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Abstract. Interannual anomalies in the sea–air carbon diox-
ide (CO2) exchange have been estimated from surface-ocean
CO2 partial pressure measurements. Available data are suffi-
cient to constrain these anomalies in large parts of the trop-
ical and North Pacific and in the North Atlantic, in some ar-
eas covering the period from the mid 1980s to 2011. Global
interannual variability is estimated as about 0.31 Pg C yr−1

(temporal standard deviation 1993–2008). The tropical Pa-
cific accounts for a large fraction of this global variabil-
ity, closely tied to El Niño–Southern Oscillation (ENSO).
Anomalies occur more than 6 months later in the east than in
the west. The estimated amplitude and ENSO response are
roughly consistent with independent information from atmo-
spheric oxygen data. This both supports the variability esti-
mated from surface-ocean carbon data and demonstrates the
potential of the atmospheric oxygen signal to constrain ocean
biogeochemical processes. The ocean variability estimated
from surface-ocean carbon data can be used to improve land
CO2 flux estimates from atmospheric inversions.

1 Introduction

The ocean currently accounts for about half the sink of ex-
cess atmospheric CO2 (Sarmiento et al., 2010). Long-term

changes in this sink capacity, therefore, affect the climate
change trajectory. While it is at present still hard to directly
detect such trends in the available observations (e.g.McKin-
ley et al., 2011), an understanding of underlying mecha-
nisms may be gained by quantifying contemporary varia-
tions in sea–air CO2 exchanges from the data, and relat-
ing them to driving influences. However, current informa-
tion on interannual sea–air CO2 flux variation and trends
largely comes from biogeochemical process models (Wan-
ninkhof et al.(2013) and references therein) and carries large
uncertainties. While sea–air CO2 flux variation can be es-
timated from atmospheric CO2 data, the dominance of sig-
nals from land CO2 fluxes in the atmospheric CO2 records
causes large uncertainties of the oceanic estimates (Peylin
et al. (2013) and references therein). Surface-ocean data
(CO2 partial pressure) have proved to provide a more di-
rect constraint in various studies focusing on regions rela-
tively well covered by observations such as the tropical Pa-
cific (e.g.Feely et al., 1999, 2002; Inoue et al., 2001; Ishii
et al., 2014) or the North Atlantic (e.g.Watson et al., 2009;
Telszewski et al., 2009; Schuster et al., 2013; Landschützer
et al., 2013). For the global scale,Park et al.(2010) provided
a data-based estimate of sea–air CO2 flux variations by re-
gression to the more densely observed variations of sea sur-
face temperature (SST). As a complement, here we consider
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the information about sea–air CO2 flux variations directly
contained in surface-ocean carbon data.

In a previous study (Rödenbeck et al., 2013), the spatio-
temporal variability of sea–air CO2 fluxes has been estimated
based on the SOCAT database (Surface Ocean CO2 Atlas
v1.5, Pfeil et al., 2013) of surface-ocean CO2 partial pres-
sure measurements, using a diagnostic data-driven scheme
of mixed-layer biogeochemistry. That study focused on sea-
sonal variations, which were found to be well constrained
from the data in most parts of the ocean. Estimated mean sea-
sonal cycles are similar to the seminal climatology byTaka-
hashi et al.(2009). In addition, the scheme also partly re-
produces day-to-day variations through parameterizations in
terms of sea surface temperature and a few other variables.
Using phosphate observations, the plausibility of the scheme
was tentatively confirmed on the seasonal timescale.

As a next step, we now also consider interannual variabil-
ity (IAV). In particular, we consider the following questions:

– What are the main modes of interannual variability con-
tributing to the global sea–air CO2 flux?

– Not all parts of the ocean have been sampled frequently
enough to reliably estimate interannual flux variations
from the SOCAT data. In which parts of the ocean, and
to what extent, does the available data coverage suffice
to estimate interannual variations of the sea–air CO2
flux?

– The ocean-internal processes (biology, transport) that
add/remove dissolved inorganic carbon to/from the
mixed layer, and thus cause anomalies in sea–air CO2
fluxes, simultaneously also remove/add dissolved oxy-
gen, leading to anomalies in the sea–air oxygen ex-
change and finally to tiny but detectable variations in
the atmospheric oxygen abundance. Thus, regular at-
mospheric oxygen measurements contain information
on ocean-internal biogeochemical processes (Keeling
and Shertz, 1992). Using an atmospheric inversion tech-
nique, the atmospheric oxygen (and CO2) observations
at five sites operated since at least 1993 have been
shown to be more or less sufficient to estimate inter-
annual variations in the oceanic oxygen flux indepen-
dently for at least three latitudinal bands (Rödenbeck
et al., 2008). As the data-driven diagnostic mixed-layer
scheme used here can be extended to calculate sea–
air oxygen fluxes as well (by exploiting the above-
mentioned link between the ocean-internal sources and
sinks of carbon and oxygen), we can compare the
SOCAT-based variations to those based on atmospheric
oxygen. How consistent are these independent informa-
tion sources?

We further compare the SOCAT-based estimates to an ocean
process model simulation, and discuss the estimates in the
context of an atmospheric CO2 inversion.

2 Method

2.1 The data-driven mixed-layer scheme

This paper further analyses the spatio-temporal fields of
surface-ocean CO2 partial pressure (pCO2) and sea–air CO2
flux presented in the companion paperRödenbeck et al.
(2013). As documented in detail there, these fields were es-
timated by fitting a simple diagnostic model of mixed-layer
biogeochemistry to SOCATpCO2 data in the following way:

(1) A mixed-layer carbon budget equation (including sim-
ple parameterizations of sea–air CO2 exchange (Wan-
ninkhof, 1992; Naegler, 2009), solubility (Weiss, 1974),
and carbonate chemistry (Sarmiento and Gruber, 2006),
driven by observation-based environmental fields listed
in Table1) was used to express surface-oceanpCO2 and
sea–air CO2 flux as a function of ocean-internal carbon
sources and sinks (Fig.1) for each pixel.

(2) A cost function was formed to measure the mismatch
between the individualpCO2 data points in SOCAT
(binned into the scheme’s pixels and time steps, see be-
low) and the calculatedpCO2 field at the corresponding
location and time.

(3) The ocean-internal carbon sources and sinks were ad-
justed so as to minimize this model–data mismatch. In
order to interpolate areas/periods without data, addi-
tional smoothness constraints were applied (similar to
those in the atmospheric inversion ofRödenbeck, 2005).
The only difference of the present estimates with re-
spect toRödenbeck et al., 2013is that we updated the
data source to the shipboard observations1 of SOCAT
v2 (Pfeil et al., 2013; Bakker et al., 2014), offering data
coverage until the end of 2011.

The calculation has been done on a global grid of
≈ 4◦

× 5◦ pixels and daily time steps over 1985–2012 (in-
clusive). The first and last year will be discarded from any
plots to avoid edge effects. Statistical analysis is done over
1993–2008 (inclusive) only, as this is a period with largest
data coverage both in SOCAT v2 and in atmospheric oxy-
gen records. To obtain interannual variations, we deseason-
alize the time series by subtracting the mean seasonal cycle
(1993–2008) and remove variations faster than about 1 year
by a spectral filter corresponding to a Gaussian smoothing
kernel (filter “Filt0.5gdas” ofRödenbeck, 2005).

2.2 Process contributions to variability

For any given location, the (interannual) variability of the
sea–air CO2 flux is the sum of two contributions:

1The high-frequency mooring and drifter observations available
in recent years have been retained for independent validation (Sup-
plement, Sect. S.4.2). This also provides a more uniform data den-
sity over time.

Biogeosciences, 11, 4599–4613, 2014 www.biogeosciences.net/11/4599/2014/



C. Rödenbeck et al.: Interannual sea–air CO2 flux variations 4601

Table 1.Data sets used as driver fields in the parameterizations of sea–air gas exchange, solubility, and carbonate chemistry (seeRödenbeck
et al., 2013).

Quantity Data set Reference

Wind speed NCEP reanalysisKalnay et al.(1996)
Sea surface temperature OAFlux Yu and Weller(2007)
Ice-free fraction OAFlux Yu and Weller(2007)
Mixed-layer depth (climatology) LOCEAN de Boyer Montégut et al.(2004)
Salinity (climatology) WOA 2001 Conkright et al.(2002)
Alkalinity (climatology) Lee et al.(2006)
Buffer factor Egleston et al.(2010)
Reference DIC concentration GLODAP Key et al.(2004)

Glossary: GLODAP= Global Ocean Data Analysis Project; LOCEAN= Laboratoire d’océanographie et du climat:
expérimentations et approches numériques; NCEP= National Centers for Environmental Prediction;
OAFlux= Objectively Analysed air–sea Fluxes; WOA= World Ocean Atlas.

