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Abstract. The study investigates the potential of a commer-
cially available proximal sensing system – based on a 16-
band multispectral sensor – for monitoring mean midday
gross ecosystem production (GEPm) in a subalpine grassland
of the Italian Alps equipped with an eddy covariance flux
tower. Reflectance observations were collected for 5 consec-
utive years, characterized by different climatic conditions, to-
gether with turbulent carbon dioxide fluxes and their meteo-
rological drivers. Different models based on linear regression
(vegetation indices approach) and on multiple regression (re-
flectance approach) were tested to estimate GEPm from opti-
cal data. The overall performance of this relatively low-cost
system was positive. Chlorophyll-related indices including
the red-edge part of the spectrum in their formulation (red-
edge normalized difference vegetation index, NDVIred-edge;
chlorophyll index, CIred-edge) were the best predictors of
GEPm, explaining most of its variability during the observa-
tion period. The use of the reflectance approach did not lead
to considerably improved results in estimating GEPm: the ad-
justedR2 (adjR2) of the model based on linear regression
– including all the 5 years – was 0.74, while the adjR2 for
the multiple regression model was 0.79. Incorporating mean
midday photosynthetically active radiation (PARm) into the
model resulted in a general decrease in the accuracy of esti-
mates, highlighting the complexity of the GEPm response to
incident radiation. In fact, significantly higher photosynthe-
sis rates were observed under diffuse as regards direct radia-
tion conditions. The models which were observed to perform

best were then used to test the potential of optical data for
GEPm gap filling. Artificial gaps of three different lengths
(1, 3 and 5 observation days) were introduced in the GEPm
time series. The values of adjR2 for the three gap-filling sce-
narios showed that the accuracy of the gap filling slightly
decreased with gap length. However, on average, the GEPm
gaps were filled with an accuracy of 73 % with the model
fed with NDVIred-edge, and of 76 % with the model using re-
flectance at 681, 720 and 781 nm and PARm data.

1 Introduction

In recent years, quantifying and understanding the dynamics
and the main drivers of ecosystem carbon dioxide exchange,
as well as upscaling the level of observations, have become
critical challenges for the environmental scientific commu-
nity (Canadell et al., 2000; Gamon et al., 2006; Running et
al., 1999; Wohlfahrt et al., 2010).

The eddy covariance (EC) technique is a widely and com-
monly applied method to estimate carbon dioxide exchange
between vegetation and the atmosphere at the ecosystem
scale (Baldocchi, 2003; Burba, 2013; Geider et al., 2001). Al-
though this method is able to provide direct, near-continuous
and high-temporal resolution measurements of net gas ex-
change, it also has some limitations.

EC technique provides flux measurements of a relatively
small area. The flux “footprint” varies from tens of meters to
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several kilometers and depends on many parameters such as
measurement height, wind velocity, surface roughness and
atmospheric stability (Baldocchi, 2003; Kljun et al., 2001;
Schmid, 1994). At the same time, the EC systems are rela-
tively expensive – the typical cost for a complete EC system
is on the order of USD 40–50 thousand, and the cost of site
infrastructure is additional (Running et al., 1999). Consider-
ing all of these aspects, it is clear that, although EC measure-
ments can be considered a solid basis for the ecosystem-scale
CO2 flux measurements, complementary methods are needed
to extend the estimates to landscape and regional scales.

Important networks such as SpecNet, IMECC, and EU-
ROSPEC have been investigating the potential of coupling
spectral and EC observations (Balzarolo et al., 2011). In situ
measurements can provide unique data sets with high spec-
tral, spatial and temporal resolution, which represent a solid
basis for validation of remote observations carried out at air-
craft and satellite levels and further upscaling (Gamon et al.,
2006; Gamon at al. 2010). As a result the number of sites
where direct flux measurements are conducted simultane-
ously with in situ spectral measurements has increased sig-
nificantly within the last decade.

The most commonly used approach to estimate the gross
ecosystem production (GEP; µmol m−2 s−1) with proximal
sensing is based on the light-use efficiency (LUE) model
proposed by Monteith (Monteith and Moss, 1977; Mon-
teith, 1972). This simple model assumes that GEP is driven
by the absorbed photosynthetically active radiation (APAR;
µmol m−2 s−1) and the photosynthetic radiation use effi-
ciency expressing the carbon sequestration efficiency per
amount of the absorbed solar energy (ε; µmol CO2µmol−1

APAR):

GEP= ε · APAR = ε · fAPAR · PAR, (1)

where PAR is the incident photosynthetically active radiation
(µmol m−2 s−1) andfAPAR is the fraction of PAR absorbed
by the vegetation canopy (%).

