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Supplement Table 1
The configuration of layers in the fibric horizon based on total thickness (TZ).

Supplement Figure 1-5

Convergence test for the estimators of the first and total order effects on soil organic
carbon in fibric horizon with their 95% confidence interval. A sample size of 2000,
highlighted in the plots, is found to be sufficient for the convergence of the estimators
with relatively narrow uncertainty bound.

Supplement Notes

Additional references from model descriptions and Sl figures



Model description
1. Layer setup

The soil is divided into three horizons [Yi et al., 2009; Yi et al., 2010], the surface
live moss layer (“live”), the slightly decomposed fibrous organic layer (“fibric”), and the
moderately to very decomposed amorphous organic matter layer (“humic”). The
maximum total number of layers is 7, with a maximum 1 moss layer, 3 fibric layers, and
3 humic layers. Each layer has minimum thickness of 2 cm. The layers of fibric horizon
are configured according to Supplementary Table S1, and are configured in a way so that
the upper layers in the soil are thinner than the deeper layers. The thicknesses and number
of layers in the humic horizon (Namp) are based on the thickness of the bottom layer of

fibric horizon (dsinpor) and the total thickness of humic horizon (damp):
1 damp < 3diip ot
Namp 2 3dippot < damp < 6ip pot
3 damp = 60sip pot

If there are 2 layers in the humic horizon, the thickness is 1/3 and 2/3 of the total
thickness of humic horizon, respectively; if there are 3 layers, the thickness is 1/6, 2/6
and 3/6 of the total thickness of humic horizon, respectively. At the end of each year, the
model updates the soil structure based on the calculation of total thickness of each
horizon. The soil structure is updated to enable soil thermal and moisture dynamics to
vary with depth. The model simulates only the organic soil up to 1m.

The layer thickness is determined based on the bulk density and C fraction of each

layer as

Z= __ + .
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where Z is the total thickness of soil, Mass; is the sum of all C pools (SOC + MIC +

SolubleC + ENZ) in layer j, Cfrac is the C fraction in fibric and humic horizon, and BD is
the corresponding bulk density.

2. Decomposition
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The changes in microbial biomass are simulated by the subtraction of microbial
death and enzyme production and the CO, emitted through microbial respiration from
assimilated soluble C, via which O; is consumed to produce energy for assimilation of
dissolved organic C:

dl\él_tIC = ASSIM - CO, - DEATH - EPROD (3)
Assimilation is a Michaelis-Menten function scaled to the pool size of microbial
biomass:
ASSIM =V max . x MIC ><L (4)
kI\/I[SX]-'-[SX]
where V max ... is the maximum velocity of the enzymatic reaction when substrate is

not limiting. kM, , is the corresponding Michaelis constant. The concentration of soluble

C substrates at the reactive site of the enzyme ([S4]) is affected by soil water content, and

specifically by diffusion of substrates through soil water films. [S,] is calculated from
[Sxsotuvte] through [S,1=[S o1 ] % Dig X &, where @is the volumetric water content of the

soil, and Djiq is a diffusion coefficient of the substrate in liquid phase. Diffusion of
soluble substrates has been shown to be related to the thickness of the soil water films,
which is approximated by the cube of the volumetric water content. It is assumed that the
cell surface area available for [S,] uptake is proportional to the number of cells, and thus
the microbial biomass [Davidson et al., 2012]. [S«] is assumed to be the only substrate for
microbial C uptake. Similar to Davidson et al. [2012], the value of Djiq is determined by
assuming the boundary condition that all soluble substrate is available at the reaction site
for saturated soil (i.e., [S,]=[S.upie]):

CO; is produced as the part of microbial assimilated C not allocated to biomass

growth. The production process follows Michaelis-Menten kinetics similar to
assimilation but is controlled by the concentration of both [S,] and O:

5], O] e

CO, =V max,, x ()
? kM, +[S,] kMg, +[0,]
subsequently, carbon use efficiency (CUE) can be obtained by
CUE =1-CQO, / ASSIM (6)



The concentration of O at the reactive site of the enzyme ([O2]) depends upon

diffusion for gases within the soil medium, which is modeled with a simple function of
air-filled porosity: [O,]=D  x0.209 x a"®. Dy is a diffusion coefficient for O, in air,