Contribution OIS (ocean-interior sources/sinks)
Variations in biological conversion and/or ocean trans-
port into the mixed layer lead to anomalous ocean-
internal sources/sinksf DIC

int of dissolved inorganic car-
bon (DIC) (Fig. 1, bottom), which then lead to en-
hanced/reduced sea–air CO2 fluxesf

CO2
ma (Fig. 1, top).

The responses inf CO2
ma are, however, of smaller magni-

tude than and delayed with respect to the causes inf DIC
int

because the buffering capacity of carbonate chemistry
(Revelle factor) strongly enhances the limiting effect of
the finite gas exchange velocity.

Contribution TE (thermally induced exchange)
Even in the absence of ocean-internal sources or sinks,
the sea–air flux varies in response to temperature-
induced changes in solubility and chemical equilib-
rium2 (plus minor contributions from changes in at-
mospheric pressure, freshwater effects, and alkalinity).
Contribution TE also comprises a secular CO2 uptake
(and consequent rise ofpCO2) induced by the prescribed
rising atmospheric CO2 content.

Both contributions are somewhat modulated by variations in
gas exchange (Supplement, Sect. S6) and mixed-layer depth.

In the diagnostic scheme, contribution TE is considered
known from the employed process parameterizations driven
by observed variables (predominantly SST). In contrast, the
ocean-internal DIC sources/sinksf DIC

int causing contribution
OIS are taken as unknowns, to be adjusted in such a way
that the total variations in the CO2 partial pressure (sum of

2 Though contribution TE is mainly driven by the “thermal
component ofpCO2” considered in the literature (Takahashi et al.,
2009), its temporal course differs from that of SST because, be-
sides the static dependence ofpCO2 on temperature, it also takes
into account the dynamic response of the mixed-layer DIC content:
temperature rise(decline) induces out(in)gassing fluxes which coun-
teract the direct temperature effect. As a consequence of this bal-
ance, peaks in the TE contribution tend to be related to temperature
changes and thus occur earlier than the actual temperature peaks.
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Fig. 1. Illustration of the inverse procedure in our main case (run
SFC): Boxes denote the process representations causally linking
quantities from bottom to top: Mixed-layer carbon budget (CB),
Carbonate chemistry (CC), Solubility and sea–air gas exchange
(GE). The double arrow symbolizes the matching between observed
and modelledCO2 partial pressure, as gauged by the cost function
Jp. The thin arrow indicates the adjustments of the unknown ocean-
internal carbon sources/sinks done to minimize the model-data mis-
match (see R̈odenbeck et al. (2013) for full details).
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Fig. 2. Information flow between carbon and oxygen variables.
Left: Inverse procedure of runSFC as in Fig. 1, estimating ocean-
internalDIC sources/sinks frompCO2

m data.Middle: Prediction of
the oxygen sea–air flux: Ocean-internal oxygen sources/sinks are
calculated fromDIC sources/sinks via tracer-tracer coupling (TT)
assumed to follow Redfield stoichiometries. Dissolved oxygen con-
centration (CO2

m ) and sea–air oxygen flux (fO2

ma ) are then obtained
from parameterizations of a mixed-layer oxygen budget (OB), as
well as oxygen solubility and sea–air gas exchange (GE), analo-
gous to those for carbon.Right: APO inversion of R̈odenbeck et al.
(2008): Sea–airAPO fluxes are estimated fromAPO observations
(combined atmospheric oxygen andCO2 data) by inversion of at-
mospheric transport (AT).
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Fig. 3. Top: Globally integrated sea–airCO2 exchange estimated
from SOCAT data (runSFC, blue). Negative values indicate an
oceanCO2 sink. Bottom: Interannual anomalies of the globally
integrated sea–airCO2 exchange. The time series have been desea-
sonalized and filtered for interannual variations, and the 1993–2008
mean flux has been subtracted (positive values indicate an increased
oceanCO2 source or a decreased sink). The light-grey band around
the standard case comprises a set of sensitivity cases (Sect. 2.3.4).
The time period shown excludes the first year for spin-up, and the
years after the end of SOCAT v2 (end of 2011).

Fig. 4. Top: Amplitude of IAV of the sea–airCO2 flux es-
timated from SOCAT data (runSFC), calculated as temporal
standard deviation (1993–2008) of the interannually filtered flux
(µmol m−2 yr−1). Bottom: Capacity of the diagnostic scheme to
retrieve interannual variations in the sea–airCO2 flux from SOCAT
v2 data (Reduction of Uncertainty, average performance 1993–
2008). Pixels with RoU< 0.2 have been left uncolored.

Figure 1. Illustration of the inverse procedure in our main case (run
SFC); boxes denote the process representations causally linking
quantities from bottom to top: mixed-layer carbon budget (CB), car-
bonate chemistry (CC), solubility and sea–air gas exchange (GE).
The double arrow symbolizes the matching between observed and
modelled CO2 partial pressure, as gauged by the cost functionJp.
The thin arrow indicates the adjustments of the unknown ocean-
internal carbon sources/sinks, undertaken to minimize the model–
data mismatch (seeRödenbeck et al.(2013) for full details).

contributions OIS and TE) are compatible with the SOCAT
data (for illustration see also Fig. 3 ofRödenbeck et al.,
2013). The Bayesian prior is chosen to bef DIC

int = 0, such
that any positive or negative anomalies in the ocean-internal
sources/sinks are a priori equally likely, i.e. we do not assume
any prior knowledge on the ocean-internal processes. Conse-
quently, the prior of the sea–air flux coincides with contribu-
tion TE.

2.3 Performance diagnostics

2.3.1 Reduction of uncertainty (RoU)

As the main diagnostic to identify which regions are well
constrained by the data, we use the “reduction of uncertainty”
(RoU), a standard diagnostic of Bayesian estimation defined
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as

RoU= 1−
σpost

σpri
(1)

with σpri andσpost denoting the formal a priori and a poste-
riori uncertainties of the flux. High values (RoU towards 1)
indicate strong data constraints, while low values (close to 0)
indicate that the data are not able to move the estimates away
from the prior.

The uncertainty intervalsσpri andσpost have been calcu-
lated statistically from an ensemble ofn = 50 inversion runs
with pseudorandom realizations of a priori errors and model–
data mismatch errors: in each inversion run, prior and data
have been replaced by values drawn according to their spec-
ified (co)variances using a Gaussian pseudorandom num-
ber generator (in the case of the prior, pseudorandom num-
bers with the full a priori covariance structure are obtained
from independent Gaussian pseudorandom numbers using
the “flux model formulation” Eq. (3) ofRödenbeck, 2005).
Exploiting the linearity of the inversion problem, each mem-
ber i of the pseudorandom ensemble then gives a realization
1ifpost of the a posteriori error of the flux field. The uncer-
taintiesσpri andσpost are thus given by the root mean square

of the error fields across the ensemble,σ =

√∑
i(1if )2/n

(as the expectation value of the error is 0 by construction).
As we want to obtain RoU specifically for interannual vari-
ations (and possibly for regional averages), the a priori and
a posteriori error fields of each ensemble member are inter-
annually filtered (and regionally averaged) in the same way
as the actual flux estimates, before the root mean square is
calculated. That way, any covariances between the a posteri-
ori errors at different locations/times are automatically taken
into account.

Of course, the root mean square across the finite ensemble
only gives an approximation to the uncertainty intervals. For
our sample size of 50, standard deviations could be a factor
of 0.79 smaller or a factor of 1.34 larger (confidence inter-
val for a confidence level of 99 %). Calculated RoU values
can, therefore, only give the 1st-order pattern of the strength
of the data constraint. When calculating the overall perfor-
mance over a given time period, however, we increased the
sample size (and thus improved the statistics) by calculat-
ing the root mean square error not only across the ensem-
ble but also across all monthly values of the flux error real-
izations within that period (method proposed byChevallier
et al., 2007).

2.3.2 Test of independence from IAV in the drivers

Most driving variables of the mixed-layer scheme (in partic-
ular SST) also contain interannual variations. If a region is
well constrained with respect to IAV, however, then the IAV
of the estimatedpCO2 field should only depend on the signals
in thepCO2 data, “overwriting” any influence of IAV in the
drivers of the parameterizations (remember that the scheme

does not involve any regression to these drivers). We thus
performed a test run in which any IAV has been removed
from the driver variables (except for a linear rising trend in
atmospheric CO2). In well-constrained regions the result will
be similar to the standard result. We use this as a qualitative
confirmation to the RoU diagnostic.