Numerous studies have highlighted that spectral vegeta-
tion indices (VIs) are a non-direct measure of canopy “green-
ness”, which is a complex parameter comprising a whole
range of vegetation properties such asfAPAR (Inoue et al.,
2008; Myneni and Williams, 1994; Sims et al., 2006; Walter-
Shea et al., 1997), leaf area index – LAI (Gitelson et al.,
2003c; Rossini et al., 2012; Serrano et al., 2000; Stenberg
et al., 2004; Vescovo and Gianelle, 2008; Viña et al., 2011),
chlorophyll content (Gitelson et al., 2005; Rossini et al.,
2012; Wu et al., 2008), green herbage ratio (Gianelle and
Vescovo, 2007; Vescovo and Gianelle, 2006) and fractional
vegetation cover (Carlson and Ripley, 1997; Glenn et al.,
2008).

In non-stressed ecosystems characterized by strong sea-
sonal dynamics such as some managed croplands, indepen-
dent estimates ofε may be unnecessary due to its relation
with the chlorophyll content (Gitelson et al., 2012; Peng and
Gitelson, 2012; Peng et al., 2011; Rossini et al., 2012; Wu

et al., 2009), and this is particularly true when integrating
GEP over longer timescales, e.g., days (Gitelson et al., 2008).
Therefore most of the variations in plant productivity in such
ecosystems should be reflected by changes in APAR (Lobell
et al., 2002).

Several studies modeled GEP as a function of VIs (Har-
ris and Dash, 2010; Rossini et al., 2010; Sims et al., 2006;
Sjöström et al., 2009; Xiao et al., 2004) and/or of VIs multi-
plied by PAR (Gitelson et al., 2006; Peng and Gitelson, 2012;
Peng et al., 2011). Including PAR in the model should theo-
retically enhance the correlation with GEP, because the prod-
uct of VI and PAR takes into account the seasonal changes
in both biophysical parameters controlling the photosynthe-
sis process (e.g.,fAPAR and chlorophyll content) and in the
amount of radiation reaching the vegetation surface (Gitelson
et al., 2012).

In the current study, 5 years of field multispectral data
acquired with the CROPSCAN MSR16R system (CROP-
SCAN Inc., Rochester, USA) deployed on the EC tower of
the FLUXNET grassland site IT-MBo (Viote del Monte Bon-
done, Trento, Italy) are presented and analyzed.

In particular, the objectives of this paper are the following:

(i) to investigate the potential of vegetation reflectance and
narrow-band VIs for monitoring carbon dioxide fluxes
exchanged between the dynamic grassland ecosystem
and the atmosphere

(ii) to analyze the relationships between spectral data and
carbon dioxide fluxes during the 5 years of observa-
tions in order to determine how robust the relationships
between vegetation spectral properties (reflectance and
narrow-band VIs) and mean midday GEP (GEPm) are

(iii) to compare different approaches (correlation analysis
and multiple regression) to estimate GEPm

(iv) to evaluate the potential of spectral models to gap-fill
GEPm data.

2 Materials and methods

2.1 Experimental site

The study site is a permanent alpine grassland located
at 1550 m a.s.l. on the Viote del Monte Bondone plateau
(46◦00′ N, 11◦02′ E; Italian Alps).

The vegetation of the area is dominated byFestuca rubra
(L.) (covering 25 % of the area),Nardus stricta(L.) (13 %)
andTrifolium sp. (L.) (14.5 %), and is representative of a typ-
ical low-productive meadow of the Alps. The site is man-
aged as an extensive meadow with low-mineral fertilization
(applied in autumn) and is cut once a year, usually in mid-
July (Gianelle et al., 2009). The maximum canopy height at
the peak of the growing season (mid-June to early July) can
reach approximately 30 cm.
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The climate of this area is sub-continental (warm and wet
summer) and is characterized by a mean annual temperature
of 5.5◦C, with monthly averages ranging from−3.1◦C in
February to 14.3◦C in July. The annual mean precipitation is
1244 mm, with maximum values in May (138 mm) and Oc-
tober (162 mm). The snow-free period lasts typically from
early May to late October (Marcolla et al., 2011).

The site is characterized by a regular east–west wind circu-
lation, showing along this direction an almost flat topography
with a homogeneous vegetated fetch of more than 500 m. An
experimental footprint analysis demonstrated that 30 % (in
stable atmospheric conditions) to 80 % (in unstable condi-
tions) of the total CO2 flux originates within 30 m from the
EC tower (Marcolla and Cescatti, 2005).

2.2 Eddy covariance and meteorological data

Continuous EC measurements of CO2, water vapor and sen-
sible heat fluxes were performed at the Monte Bondone
FLUXNET site from the beginning of August 2002. In the
present study, data from 2008 to 2012 were used, to match
the available spectral data set.

