beek et al., 2007). Due to the tile drains which
have previously been found to carry high NO3–N concentra-
tions (Roberts et al., 1986), the responsible processes do not
fully work here. This interpretation is supported by lysime-
ter studies which also lack a prolonged transfer through the
saturated zone. While Ross et al. (1995) measured, depend-
ing on the fertilisation level, NO3–N concentrations of 0–
44 mg L−1, Bergström and Johansson (1991) even found val-
ues> 100 mg L−1 in the lysimeter leachate.

During the last winter of the study period, there was a
strong contrast between the NO3–N concentrations in the
groundwater and the ditches, i.e. the catchment outlet and
ditch directly adjacent to transect C. While the groundwa-
ter concentrations were diminished by the wet conditions in
the preceding summer, the ditch concentrations were even
higher (Fig. 4a). These results raise the question of why the
relationship between the ditch dynamics and the GW dynam-
ics changed in the last year of the study (Fig. 7): there was
still a close relationship between the average NO3–N con-
centrations in the GW and the NO3–N concentrations in the
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Figure 7.Relationship between the average nitrate–nitrogen (NO3–
N) concentrations in the dip wells and the NO3–N concentrations in
the ditch before and after land use change (LUC). NO3–N concen-
trations of the ditch are 10-day means starting on the date of dip
well sampling.

ditch, but the slope greatly changed. This suggests that the
processes in the part of the catchment where the dip wells
are situated were still important for the catchment response,
but that an additional source of NO3–N appeared during the
last year of the study.

We suggest that there are two reasons for this observation:
in the last year of the study period we observed, unintention-
ally, the effects of the superposition of changed hydrologi-
cal conditions – which became apparent in the groundwater
concentrations – and land use change, which determined the
ditch concentration level and the change in the ditch–GW re-
lationship: firstly, a part of the grassland was converted to
arable land for maize production in spring 2007. Ploughing-
up of grassland can lead to mobilisation of nitrate even from
mineral soils (Sheperd et al., 2001). In an upland pasture on
peat, nitrate losses were increased by around 70 % even three
years after ploughing and reseeding (Roberts et al., 1986).
Secondly, the summer of 2007 was exceptionally wet (Ta-
ble 2), which caused farmers to renew the ditches and some
of the tile drains. This also affected the freshly ploughed
arable land. Although we did not directly measure leaching
from this “new” arable land, this combination seems a plau-
sible explanation for the high NO3–N concentration in the
ditch despite decreasing concentrations in the groundwater
of the grassland.

DON concentrations were relatively low. Factors influenc-
ing the DON concentrations were difficult to determine; there
is only a very slight effect of the discharge or EC. There was
also no correlation between DOC and DON in the ditch wa-
ter, supporting the assumption that different processes gov-
ern the release of DOC and DON (Kalbitz and Geyer, 2002).

Furthermore, DON analysis will be challenging if, as in our
case, high concentrations of dissolved inorganic nitrogen are
present as errors of the analytical methods may add up and
as total nitrogen analysis is prone to relatively low recov-
ery rates under these conditions (e.g. Graeber et al., 2012;
Vandenbruwane et al., 2007). Therefore, we had to accept
some uncertainties in the DON measurements which we can-
not quantify.

4.3 DOC and nitrogen losses

Annual DOC losses from peat catchments as measured
by Dawson et al. (2002), Gibson et al. (2009), Kløve et
al. (2010) and Koehler et al. (2009) are considerably higher
(108–191 kg ha−1) than our values (Fig. 6), but all these stud-
ies focussed on upland areas with high discharge rates. Re-
sults from Fraser et al. (2001) are closer (83 kg ha−1) to ours,
but their system – a northern bog – is very different to our
site. Data on agriculturally used lowland peatlands with fen
peat are surprisingly scarce, and we could find no data on
comparable sites. Even if the DOC losses from our study
site were not extraordinarily high, they could cause problems
further downstream, i.e. for drinking water treatment. How-
ever, when comparing our DOC and N losses to other studies
on peatlands, it has to be taken into account that only a part
(50 %) of the catchment is covered by organic soils and that
we cannot quantify a possible contribution of the groundwa-
ter pathway from the arable land. Given that the arable land
is not tile-drained and on mineral soils, we assume low DOC
losses from this part of the catchment as well as efficient den-
itrification during the passage towards the peatland and the
ditches.

We measured higher DOC losses in the wetter year
(Fig. 6), but this was solely controlled by the discharge rates,
not by the concentrations in the ditch or in the groundwa-
ter. As the groundwater concentrations remained largely un-
changed by the extreme meteorological conditions, we would
expect, at least in the short term, similar DOC losses under
re-wetting conditions, especially if more water was retained
in the catchment.