It should be noted that, for quantities other than thepCO2

field, IAV in the drivers can of course be important also in
well-constrained regions, for example IAV in wind speed that
influences sea–air CO2 fluxes.

2.3.3 Synthetic data test

Another traditional method to assess the strength of the data
constraint (also used inRödenbeck et al.(2013) for seasonal-
ity) is “synthetic data tests”, where (1) a modelledpCO2 field
is sampled at the locations/times of the SOCAT data to create
a synthetic data set, and (2) apCO2 field is retrieved by the
diagnostic mixed-layer scheme from the synthetic data and
compared to the original modelled field as the known “true”
answer. However, this method is dependent on the particu-
lar time course of the chosen synthetic “truth”, confounding
any information about the temporal changes in the strength of
the constraint. Despite its higher computational demand, we
therefore prefer the RoU diagnostic (Sect.2.3.1) here. Nev-
ertheless, synthetic data tests have been performed to check
consistency with the RoU diagnostic (not shown).

2.3.4 Sensitivity tests

In addition to gaps in data coverage, results may be affected
by uncertainties in parameters or input data sets used in the
calculation. To assess these errors, we performed a series of
sensitivity runs varying those parameters that are considered
most uncertain: (i) increase and decrease of the a priori un-
certainty by a factor of 2, leaving more/less freedom to in-
verse adjustments, (ii) decrease of the a priori uncertainty of
nonseasonal variations inf DIC

int by a factor of 2, (iii) decrease
in the spatial correlation lengths in latitude direction by a
factor of 2, (iv) increase and decrease of the global mean pis-
ton velocity by 3.2 cm h−1 (range given byNaegler, 2009) or
using a cubic dependence of piston velocity on wind speed
(still keeping the global mean piston velocity at the value
from Naegler, 2009), and (v) increase and decrease of the
mixed-layer depthh by a factor of 2. As all these changes
are still considered reasonable values, the envelope of these
sensitivity results (the range between the smallest and largest
value at each time) gives a lower bound for the error (to be
plotted as grey bands in the figures in this paper).

2.3.5 Residuals and comparison to independent
time series

As a consistency check of the fit, residuals between the esti-
matedpCO2 field and the SOCAT data are assessed. Accord-
ing to the Supplement (Sect. S4.1), the data are fitted within
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10 to 15 µatm (root-mean-squared residuals), consistent with
the assumed mismatch uncertainty. Any remaining interan-
nual signals in the residuals are negligible, confirming that
the data information is used in its entirety.

Short-term variations are further validated against high-
frequency time series from various moorings not used in the
fit (Supplement, Sect. S4.2). For testing interannual varia-
tions, independent continuous long-term surface-ocean car-
bon time series are used (Supplement, Sect. S4.3).

2.4 Lagged correlation analysis

To assess the relation of estimated interannual flux anoma-
lies to El Niño–Southern Oscillation (ENSO), we correlate
them to the Multivariate El Niño Index (MEI) byWolter and
Timlin (1993). The MEI has been interannually filtered in
the same way as the flux (Sect.2.1). The correlation is cal-
culated for different time lags between flux and the MEI; we
always report the maximum correlation coefficient. Where
local maxima exist for several lags, we choose the smallest
absolute lag.

Correlations have been calculated over the 1993–2008
analysis period. Assuming each of these 16 years to be statis-
tically independent (because the interannual filter is roughly
equivalent to yearly averages), correlations are moderately
significant (at the 90 % level) if their correlation coefficient
exceeds 0.50.

2.5 Calculating sea–air oxygen fluxes

In order to relate the SOCAT-based variability estimates to
inverse estimates byRödenbeck et al.(2008) based on atmo-
spheric oxygen data, we extend the diagnostic mixed-layer
scheme in three steps.

2.5.1 Ocean-internal oxygen sources/sinks

The ocean-internal processes (biology, transport) that add or
remove dissolved inorganic carbon to/from the mixed layer
also add or remove dissolved oxygen (symbolized as box
“TT” in Fig. 2). Biological respiration and photosynthesis
lead to opposite, mutually proportional changes in carbon
and oxygen that we assume to follow a fixed Redfield sto-
ichiometry. Mixing of water from the ocean interior into the
mixed layer can change its carbon and oxygen concentrations
as well. These transport-induced changes do not follow a
simple stoichiometry, but analysis of vertical tracer gradients
suggests that their mutual relation is also roughly in Redfield
proportions. We therefore assume

f
O2
int = rO2:C · f DIC

int (2)

with the Redfield ratiorO2:C = −150/106≈ −1.4 (Ander-
son, 1995) as an approximation.
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Fig. 1. Illustration of the inverse procedure in our main case (run
SFC): Boxes denote the process representations causally linking
quantities from bottom to top: Mixed-layer carbon budget (CB),
Carbonate chemistry (CC), Solubility and sea–air gas exchange
(GE). The double arrow symbolizes the matching between observed
and modelledCO2 partial pressure, as gauged by the cost function
Jp. The thin arrow indicates the adjustments of the unknown ocean-
internal carbon sources/sinks done to minimize the model-data mis-
match (see R̈odenbeck et al. (2013) for full details).
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Fig. 2. Information flow between carbon and oxygen variables.
Left: Inverse procedure of runSFC as in Fig. 1, estimating ocean-
internalDIC sources/sinks frompCO2

m data.Middle: Prediction of
the oxygen sea–air flux: Ocean-internal oxygen sources/sinks are
calculated fromDIC sources/sinks via tracer-tracer coupling (TT)
assumed to follow Redfield stoichiometries. Dissolved oxygen con-
centration (CO2

m ) and sea–air oxygen flux (fO2

ma ) are then obtained
from parameterizations of a mixed-layer oxygen budget (OB), as
well as oxygen solubility and sea–air gas exchange (GE), analo-
gous to those for carbon.Right: APO inversion of R̈odenbeck et al.
(2008): Sea–airAPO fluxes are estimated fromAPO observations
(combined atmospheric oxygen andCO2 data) by inversion of at-
mospheric transport (AT).
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Fig. 3. Top: Globally integrated sea–airCO2 exchange estimated
from SOCAT data (runSFC, blue). Negative values indicate an
oceanCO2 sink. Bottom: Interannual anomalies of the globally
integrated sea–airCO2 exchange. The time series have been desea-
sonalized and filtered for interannual variations, and the 1993–2008
mean flux has been subtracted (positive values indicate an increased
oceanCO2 source or a decreased sink). The light-grey band around
the standard case comprises a set of sensitivity cases (Sect. 2.3.4).
The time period shown excludes the first year for spin-up, and the
years after the end of SOCAT v2 (end of 2011).

Fig. 4. Top: Amplitude of IAV of the sea–airCO2 flux es-
timated from SOCAT data (runSFC), calculated as temporal
standard deviation (1993–2008) of the interannually filtered flux
(µmol m−2 yr−1). Bottom: Capacity of the diagnostic scheme to
retrieve interannual variations in the sea–airCO2 flux from SOCAT
v2 data (Reduction of Uncertainty, average performance 1993–
2008). Pixels with RoU< 0.2 have been left uncolored.

Figure 2. Information flow between carbon and oxygen variables.
Left: inverse procedure of runSFC as in Fig.1, estimating ocean-

internal DIC sources/sinks frompCO2
m data. Middle: prediction of

the oxygen sea–air flux; ocean-internal oxygen sources/sinks are
calculated from DIC sources/sinks via tracer–tracer coupling (TT)
assumed to follow Redfield stoichiometries; dissolved oxygen con-

centration (CO2
m ) and sea–air oxygen flux (f

O2
ma) are then obtained

from parameterizations of a mixed-layer oxygen budget (OB), as
well as oxygen solubility and sea–air gas exchange (GE), analo-
gous to those for carbon. Right: APO inversion ofRödenbeck et al.
(2008); sea–air APO fluxes are estimated from APO observations
(combined atmospheric oxygen and CO2 data) by inversion of at-
mospheric transport (AT).

2.5.2 Sea–air oxygen fluxes

Sea–air oxygen fluxesf O2
ma are calculated fromf O2

int (Eq. 2)
using parameterizations of the mixed-layer oxygen budget
and sea–air oxygen exchange (Fig.2, middle column). These
oxygen parameterizations are analogous to those of carbon
(left column) detailed inRödenbeck et al.(2013), except that
(i) different coefficients are used in the calculation of solu-
bility and Schmidt number (see Supplement ofRödenbeck
et al., 2013), (ii) there is no equivalent to carbonate chem-
istry involved, and (iii) sea–air oxygen exchange contains an
additional contribution from air injection through bubbles3.