0.209 is the volume fraction of Oy in air, and a is the air-filled porosity of the soil. The
total porosity is calculated from bulk density (BD) and particle density (PD):

a=1--2 .
PD

V MaX .V MaXeq , and kM | are temperature dependent. V max,,,. and

V maxc,, follow the Arrhenius equation:

V — Eauptake
maxuptake =V maxuptakeo X EeXp 'm
e
Eacoz
V maXe, =V maxe, xexp|-———=——
R x (T, +273)

where V max and V max,,  are the pre-exponential coefficient (i.e., the theoretical

uptake,

decomposition enzymatic reaction rate at Ea = 0), R is the ideal gas constant (8.314 J K™

mol™), T, is the temperature in Celsius, and Ea and Ea.,, are the activation energy

uptake
for [Sx] uptake and CO, respiration by microbial. High activation energy indicates high
temperature sensitivity but reacts slowly. kM, , is calculated as a linear function of
temperature, as adopted in Davidson et al.’s [2012].

kM[SX] = ckM[sx] +m xTe

kMg, 1
where Cows and My, , are the intercept and slope parameters, respectively. kM, is
assumed to be constant with respect to temperature for the sake of model parsimony.
However, kM, could be modeled as a function of temperature when observations are
available.

Microbial death is modeled as a first-order process with rate constantr,,,,

[Lawrence et al., 2009]:
DEATH =r,_, xMIC

(7)

(8)

©9)

(10)



Enzyme production is modeled as a constant fraction (r; ) of microbial

nzProd
biomass [Lawrence et al., 2009]:
EPROD =r,,, .4 X MIC (112)

The enzyme pool changes with enzyme production and turnover:

d';tnz — EPROD — ELOSS (12)
where the turnover (ELOSS) is modeled as a first-order process with constant rate:
ELOSS =1, . XENz (13)

The changes in SOC pool varies with external inputs, enzyme turnover, inputs
from dead microbial biomass ( MICtoSOC ) and decomposition loss:

dsfrc = inputSOC + DEATH x MICtoSOC + ELOSS — DECAY (14)

where enzymatic decomposition of SOC (DECAY) here is mainly referring to the process
through which microbes secrete exoenzymes to convert macromolecules into soluble
products (soluble C, denoted as [Sxsowuble]) that can be absorbed and metabolized by
microbes. This process follows Michaelis-Menten kinetics with enzyme and substrate
(here SOC) constraint:

DECAY =V max o, x Enzx——0C (15)

kM, +SOC
where V., is the maximum velocity of the enzymatic reaction when substrate is not

limiting and is calculated according to Arrhenius function:

Ea
V maXgoe =V maxgye x exp(- R (e n§;?+273)J (16)

We assume Michaelis-Menten constant for SOC (kM. ) is invariable with

temperature. The soluble C pool ([Sxsolubie]) changes with external inputs, the remaining
fraction of dead microbial biomass, and decomposition:

dSolubleC _ peaTH x (1- MICtoSOC) + DECAY - ASSIM (17)

This process represents the enzymatic depolymerization of complex molecules to

the simpler ones available for microbial uptake.



Table S1.The configuration of layers in the fibric horizon based on total thickness (TZ).

Total Thickness Layer 1 Layer 2 Layer 3 (bottom)
(cm)

0~4 TZ - -

4~6 2 TZ-2 -

6~10 2 2 TZ-4

10~14 3 5 TZ-8

14~19 4 8 TZ-12

19~25 5 10 TZ-15

>25 6 12 TZ-18
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Figure S1. Convergence test for the estimators of the first and total order effects on soil organic carbon in fibric horizon with their
95% confidence interval. A sample size of 2000, highlighted in the plots, is found to be sufficient for the convergence of the
estimators with relatively narrow uncertainty bound.
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Figure S4. Screening test results (sensitivity index &= \//UEEZ +0o?Z. ) for Soluble C under all scenarios.
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Figure S5. Screening test results (sensitivity index &= \//UEEZ +0o ) for enzyme C (ENZ) under all scenarios.
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