The eddy covariance (EC) system consisted of a Licor Li-
7500 open-path infrared gas analyzer (Li-COR Inc., Lincoln,
Nebraska, USA) and a Gill R3 3-D ultrasonic anemometer
(Gill Instruments Ltd., Lymington, UK), mounted at a height
of 2.5 m. Raw data were recorded at a frequency of 20 Hz
and stored by means of the EDISOL software package (Mon-
crieff et al., 1997). The EdiRE software (version 1.4.3.1021,
R. Clement, University of Edinburgh) was used to compute
turbulent CO2 fluxes from the raw data.

Along with EC flux measurements, the main meteorologi-
cal and soil physical variables were measured, including the
following: short- and long-wave radiation components (Kipp
& Zonen CNR1, Delft, the Netherlands), incoming total and
diffuse PAR (LI-COR LI- 190SA, Lincoln, USA; and Delta-
T BF3H, Cambridge, UK), precipitation (Young 52202H,
Traverse City, Michigan, USA), air humidity and temper-
ature (Rotronic MP103A, Crawley, UK), soil temperature
profile at depths of 2, 5, 10, 20 and 50 cm (STP01, Hukse-
flux, Delft, the Netherlands), and volumetric soil water con-
tent at depths of 10 and 20 cm (CS615 reflectometers, Camp-
bell Scientific Inc., Logan, Utah, USA). All meteorological
variables were recorded at 1 min intervals and averaged over
30 min; both 1 min data and half-hourly averages were stored
on a CR23X data logger (Campbell Scientific Inc., Logan,
Utah, USA).

Half-hourly measurements of net ecosystem exchange
(NEE) were gap-filled and partitioned into ecosystem res-
piration (Reco) and gross ecosystem production (GEP)
by means of the online tool developed by Reich-
stein et al. (2005) (http://www.bgcjena.mpg.de/bgcmdi/html/
eddyproc). However, only non-gap-filled data were analyzed
in this study.

Table 1. Multispectral CROPSCAN MSR16R system specifica-
tions.

CROPSCAN multispectral radiometer (MSR16R)

Band Channel Center Bandwidth
number name wavelength (nm) (nm)

1 R470 469.0 8.8
2 R531 531.1 8.0
3 R547 546.7 8.7
4 R570 569.6 10.4
5 R610 610.1 9.3
6 R640 639.8 10.0
7 R681 681.4 10.7
8 R720 720.2 9.6
9 R730 730.4 10.2
10 R750 749.5 10.6
11 R781 781.0 9.8
12 R861 861.4 10.5
13 R902 901.6 8.7
14 R979 979.1 10.2
15 R1238 1238.0 10.6
16 R1660 1659.8 14.4

To maintain consistency between the time window used
for calculating vegetation reflectance and narrow-band VIs,
the mean midday gross ecosystem production (GEPm,
µmol m−2 s−1) and mean midday incoming photosyntheti-
cally active radiation (PARm, µmol m−2 s−1) were calculated
for the same time period used for vegetation spectral proper-
ties (11:00 a.m.–1:00 p.m. of local solar time).

Further details regarding the EC instrumentation, data
elaboration and quality control can be found in Marcolla et
al. (2011).

2.3 Multispectral reflectance and narrow-band
vegetation indices

Multispectral data were acquired on a continuous basis from
2008 to 2012 by means of the CROPSCAN multispectral
radiometer system MSR16R (CROPSCAN Inc., Rochester,
USA). The system consists of a 16-band radiometer (simul-
taneously measuring reflected and incoming radiation in nar-
row spectral bands) and a data logger controller (DLC) stor-
ing the acquired data (Table 1). For each band, the incoming
solar irradiance is measured through a cosine diffuser, while
reflected radiance is measured through a 28◦ field of view
foreoptic. The system was installed on the existing EC tower
at a height of 6 m, which allowed the observation of a 3.0 m
diameter vegetation surface. The instrument was operated
during five growing seasons (15 May–21 November 2008,
20 May–1 November 2009, 19 May–24 October 2010, 11
May–3 September 2011 and 18 May–30 September 2012),
for a total of 758 days.
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Before the beginning of each growing season, the system
was calibrated using the method recommended by the man-
ufacturer, based on the use of a white reference panel with
known reflectance (http://www.cropscan.com/wsupdn.html).
Additionally, CROPSCAN, Inc. provided cosine response
calibration data with each upward-facing MSR16 module
and temperature sensitivity calibration data. Both cosine and
temperature corrections were included in the postprocessing
software (POSTPROC program) provided with the MSR sys-
tem.