3Gas injection by bubbles is parameterized by

f
O2
bubb= XO2 · f Air

bubb (3)

with the oxygen mixing ratioXO2 = 209392 ppm. This assumes
complete dissolution of bubbles (shown to be the dominating pro-
cess;Stanley et al., 2009). The air injection flux (positive for injec-
tion into the ocean) is taken to depend on wind speedu according
to Monahan and Torgersen(1990):

f Air
bubb=

 B(u − u0)3
pbaro

Rgas(T + T0)
, u > u0

0, else
(4)
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2.5.3 Atmospheric Potential Oxygen (APO) fluxes

The use of atmospheric oxygen data involves the compli-
cation that the atmospheric oxygen abundance is also influ-
enced by oxygen exchanges from the land biosphere. To ac-
count for that, the inversion (Rödenbeck et al., 2008) has not
been applied to oxygen itself but to the conceptual tracer “at-
mospheric potential oxygen” (APO) introduced byStephens
et al. (1998). APO is defined as a combination of O2 and
CO2 abundances in such a way that its surface-to-atmosphere
fluxes are

f APO
= f O2 + 1.1 · f CO2. (5)

As O2 exchanges from the land biosphere are, to good ap-
proximation,−1.1 times the CO2 exchanges, they cancel
each other in the APO flux. There is a remaining contribu-
tion from fossil fuel burning as it has a slightly different stoi-
chiometry (about−1.4, Keeling, 1988), but this contribution
has been accounted for in the APO inversion based on fuel-
use statistics (seeRödenbeck et al., 2008). Thus, the APO
inversion yields an estimate of the oceanic APO fluxf APO

ma .
The comparison is therefore done in terms off APO

ma . The
SOCAT-based APO flux has been calculated according to
Eq. (5) from the (dominant) oxygen contributionf O2

ma ob-
tained as described above and the (small) carbon contribu-
tion f

CO2
ma directly available from theSFC calculation. The

atmospheric inversion ofRödenbeck et al.(2008) has been
updated by adding more recent observations to extend the
time period to the end of 2011.

3 Results and discussion

3.1 Overview

While the sea–air CO2 flux varies on interannual, seasonal,
and day-to-day timescales (Fig.3, top), this paper focuses
on interannual anomalies of the sea–air CO2 flux around its
mean (filtered flux, bottom). The largest contributions to the
global interannual variability (IAV) are estimated to come
from the subpolar North Pacific and Atlantic, the tropical Pa-
cific, and parts of the Southern Ocean (Fig.4, top). Due to

with the threshold wind speedu0 = 2.27m s−1, barometric pressure
pbaro, gas constantRgas= 8.3144 J mol−1 K−1, and absolute tem-
peratureT +T0. The global constantB has been calculated such that

the global diffusive gas exchangef O2
ge calculated from the World

Ocean Atlas (WOA) climatology of surface-ocean dissolved oxy-
gen (Garcia et al., 2006) equals the global bubble injection flux,
such that the long-term global sea–air oxygen flux is 0.

It should be noted that the bubble flux has only very little influ-
ence on the sea–air oxygen fluxes calculated here from internal O2
sources and sinks: due to the fast equilibration of dissolved oxygen
with the atmosphere (within less than a month), the oxygen input by
bubbles is essentially compensated for (on interannual timescales)
by a corresponding enhancement in the diffusive sea–air oxygen ex-
change.
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Fig. 1. Illustration of the inverse procedure in our main case (run
SFC): Boxes denote the process representations causally linking
quantities from bottom to top: Mixed-layer carbon budget (CB),
Carbonate chemistry (CC), Solubility and sea–air gas exchange
(GE). The double arrow symbolizes the matching between observed
and modelledCO2 partial pressure, as gauged by the cost function
Jp. The thin arrow indicates the adjustments of the unknown ocean-
internal carbon sources/sinks done to minimize the model-data mis-
match (see R̈odenbeck et al. (2013) for full details).
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Fig. 2. Information flow between carbon and oxygen variables.
Left: Inverse procedure of runSFC as in Fig. 1, estimating ocean-
internalDIC sources/sinks frompCO2

m data.Middle: Prediction of
the oxygen sea–air flux: Ocean-internal oxygen sources/sinks are
calculated fromDIC sources/sinks via tracer-tracer coupling (TT)
assumed to follow Redfield stoichiometries. Dissolved oxygen con-
centration (CO2

m ) and sea–air oxygen flux (fO2

ma ) are then obtained
from parameterizations of a mixed-layer oxygen budget (OB), as
well as oxygen solubility and sea–air gas exchange (GE), analo-
gous to those for carbon.Right: APO inversion of R̈odenbeck et al.
(2008): Sea–airAPO fluxes are estimated fromAPO observations
(combined atmospheric oxygen andCO2 data) by inversion of at-
mospheric transport (AT).

     
 

 
     Sea-air CO2 flux (PgC/yr)

     
 

-4

-3

-2

-1

0

1

 

     
 

 

 

 

 

 

          Sea-air CO2 flux (PgC/yr)  -  Interannual anomalies

1990 1995 2000 2005 2010
year (A.D.)

-1.0

-0.5

0.0

0.5

1.0

 

     
 

 

 

 

 

Fig. 3. Top: Globally integrated sea–airCO2 exchange estimated
from SOCAT data (runSFC, blue). Negative values indicate an
oceanCO2 sink. Bottom: Interannual anomalies of the globally
integrated sea–airCO2 exchange. The time series have been desea-
sonalized and filtered for interannual variations, and the 1993–2008
mean flux has been subtracted (positive values indicate an increased
oceanCO2 source or a decreased sink). The light-grey band around
the standard case comprises a set of sensitivity cases (Sect. 2.3.4).
The time period shown excludes the first year for spin-up, and the
years after the end of SOCAT v2 (end of 2011).

Fig. 4. Top: Amplitude of IAV of the sea–airCO2 flux es-
timated from SOCAT data (runSFC), calculated as temporal
standard deviation (1993–2008) of the interannually filtered flux
(µmol m−2 yr−1). Bottom: Capacity of the diagnostic scheme to
retrieve interannual variations in the sea–airCO2 flux from SOCAT
v2 data (Reduction of Uncertainty, average performance 1993–
2008). Pixels with RoU< 0.2 have been left uncolored.

Figure 3. Top: globally integrated sea–air CO2 exchange estimated
from SOCAT data (runSFC, blue). Negative values indicate an
ocean CO2 sink. Bottom: interannual anomalies of the globally in-
tegrated sea–air CO2 exchange. The time series have been desea-
sonalized and filtered for interannual variations, and the 1993–2008
mean flux has been subtracted (positive values indicate an increased
ocean CO2 source or a decreased sink). The light grey band around
the standard case comprises a set of sensitivity cases (Sect.2.3.4).
The time period shown excludes the first year for spin-up and the
years after the end of SOCAT v2 (end of 2011).

its large size and its spatially coherent variations, the trop-
ical Pacific (15◦ S-15◦ N) provides the largest contribution
(Fig. 5, top), with a temporal standard deviation of about
40 % of that of the global ocean4. Consistent with the litera-
ture (e.g.Feely et al., 1999; Inoue et al., 2001; Feely et al.,
2002), the sea–air CO2 flux anomalies are strongly tied to
El Niño–Southern Oscillation (ENSO), with a reduced CO2
source during El Niño phases (see Sect.3.4below).

