

Supplement of

Agricultural peatlands: towards a greenhouse gas sink – a synthesis of a Dutch landscape study

A. P. Schrier-Uijl et al.

Correspondence to: A. P. Schrier-Uijl (arina.schrier@planet.nl)

OITE	CHC	METHOD			
	GHG	METHOD		KEF.	ABBREVIATIONS
Ho	CO_2	covariance	Annual NELCO2 = GFF-Ae	1, 2, 3	GPP= gross primary production
		ee rananee	Annual NEE is calculated from 30 minute		$R_{\rm e} = {\rm ecosystem respiration}$
		Ecosystem	night fluxes		R_{10} = respiration at 10 °C
		Respiration	D $E_0((1/283.15-T_0)-1/(T-T_0))$		T ₀ = fixed T at 227.13 K E ₀ =
		(Lloyd	$R_{\rm e} = R_{10} \exp^{-\alpha t}$		activation energy
		Tailor			$F_{\rm c}$ = ecosystem flux
		equation	R_{10} and E_0 are fitted from 30 minutes		PPFD= Photosynthetic photon flux
		night time	average night time per month or shorter		a B and v are parameters
		data)	when required.		
		,	α DDED β		
		Net Day	$F_c = \frac{\alpha.PPPD.\rho}{\alpha.PPPD.r} + \chi$		
		time	α .PPFD+ β		
		ecosystem			
		Michaelis-			
		Menten			
		equation)			
Ou, St,	CO ₂	Dark	Annual $R_{\rm e}$ is calculated from a regression	4	
		champer	given by		
			$R_{\rm e} = R_{10} \exp^{E_0 \left((1/285.15 - I_0) - 1/(1 - I_0) \right)}$		
Ou	CH ₄	Eddy	Ν	5	NEE _{CH4} = annual emissions of CH ₄
		covariance	$\text{NEE}_{\text{CH4}} = \sum F_{\text{CH4}} T_{av}$		F_{CH4} = 30 minute flux of CH ₄
			i=1		T_{av} = averaging time
			with F _{CH4} 30 minute measured eddy		T=30 minute soil temperature
			covariance flux or the gap filled flux given		0 -= 30 minute wind velocity
			by $F_{CH_4} = \exp^{a+bT+cU}$		
			<i>a</i> . <i>b</i> and <i>c</i> are factors in the regression		
Ou, St,	CH ₄	Dark	<u>N</u>	6,1	
Ho		chamber	$\text{NEE}_{\text{CH4}} = \sum F_{\text{CH4}_i} T_{\text{av}}$		
			<i>i</i> =1		
			$F_{\rm CH_{*}} = \exp^{a+bT}$		
			with		
			a and b are factors in the regression and		
			are unclent per site and per landionn		
			The factors a and b are given per site per		
			landform in Schrier-Uijl et al 2009.		
00	NLO	Eddy		5	NEE
Ju	IN2U	covariance	$NEE_{N_2O} = E_{EC} + E_1 + E_d$	5	$E_{\rm FC}$ = emission measured by eddy
			with $E_{\rm res} = E_{\rm res} + E_{\rm r}$		covariance
			with $\boldsymbol{\omega}_{\rm EC} = \boldsymbol{\omega}_{\rm bgnd} + \boldsymbol{\omega}_{\rm fert}$		$E_{\rm I}$ = indirect emission due to
					leaching and run-off
					E_d = indirect emission due to
					Engle = background emission
					$E_{\text{fert}} = \text{direct emission due to}$
					fertilizing events
St	N ₂ O	Literature		7	
Ho	N ₂ O	Literature		7	

Supplement S1. Emission estimates and gapfilling methods per greenhouse gas and per site.

1 Hendriks et al (2007), 2 Veenendaal et al. (2007), 3 Falge et al. (2001), 4 Schrier-Uijl et al. (2010b), 5 Kroon et al. (2010), 6 Schrier-Uijl et al. (2010a), 7 Velthof et al. (2007).