At two grassland sites within the catchment, Beetz and
Glatzel (2013) measured a NEE of carbon dioxide between
around 4000 and 9000 kg ha−1. Thus, fluvial carbon losses
of, on average, 53 kg ha−1 do not play a large role for the total
carbon budget of the catchment. Even assuming that the only
origin of the DOC is the part of the catchment with organic
soils, DOC only accounts for around 2 % of the gaseous car-
bon losses. These results seemingly contrast with other stud-
ies where fluvial carbon losses form an important part of the
carbon balance (Dinsmore et al., 2010). These near-natural
catchments, however, have a significantly lower NEE result-
ing in a higher relative importance of the DOC losses. More-
over, they show higher discharge rates and thus higher DOC
losses than our catchment.
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Although it is widely known that NO3–N can be released
when peatlands are drained, there are surprisingly few stud-
ies actually providing numbers. The value (38 kg N ha−1 a−1)
given by van Beek et al. (2007) for an experimental field in
the Netherlands, however, is comparable to our results. Even
under drained conditions, nitrate losses even from agricul-
turally used peatlands are sometimes quite low as the water
passes the permanently saturated part of the peat where opti-
mal conditions for denitrification prevail (Kløve et al., 2010).
However, in our case the tile drains in parts of the catch-
ment seem to cause an effective bypass of the saturated zone.
The superposition of hydrological and management effects
are probably the reason why the wet conditions from June
2007 to April 2008 were not reflected by decreasing NO3–N
losses from the catchment. Our values are lower than those
of the lysimeter studies of Behrendt et al. (1996) and Roberts
et al. (1986), who measured annual losses of more than 100
kg NO3–N ha−1. These higher values might be explained by
the methodological differences and, in the case of Roberts
et al. (1996), much higher precipitation. Lysimeter discharge
and losses from Bergström and Johansson (1991) are, how-
ever, comparable to our results, while Ross et al. (1985)
found clearly lower losses (1–14 kg NO3–N ha−1 a−1) from
their lysimeters, but they report neither on discharge nor wa-
ter table levels. In the regional context, the NO3–N losses are
as high as or higher than losses from tile-drained arable land
on mineral soils, which is widely found to be important for
N pollution (Tiemeyer et al., 2006).

Compared to theoretical losses between 300 and
650 kg ha−1 a−1 and an additional average field nitrogen bud-
get of 81 kg ha−1 a−1 (Table 1), substantial amounts of min-
eral N have to be denitrified or immobilised within the peat-
land. Van Beek et al. (2007), for example, estimate an an-
nual denitrification of 213 kg N ha−1. Due to the high spa-
tial variability it is difficult to assess how much NO3–N pro-
duced in the unsaturated zone is denitrified on its pathway to
the ditches. Similarly, there might be input by groundwater
flow or leaching to the deeper groundwater, which we cannot
quantify.

Compared to DOC and NO3–N, there is even less in-
formation on DON losses from lowland peatland catch-
ments. In a near-natural blanked bog catchment, Adamson
et al. (1998) measured DON losses in the same range (5.7
to 6.5 kg ha−1 a−1) as our values, but these are the result
of much lower DON concentrations and higher discharge
rates. As mineral nitrogen concentrations were very low in
this study, DON formed 85 % of the total nitrogen losses.
Also in a catchment with high discharge rates, Kløve et
al. (2010) measured average DON losses of 11 kg ha−1 a−1

from drained peat, corresponding to 50% of the N losses.
Results in our catchments were the other way round in both
years as DON losses accounted for around 15 % of the TN
losses. Nonetheless, DON may form a relevant component
of the N balance of drained peatland catchments and even
more so of re-wetted peatlands with decreased NO3–N con-

centrations. In addition, the controls on the DON concentra-
tion dynamics are not clear, so the topic seems to call for
further attention.

5 Conclusions

We measured DOC and N concentrations in and losses from
a grassland peatland under changing conditions. While the
situation during the first 1.5 years was typical for the region,
the remainder of the study period saw a superposition of very
wet conditions (in its effects, similar to re-wetting) and land
use change. The results suggest that under re-wetting con-
ditions groundwater NO3–N concentrations would decrease
very quickly, while DOC concentrations would remain on
a similar level. Relatively, DOC losses did not constitute a
major part of the carbon balance, but this is mainly because
of the high NEE of a drained peatland, as the losses them-
selves are comparable to other studies. In this case, sum-
mer groundwater levels and groundwater table fluctuations
decide on NO3–N concentrations in the subsequent winter.
Further intensification of the land use, on the other hand,
might increase the NO3–N losses to receiving waters. DON
accounted for around 15 % of the total N losses, but factors
influencing DON concentrations deserve further study. In the
light of the European Water Framework Directive, re-wetting
peatlands is a valuable tool for reducing N losses to lowland
rivers.
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