3.2 Strength of the data constraint on IAV

To identify which parts of the ocean have been sampled fre-
quently enough to reliably estimate interannual flux varia-
tions from the SOCAT data, Fig.4 (bottom) shows the “re-
duction of uncertainty” (RoU) defined in Sect.2.3.1. It indi-
cates the strength of the data to detect deviations of the flux
from its climatological mean. Good constraints (larger RoU)
are found in the tropical and North Pacific and in the North
Atlantic, highlighting the large long-running observational
programs by US, Japanese, and European research groups.
Specifically, the locations of the repeated cruises crossing
the Equator are seen, as well as the ship routes traversing
the North Atlantic. In contrast, poor constraints (low RoU,
even below the arbitrary threshold of 0.2 left uncoloured in

4Over 1993–2008, the global standard deviation is about
0.31 Pg C yr−1 and that of the tropical Pacific is 0.13 Pg C yr−1.
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Fig. 1. Illustration of the inverse procedure in our main case (run
SFC): Boxes denote the process representations causally linking
quantities from bottom to top: Mixed-layer carbon budget (CB),
Carbonate chemistry (CC), Solubility and sea–air gas exchange
(GE). The double arrow symbolizes the matching between observed
and modelledCO2 partial pressure, as gauged by the cost function
Jp. The thin arrow indicates the adjustments of the unknown ocean-
internal carbon sources/sinks done to minimize the model-data mis-
match (see R̈odenbeck et al. (2013) for full details).
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Fig. 2. Information flow between carbon and oxygen variables.
Left: Inverse procedure of runSFC as in Fig. 1, estimating ocean-
internalDIC sources/sinks frompCO2

m data.Middle: Prediction of
the oxygen sea–air flux: Ocean-internal oxygen sources/sinks are
calculated fromDIC sources/sinks via tracer-tracer coupling (TT)
assumed to follow Redfield stoichiometries. Dissolved oxygen con-
centration (CO2

m ) and sea–air oxygen flux (fO2

ma ) are then obtained
from parameterizations of a mixed-layer oxygen budget (OB), as
well as oxygen solubility and sea–air gas exchange (GE), analo-
gous to those for carbon.Right: APO inversion of R̈odenbeck et al.
(2008): Sea–airAPO fluxes are estimated fromAPO observations
(combined atmospheric oxygen andCO2 data) by inversion of at-
mospheric transport (AT).
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Fig. 3. Top: Globally integrated sea–airCO2 exchange estimated
from SOCAT data (runSFC, blue). Negative values indicate an
oceanCO2 sink. Bottom: Interannual anomalies of the globally
integrated sea–airCO2 exchange. The time series have been desea-
sonalized and filtered for interannual variations, and the 1993–2008
mean flux has been subtracted (positive values indicate an increased
oceanCO2 source or a decreased sink). The light-grey band around
the standard case comprises a set of sensitivity cases (Sect. 2.3.4).
The time period shown excludes the first year for spin-up, and the
years after the end of SOCAT v2 (end of 2011).

Fig. 4. Top: Amplitude of IAV of the sea–airCO2 flux es-
timated from SOCAT data (runSFC), calculated as temporal
standard deviation (1993–2008) of the interannually filtered flux
(µmol m−2 yr−1). Bottom: Capacity of the diagnostic scheme to
retrieve interannual variations in the sea–airCO2 flux from SOCAT
v2 data (Reduction of Uncertainty, average performance 1993–
2008). Pixels with RoU< 0.2 have been left uncolored.

Figure 4. Top: amplitude of IAV of the sea–air CO2 flux es-
timated from SOCAT data (runSFC), calculated as temporal
standard deviation (1993–2008) of the interannually filtered flux
(µmol m−2 yr−1). Bottom: capacity of the diagnostic scheme to re-
trieve interannual variations in the sea–air CO2 flux from SOCAT
v2 data (reduction of uncertainty, average performance 1993–2008).
Pixels with RoU< 0.2 have been left white.

the map) prevail in the Indian Ocean and most parts of the
Southern Hemisphere extratropical ocean.

Figure 4 (bottom) gives the overall performance within
1993–2008. Depending on the region considered, this period
may comprise both well constrained and badly constrained
years (Supplement, Fig. S1). For example, the RoU in the
extratropical North Atlantic clearly increased after the im-
plementation of thepCO2 observing network in the first half
of the 2000s (Watson et al., 2009) and has remained steady
at between approximately 0.6 and 0.8 since then.

In well-constrained regions/periods (high RoU), estimated
interannual anomalies are essentially independent of the
prior. For example, the data are able to almost reverse the
a priori anomalies in the tropical Pacific (Fig.5). Strong
constraints in the tropical Pacific in many years are fur-
ther confirmed by a test run without interannual variations
in all driving variables (Sect.2.3.2): even though the prior
correspondingly loses almost all its interannual variability,
the estimatedpCO2 anomalies hardly change (supplemen-
tary Sect. S2). In contrast, poorly constrained regions (low
RoU) stay close to the prior (Supplement, Fig. S1). In ar-
eas where the temperature-related variability (contribution
TE contained in the prior, Sect.2.2) dominates IAV, the re-
sults of the diagnostic mixed-layer scheme may still capture
part of the real IAV, otherwise the variability from the ocean-
internal fluxes (contribution OIS) is missing there.
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Fig. 5. Interannual carbon anomalies in the tropical Pacific (15◦ S–
15◦ N) from runSFC (blue; filter, grey uncertainty band, and sign
convention as in Fig. 3):Top: Sea–airCO2 flux anomalies (fCO2

ma ),
middle: surfaceCO2 partial pressure anomalies (pCO2 ), bottom:
anomalies in the ocean-internalDIC sources and sinks (fDIC

int , note
vertical scale different fromfCO2

ma ). The dark grey lines give the
a-priori state of the diagnostic scheme only responding to changes
in the driving variables (predominantly temperature).

Figure 5. Interannual carbon anomalies in the tropical Pacific
(15◦ S–15◦ N) from run SFC (blue; filter, grey uncertainty band,
and sign convention as in Fig.3). Top: sea–air CO2 flux anomalies

(f CO2
ma ). Middle: surface CO2 partial pressure anomalies (pCO2).

Bottom: anomalies in the ocean-internal DIC sources and sinks
(f DIC

int , note that the vertical scale is different fromf CO2
ma ). The dark

grey lines give the a priori state of the diagnostic scheme, which
only responds to changes in the driving variables (predominantly
temperature).

The pattern of RoU shown in Fig.4 is similar to the map
of the number of data points (Supplement, Fig. S7.4, ofRö-
denbeck et al., 2013), but additionally takes into account that
any data point in an already well-covered area has less indi-
vidual effect. Though RoU is to some extent also influenced
by our a priori uncertainty settings (e.g. a smaller a priori un-
certainty would lower the achievable RoU, and the applied
smoothness constraints carry information into unconstrained
areas close to constrained ones), the patterns of Fig.4 (bot-
tom) should be broadly representative for SOCAT’s informa-
tion content on interannual anomalies, largely independently
of the method used here.

3.3 Robustness

To exclude that the results are dominated by uncertain param-
eters or input data sets used in the calculation, Fig.5 shows
the envelope of a set of sensitivity results (Sect.2.3.4), us-
ing the tropical Pacific as example region. Reflecting the fact
thatpCO2 (middle panel) is the quantity directly constrained
by the data, alterations in parameters only have a very small
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effect (the sensitivity band is much narrower than the inter-
annual variations). There are short periods of enhanced sen-
sitivity in 2009 and before about 1992, when the tropical Pa-
cific is less well constrained by the SOCAT data, such that it
stays closer to the prior, meaning that the effects of our sen-
sitivity cases on the prior cannot be completely overwritten.

The sensitivity of the sea–air CO2 fluxes (Fig.5, top) is
slightly enhanced compared to that ofpCO2, due to the cases
with altered gas exchange velocity directly affecting the flux.
Still, despite some change in amplitude, the time course of
the interannual flux variations is very robust.

Larger sensitivity is found in the ocean-internal DIC
sources/sinks (Fig.5, bottom). This is expected as any alter-
ation in the parameterized relation betweenf DIC

int andpCO2

enforces compensating changes inf DIC
int . The biggest effect

on f DIC
int comes from the alterations in mixed-layer depth

(MLD). Note however that our alterations of MLD (as of Ta-
ble 1) by constant factors 2 and 0.5 are ad hoc; this large
range has been chosen to account for the missing interannual
variations in MLD values used but may overestimate the ac-
tual MLD errors.

In regions less well constrained than the tropical Pacific,
estimates are less robust. Besides the above-mentioned ef-
fect that the alterations of the prior have more impact on
the result, estimates in unconstrained regions critically de-
pend on the choice of spatial correlation length: the longer
the correlations, the farther variability from data-constrained
locations is spread into unconstrained locations (see Fig. 5
of Rödenbeck et al., 2013). In particular, longer correlations
carry the strong variability of the tropical Pacific farther into
the poorly constrained areas south of it (Fig.4, bottom), thus
increasing the areal extent of this variability and leading to
higher global IAV5. This leads to a sensitivity band for the
global sea–air CO2 fluxes (Fig.3, bottom) that is somewhat
wider than in the tropical Pacific. As the band is asymmetric,
it suggests a somewhat lower amplitude of global IAV than
in the standard case.

5The chosen length scale reflects both the size of coherent El
Niño-related variations and the available information: even in the
well-constrained equatorial Pacific, sufficient data coverage only
exists at every 15◦ longitude (see Fig.4, bottom) – if a shorter corre-
lation scale is used, areas in between nearly revert back to the prior,
leading to much smaller variations in the regional flux. Bridging
these gaps through the correlations is justified as we expect longi-
tudinally coherent variations here. In latitude direction, shorter cor-
relation lengths are chosen, reflecting the narrow size of El Niño-
related features. Unfortunately, as the data coverage rapidly drops
south of the equatorial region, both longer and shorter latitudinal
correlation lengths lead to results equally compatible with the SO-
CAT data (they have similarly low residual bias; not shown), despite
their differences in the IAV amplitude of the regional (or global) to-
tal.

3.4 Interannual variability in the tropical Pacific

As the presented material establishes that the tropical Pacific
is both a well-constrained and a globally important contrib-
utor to interannual sea–air CO2 flux variability6, we con-
sider the contributions to the variability at different longi-
tudes along the Equator (Fig.6). During the 1993–2008 anal-
ysis period, fluxes at most longitudes are continuously con-
strained (left panel); in the western part this is the case even
in the earlier years. The reduction of the flux during El Niño
phases (middle, red colours) extends throughout the consid-
ered part of the equatorial Pacific (200 to 85◦ W), but with
the tendency to be of smaller amplitude and to occur sev-
eral months later in the east than in the west. This striking
“propagation” can be confirmed statistically: the flux is sig-
nificantly anti-correlated (Sect.2.4) to the MEI (Wolter and
Timlin (1993); interannually filtered) at almost all longitudes
(middle right panel, dark blue line), with a time lag increas-
ing by more than half a year from west to east (top right
panel; also see the example time series in the Supplement,
Fig. S6, for illustration).

Such a slow west-to-east “propagation” of sea–air CO2
flux anomalies as constrained by SOCAT is not present in
physical surface-ocean variables: for example, SST is posi-
tively correlated to the MEI with almost no lag and propa-
gating much faster (within about 1 month, consistent with an
equatorial Kelvin wave; not shown).7 No slow “propagation”
is thus found in the SST-dominated TE contribution either:
consistent with Footnote2 on page 3, the TE contribution is
positively correlated to the MEI as well (middle right panel,
black line) and leads the MEI by about 4 months at most
longitudes (top right panel). However, the OIS contribution
(calculated by difference; light blue) also shows a west-to-
east “propagation” of only 1–2 months. This suggests that the
slow “propagation” of the total anomalies is only an apparent
one and does not arise from any actual propagation mecha-
nism. Rather, as the amplitudes of the opposite TE and OIS
contributions are markedly changing from west to east (bot-
tom right panel), the temporal phase of their superposition is
shifting (in the same way as sine and cosine Fourier terms
of different relative weights add up to modes with different
phases).

6Ocean regions other than the tropical Pacific either have much
less IAV or are not well constrained by the availablepCO2 ob-
servations (Supplement, Fig. S1). Comparison with independent
data at station HOT in the North Pacific broadly confirms the
SOCAT-based anomalies, including the low IAV there (Supplement,
Sect. S4.3). Comparison at BATS is not successful in terms of in-
terannual features but still confirms the low amplitude in the North
Atlantic as well (Supplement, Sect. S4.3). Despite their lower IAV,
various extratropical regions can be expected to play an important
role in the long-term flux trend. A more detailed consideration war-
rants a separate study.

7In weak ENSO events, SST anomalies can even propagate
westward; seeSantoso et al.(2013).
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Figure 6. Sea–air CO2 flux variability along the Equator in the Pacific (4◦ S–4◦ N average). Left: strength of the data constraint (RoU).
Middle: interannual anomalies of sea–air CO2 flux shown as Hovmöller plot (colour-coded over longitude (horizontal axis) and time (vertical
axis); locations/periods with RoU< 0.2 left white). Right: statistical properties (calculated for 1993–2008): time lag at which the flux is most
strongly correlated to El Niño (interannually filtered MEI;Wolter and Timlin, 1993) (upper panel, positive values mean that the flux trails
the MEI); correlation coefficient at this time lag (middle panel); and temporal standard deviation of interannual flux anomalies (lower panel).
In the correlation plots, insignificant correlations have been discarded. (The Supplement, Fig. S6 in Sect. S3, illustrates correlations and time
lags again in a time series view.)

Can the remaining “propagation” in the OIS contribution
arise from memory effects in the mixed-layer carbon budget?
Anomalies in contribution OIS occur several months later
than the anomalies in the ocean-interior DIC sources/sinks
that cause them (not shown, but see the Supplement, Fig. S6),
due to the finite sea–air exchange rate enhanced by the buffer
effect of carbonate chemistry. Anomalies inf DIC

int thus even
lead the MEI by 5–6 months, ie. are associated with the build-
up or decline of the ENSO states. However, this delay be-
tweenf DIC

int andf
CO2
ma is essentially the same throughout the

equatorial Pacific, ie. it does not contribute to the propaga-
tion.

3.5 Consistency with atmospheric oxygen observations

In order to relate the SOCAT-based IAV estimates to the
information from atmospheric oxygen, the oceanic APO

flux has been calculated from runSFC (Sect.2.5). The in-
formation flow is illustrated in Fig.7. Sea–air CO2 flux
(f CO2

ma , middle left) and ocean-interior carbon sources/sinks
(f DIC

int , bottom left) are the quantities constrained by SO-

CAT. Ocean-interior sources/sinks of oxygen (f
O2
int , bottom

right) are implied by those of carbon in the assumed Red-
field proportion. Due to the short equilibration time of oxy-
gen, anomalies in sea–air O2 exchanges (f O2

ma, middle right)
then followf

O2
int closely. As interannual variations in sea–air

CO2 exchanges are much smaller than those in sea–air O2
exchanges, the APO flux (Eq. (5); Fig. 7, top) dominantly
reflects interannual variations in oxygen fluxes and thus in
ocean-internal O2 and DIC sources/sinks.

The APO flux inferred from SOCAT is compared to that
inferred from atmospheric oxygen data by a transport inver-
sion (Rödenbeck et al.(2008); five APO observation sites,
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Fig. 7. Top: Interannual anomalies of the sea–air flux of atmo-
spheric potential oxygen (APO) in the tropical Pacific, inferred from
SOCAT (runSFC, blue) or independently estimated from atmo-
sphericO2/N2 ratios andCO2 mixing ratios (atmospheric APO
inversion, R̈odenbeck et al., 2008, 5 sites, updated, orange). Tem-
poral filter and sign convention as in Fig. 3. The background shad-
ing indicates El Nĩno (MEI index). Middle: Over selected years
for illustration, sea–air fluxes ofCO2 andO2 composing theAPO
flux (Eq. (5)). Bottom: Ocean-internal sources and sinks ofDIC
andO2. Vertical axes of all panels span the same range on a molar
basis.
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Fig. 8. Interannual anomalies of the total oceanCO2 flux estimated
by runSFC (blue) and by the ocean process model run by Buiten-
huis et al. (2010) (olive). Temporal filter and sign convention as in
Fig. 3. Linear fits of these results over the 1990–1999 and 2000–
2009 periods are overplotted as thin lines.
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Fig. 9. Top: Interannual anomalies of the total oceanCO2 flux es-
timated by runSFC (blue) and an atmosphericCO2 inversion (ma-
genta). Temporal filter and sign convention as in Fig. 3.Bottom: To-
tal landCO2 flux estimated by an atmosphericCO2 inversion (ma-
genta – standard Jena inversion (s90v3.5) with constant priors and
ocean flux IAV being adjusted from the atmospheric data, dashed
magenta/blue – atmospheric inversion using runSFCas fixed ocean
prior). Note threefold vertical range in the land flux panel relative
to ocean panel.

Figure 7. Top: interannual anomalies of the sea–air flux of atmo-
spheric potential oxygen (APO) in the tropical Pacific, inferred from
SOCAT (runSFC, blue) or independently estimated from atmo-
spheric O2 / N2 ratios and CO2 mixing ratios (atmospheric APO in-
version,Rödenbeck et al.(2008); five sites, updated; orange). Tem-
poral filter and sign conventions as in Fig.3. The background shad-
ing indicates El Niño (MEI). Middle: sea–air fluxes of CO2 and O2
composing the APO flux (Eq.5) for selected years for illustration.
Bottom: ocean-internal sources and sinks of DIC and O2. Vertical
axes of all panels span the same range on a molar basis.

updated) (Fig.7, top). Both of these mutually independent
estimates show enhanced APO outgassing during El Niño
phases (grey stripes; moderate correlations to the MEI ex-
ist both for the flux estimated from SOCAT (see Fig.6)
and the flux estimated by the APO inversion (seeRöden-
beck et al., 2008)). While the SOCAT-based anomalies con-
sistently lead ENSO events (due to the lead off DIC

int ; compare
Sect.3.4), the APO-based anomalies coincide with the 1995
and 1997/1998 ENSO events but also lead the 2009 event.
Both estimates are of roughly similar amplitudes (tempo-
ral standard deviations 1993–2008 of 33.7 Tmol yr−1 for run
SFC and 28.9 Tmol yr−1 for the APO inversion), though the
relative heights of the anomalies in individual ENSO events
are markedly different.

Various conceivable error influences have the potential to
distort the comparison:

(1) Both the SOCAT and the APO constraints suffer from
incomplete spatial coverage, where the regions of good
coverage do not necessarily coincide. An APO inversion
of “synthetic data” suggests that the tropical Pacific may

be relatively well constrained, though the limited cover-
age may explain part of the differences in timing (Sup-
plement, Sect. S5).

(2) The information flow from the SOCAT data (Fig.2)
involves various uncertain model steps: even if run
SFCyielded a perfectly constrainedpCO2

m field, the fact
would remain that the errors in the parameterizations
of carbonate chemistry (CC) and carbon budget (CB)
cause compensating spurious contributions to the inter-
nal f DIC

int which then propagate to the calculated APO
flux. A major simplification is the carbon–oxygen cou-
pling (TT) assumed to be Redfieldian. Any errors in the
oxygen budget (OB) and in the oxygen gas exchange
(GE) contribute additionally, though their effect will be
small due to the fast oxygen equilibration leading to
f

O2
ma ≈ f

O2
int on interannual timescales.

(3) The APO inversion involves various uncertainties, both
from necessary assumptions in the estimation and from
observational error (Rödenbeck et al., 2008). Also, in-
terannual variations in the sea–air N2 exchange (influ-
encing the APO inversion because the atmospheric O2
abundance is measured relative to the N2 abundance)
are neglected.

In the light of all these error influences, but also consider-
ing that the SOCAT and APO constraints are fully indepen-
dent from each other in terms of both data and model, the
partial agreement in the interannual APO flux variations is
noteworthy. Even though the comparison is not conclusive
enough to provide a quantitative validation, we take it as a
confirmation of plausibility of the mixed-layer scheme. Con-
versely, the comparison also confirms that atmospheric oxy-
gen observations contain information about ocean-internal
carbon sources/sinks and thus sea–air CO2 exchange. To use
this information as an additional constraint, we need to tackle
the error influences listed above, in particular by:

– using a more realistic representation of carbon–oxygen
coupling (TT). For this, the essential processes caus-
ing ocean-internal sources and sinks (making up con-
tribution OIS) need to be suitably parameterized, for
example explicit horizontal and vertical oceanic tracer
transport. Potentially, further data sources would then
be needed to separate processes with different carbon–
oxygen relations.

– increasing the information from atmospheric oxygen
by adding existing or new observation sites. A crucial
role is played by the availability of atmospheric oxygen
records that cover the entire time period under consid-
eration without interruption.
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Fig. 7. Top: Interannual anomalies of the sea–air flux of atmo-
spheric potential oxygen (APO) in the tropical Pacific, inferred from
SOCAT (runSFC, blue) or independently estimated from atmo-
sphericO2/N2 ratios andCO2 mixing ratios (atmospheric APO
inversion, R̈odenbeck et al., 2008, 5 sites, updated, orange). Tem-
poral filter and sign convention as in Fig. 3. The background shad-
ing indicates El Nĩno (MEI index). Middle: Over selected years
for illustration, sea–air fluxes ofCO2 andO2 composing theAPO
flux (Eq. (5)). Bottom: Ocean-internal sources and sinks ofDIC
andO2. Vertical axes of all panels span the same range on a molar
basis.
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Fig. 8. Interannual anomalies of the total oceanCO2 flux estimated
by runSFC (blue) and by the ocean process model run by Buiten-
huis et al. (2010) (olive). Temporal filter and sign convention as in
Fig. 3. Linear fits of these results over the 1990–1999 and 2000–
2009 periods are overplotted as thin lines.
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Fig. 9. Top: Interannual anomalies of the total oceanCO2 flux es-
timated by runSFC (blue) and an atmosphericCO2 inversion (ma-
genta). Temporal filter and sign convention as in Fig. 3.Bottom: To-
tal landCO2 flux estimated by an atmosphericCO2 inversion (ma-
genta – standard Jena inversion (s90v3.5) with constant priors and
ocean flux IAV being adjusted from the atmospheric data, dashed
magenta/blue – atmospheric inversion using runSFCas fixed ocean
prior). Note threefold vertical range in the land flux panel relative
to ocean panel.

Figure 8. Interannual anomalies of the total ocean CO2 flux esti-
mated by runSFC (blue) and by the ocean process model run by
Buitenhuis et al.(2010) (olive). Temporal filter and sign conven-
tions as in Fig.3. Linear fits of these results over the 1990–1999
and 2000–2009 periods are overplotted as thin lines.

3.6 Comparison to simulations by an ocean
process model – IAV and trend

The data-based estimates presented here can be used to chal-
lenge the results of process simulations for well-constrained
features, but conversely, comprehensive process models can
be used to challenge our results where constraints are weak
such that we rely on our simple parameterizations. Here we
use the sea–air CO2 fluxes simulated by the ocean biogeo-
chemical process model PlankTOM5 (driven by NEMOv2.3;
Buitenhuis et al., 2010). As in the SOCAT-based runSFC,
the modelled total ocean flux variability (Fig.8) is strongly
tied to ENSO. Though the process model gives a smaller am-
plitude thanSFC (about half), this model is the one with
the largest interannual variability among the suite of process
models considered inWanninkhof et al.(2013) (their Fig. 6)
and agrees by far the best with our SOCAT-based estimate.

In both the model simulation and our data-based runSFC,
total ocean flux variability is dominated by the tropical Pa-
cific, where both estimates are in even closer agreement than
for the global total (Supplement, Fig. S2). The estimates fur-
ther agree that all other regions have smaller IAV, though
there is little correspondence in the detailed features. The re-
gional comparison reveals that the differences in global am-
plitude are to a large extent related to areas south of the
tropical Pacific, reinforcing the possibility that our ampli-
tude is overestimated due to the tropical variability being
spread over too great an area (end of Sect.3.3). On the other
hand, the comparison provides indications that the models
with larger amplitude (as ofWanninkhof et al., 2013) may be
more realistic than those with smaller amplitude.

Rising atmospheric CO2 content leads to rising CO2 un-
dersaturation of the global ocean and thus an increasing
oceanic sink. The magnitude of this trend, however, cannot
be predicted from simple considerations as it critically de-
pends on the rate by which the sequestered carbon is passed
on from the surface ocean into the interior. Therefore pro-
cess model simulations are needed. From a suite of models,
Le Quéré et al.(2014) (Global Carbon Project, GCP) give a

sink time series increasing by−0.032 (Pg C yr−1) yr−1 over
1960–2012 (linear fit, converted to atmospheric sign conven-
tion). While the period of good data coverage is too short to
compare this long-term trend, both our data-based estimates,
NEMO-PlankTOM5, and the GCP model mean qualitatively
agree that the 1990–1999 period saw a negligible or even re-
versed trend, followed by the 2000–2009 period with a trend
almost 50 % stronger than the long-term one (trend lines in
Fig. 8; see Fig. 5c ofLe Quéré et al.(2014) for the temporal
context). Unfortunately, a more quantitative analysis of these
short-term trends is difficult due to the large interannual vari-
ability and region-to-region differences (e.g.Fay and McKin-
ley, 2013).

3.7 Combination with an atmospheric CO2 inversion
– implication for land flux estimates

Interannual variations of regional sea–air CO2 fluxes can also
be estimated from atmospheric CO2 mixing ratio measure-
ments by atmospheric transport inversion (Newsam and Ent-
ing, 1988; Rayner et al., 1999). However, the atmospheric
signal is dominated by the much larger variability of land–
atmosphere CO2 fluxes. Though the total (land and ocean)
flux within latitude bands is relatively well constrained from
atmospheric CO2 data (due to atmospheric tracer mass con-
servation and the predominantly longitudinal tracer transport
in the atmosphere), errors in the attribution to land or ocean,
even if small compared to the land fluxes, can have a large
relative impact on the smaller ocean fluxes. Indeed, we do
not find much similarity between the SOCAT-based flux es-
timates and an atmospheric inversion (Fig.9, top): the ocean
total from the atmospheric inversion is almost anti-correlated
to run SFC but rather more in phase with land biosphere
variability (see Fig.9, bottom), suggesting that these vari-
ations are spuriously spilling over from there. This is in line
with a relatively large spread in the ocean fluxes from dif-
ferent atmospheric inversions (see the RECCAP8 ensemble;
Peylin et al., 2013), confirming a limited constraint of the
atmospheric data on land–ocean flux partitioning. Similar
discrepancies between SOCAT-based and atmospheric inver-
sion estimates are also found in regional fluxes (Supplement,
Fig. S3), though at least the relative amplitudes of flux IAV
between the regions broadly agree. Surprisingly similar vari-
ations are found in the tropical Indian Ocean.

As the SOCAT-based estimates show more plausible ocean
flux IAV than the atmospheric inversion, at least in the re-
gion contributing the largest variability (equatorial Pacific),
it would be beneficial to addpCO2 as a further constraint on
the atmospheric inversion: due to the atmospheric mass con-
servation, land flux estimates profit from any improvement
in the poorly constrained ocean fluxes. Even though inter-
annual variations outside the equatorial Pacific are not well

8RECCAP is the “REgional Carbon Cycle Assessment and Pro-
cesses” initiative of the Global Carbon Project.
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Fig. 7. Top: Interannual anomalies of the sea–air flux of atmo-
spheric potential oxygen (APO) in the tropical Pacific, inferred from
SOCAT (runSFC, blue) or independently estimated from atmo-
sphericO2/N2 ratios andCO2 mixing ratios (atmospheric APO
inversion, R̈odenbeck et al., 2008, 5 sites, updated, orange). Tem-
poral filter and sign convention as in Fig. 3. The background shad-
ing indicates El Nĩno (MEI index). Middle: Over selected years
for illustration, sea–air fluxes ofCO2 andO2 composing theAPO
flux (Eq. (5)). Bottom: Ocean-internal sources and sinks ofDIC
andO2. Vertical axes of all panels span the same range on a molar
basis.
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Fig. 8. Interannual anomalies of the total oceanCO2 flux estimated
by runSFC (blue) and by the ocean process model run by Buiten-
huis et al. (2010) (olive). Temporal filter and sign convention as in
Fig. 3. Linear fits of these results over the 1990–1999 and 2000–
2009 periods are overplotted as thin lines.
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Fig. 9. Top: Interannual anomalies of the total oceanCO2 flux es-
timated by runSFC (blue) and an atmosphericCO2 inversion (ma-
genta). Temporal filter and sign convention as in Fig. 3.Bottom: To-
tal landCO2 flux estimated by an atmosphericCO2 inversion (ma-
genta – standard Jena inversion (s90v3.5) with constant priors and
ocean flux IAV being adjusted from the atmospheric data, dashed
magenta/blue – atmospheric inversion using runSFCas fixed ocean
prior). Note threefold vertical range in the land flux panel relative
to ocean panel.

Figure 9.Top: interannual anomalies of the total ocean CO2 flux es-
timated by runSFC (blue) and an atmospheric CO2 inversion (ma-
genta); temporal filter and sign conventions as in Fig.3. Bottom: to-
tal land CO2 flux estimated by an atmospheric CO2 inversion (ma-
genta – standard Jena inversion (s90_v3.5) with constant priors and
ocean flux IAV being adjusted from the atmospheric data; dashed
magenta/blue – atmospheric inversion using runSFCas fixed ocean
prior). Note threefold vertical range in the land flux panel relative
to ocean panel.

constrained from thepCO2 data in many places and thus stay
close to the prior of the diagnostic scheme (Sect.3.2), they
still contain the temperature-related part as represented in the
parameterizations. In practical terms, even in areas where
this is a bad approximation, using the SOCAT-based esti-
mates will not worsen the land fluxes from the atmospheric
inversion much (compared to an inversion with a freely ad-
justable ocean flux) due to their small amplitude. Only in the
Southern Ocean, where influence from adjacent land regions
is smallest, the constraint from atmospheric CO2 data may
be powerful and able to compensate for the weakness of the
pCO2 constraint there.

The inclusion of thepCO2 constraint into the atmospheric
inversion can be implemented by adding together the cost
function contributions of thepCO2 data and of the atmo-
spheric CO2 data (see the companion paperRödenbeck et al.
(2013), Appendix A2.3). However, as the ocean fluxes are
much more strongly constrained by thepCO2 data rather
than the atmospheric data, such a joint inversion gives ocean
fluxes almost identical to runSFC (test run not shown)9.
Given this, we may simply use the results of runSFC as
a fixed ocean prior in a subsequent “classical” atmospheric
inversion in which only the land fluxes are adjusted, which
is much more practical10. Figure9 (bottom) compares total

9A similar situation was found in the joint inversion byJacobson
et al.(2007) considering long-term fluxes.

10The sequential estimation is much more efficient because the
pCO2 constraint needs many more iterations in the cost function

land CO2 fluxes from atmospheric inversions with adjustable
or fixed ocean fluxes. Using the SOCAT-based runSFC as
prior slightly increases the land flux IAV. This is largely
due to differences in South America (Supplement, Fig. S3)
where the density of atmospheric measurement sites is low,
such that the distinction of land and ocean fluxes is not well
constrained in the “classical” atmospheric inversion. Differ-
ences also occur in the Asian regions. However, the impact
is still roughly within the range of many other uncertainties
in global atmospheric CO2 inversions (e.g. see the spread of
results by various inversion studies participating in the REC-
CAP ensemble;Peylin et al., 2013).

Future developments of carbon cycle quantification should
use the good constraint ofpCO2 data on the tropical Pacific
and much of the northern extratropics but also the constraint
of atmospheric CO2 data on the Southern Ocean. Further,
a joint CO2 and APO inversion, linking sea–air CO2 and
O2 fluxes through the diagnostic mixed-layer scheme, would
exploit the potential of atmospheric oxygen observations to
constrain the ocean-internal processes driving the sea–air
CO2 flux variability as demonstrated in Sect.3.5 (test runs
not shown). The APO constraint applies on the same large
spatial scales that drive the sea–air CO2 flux variability, and
thus would be a valuable complement to thepCO2 and atmo-
spheric CO2 data in the previously underconstrained areas.

4 Conclusions

Based on the SOCAT v2 data set ofpCO2 observations,
we estimated interannual variations of the sea–air CO2 ex-
change, using a data-driven diagnostic scheme of mixed-
layer carbon biogeochemistry as a space–time interpolator.
The scheme links sea–air CO2 exchange to ocean-internal
DIC sources and sinks, thereby also allowing us to relate
carbon anomalies to signals in oxygen (or nutrient) obser-
vations.

– SOCAT pCO2 data constrain interannual variations in
the sea–air CO2 flux in parts of the ocean, notably in the
tropical Pacific where the largest interannual variations
are found.

– The tropical Pacific shows a reduced CO2 outgassing
during El Niño phases. In the east, this anomaly occurs
more than 6 months later than in the west, likely due
to different relative contributions of temperature-related
and biologically/physically caused responses.

– The SOCAT-based estimates of the interannual varia-
tions in tropical sea–air CO2 flux and ocean-internal
DIC sources/sinks are broadly consistent with the

minimization (about 200) than the atmospheric inversion (about
70). A combined inversion would require the expensive transport
model runs for all these additional iterations.
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independent constraint from atmospheric oxygen mea-
surements.

– In qualitative agreement with ocean process model sim-
ulations, the ocean sink in the SOCAT-based estimates
increased less than expected from an atmospheric CO2
rise during 1990–1999 and more than expected during
2000–2009.

– Surface-oceanpCO2 data constrain interannual varia-
tions in sea–air CO2 fluxes better than atmospheric CO2
data, at least for the dominating variations in the tropi-
cal Pacific. ThepCO2-based estimates can be used as an
ocean prior in atmospheric CO2 inversions to improve
their land flux estimates.

The presented gridded sea–air CO2 flux estimates can be
downloaded in digital form from the Jena inversion web-
site: http://www.bgc-jena.mpg.de/~christian.roedenbeck/
download-CO2-ocean/(version “oc_v1.2”). Regular updates
are planned.

The Supplement related to this article is available online
at doi:10.5194/bg-11-4599-2014-supplement.
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