Incident irradiance and reflected radiance were collected
every 10 min, and reflectance at given wavelengths was cal-
culated. In order to minimize solar angle effects, reflectance
data were finally averaged over 2 h close to a solar noon
(11:00 a.m.–1:00 p.m. of local solar time).

Due to the noisy and unreliable optical signal beyond
1000 nm (bands no. 15 and 16; Table 1), only the data of
the first 14 bands were included in the analyses. In addition,
data were excluded when (1) the site was covered by snow,
(2) precipitation was recorded 2 h prior or during the mid-
day averaging period, and (3) the weather conditions did not
allow for the removal of the cut biomass from the footprint
of CROPSCAN system (and EC tower) straight after the cut
event. According to these quality criteria, 24 % of the data
were discarded, mainly due to the meteorological conditions.

Canopy reflectance spectra were then used for computing
the VIs. Although many different VIs were investigated (Ta-
ble A1), only the most commonly used and the best perform-
ing in GEPm estimation – considering all the 5 years of ob-
servations – are presented in the study. The list of the five
presented VIs is reported in Table 2.

2.4 Models for GEPm estimation

In order to estimate GEPm we used two approaches: one
based on linear regression (using the concept of the LUE
model, i.e., Eq. 1) and the other on multiple regression. The
first approach assumed a direct linear relationship between
GEPm and VIs (model 1) and between GEPm and the prod-
uct of VIs and PARm (model 2). In the second approach, the
interaction effects between different variables were explored
by running two stepwise bidirectional multiple regression
models, in which GEPm was set as a dependent variable and
reflectance (model 3), or reflectance and PARm (model 4), as
explanatory variables. The abovementioned models (Table 3)
were tested both for each year on a separate basis, and for all
the years together in order to obtain the general models for
the estimation of GEPm.

2.5 Statistical analysis

Pearson’s correlation analysis was used to test the signifi-
cance of the relationships between GEPm and VIs· PARm.

In order to evaluate how robust the relationships between
GEPm and VIs were, the slopes of the linear regressions be-

tween the best performing VI against GEPm were analyzed.
In particular, the slopes of the regressions obtained for each
year and obtained in the general model 1 (including all 5
years) were compared by means of at test to check whether
the regression coefficients were statistically different.

Besides, a multiple stepwise bidirectional linear regression
was used to explore the interaction effects between variables
(considering GEPm as a dependent variable and reflectance
at 14 analyzed wavelengths (model 3), or reflectance val-
ues and PARm (model 4), as explanatory variables) to find
the model that best fits the data according to Akaike’s infor-
mation criterion (AIC; Akaike, 1973). The variance inflation
factor (VIF; Mason et al., 2003) was used to measure the
degree of (multi)collinearity of theith independent variable
with the other independent variables in the regression mod-
els.

When VIF for any of the predictors reached the threshold
value of 10, the (multi)collinearity was reduced by eliminat-
ing one independent variable (the last one selected by the
automatic stepwise bidirectional regression) from the analy-
sis (O’Brien, 2007). The procedure was repeated until none
of the VIF factors exceeded the acceptable threshold value;
thus the subset of explanatory variables was free of signifi-
cant (multi)collinearity issues.

The final subset of the predictor variables was selected by
testing whether the increase of the adjustedR2 (adjR2) af-
ter adding a subsequent predictor variable to the multiple re-
gression model was significantly different from zero (at sig-
nificance levelα = 0.001). Multiple regression models were
compared by means of the Fisher test.

Each of the four model’s coefficients was obtained by fit-
ting each model against GEPm. The main goodness of fit
statistics (adjusted coefficient of determination – adjR2, root
mean square error – RMSE, percentage root mean square er-
ror – PRMSE and probability value –p) were computed to
compare the performance of the different models.

Additionally, a validation of the best performing general
models using training/validation splitting approach, in which
1 year at a time was excluded from the data set, was con-
ducted. The remaining 4-year subset was used as a training
set and the excluded year as a validation set. The model was
fitted (calibrated) against each training set and the resulting
parameterization was used to predict the GEPm of the ex-
cluded year. Validation accuracy was evaluated in terms of
RMSE.

All the statistical analyses were performed by means of the
R software (version 2.15.2,http://www.r-project.org).

2.6 The gap scenarios

In order to evaluate the ability of spectral models to gap-fill
CO2 flux data, secondary data sets were generated by flag-
ging ∼16 % of the five growing seasons data as unavailable
(artificial gaps constituting 90 observation days out of 573
available observation days). The percentage of artificial gaps
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Table 2. Spectral vegetation indices presented in this study: normalized difference vegetation index (NDVI), modified simple ratio (MSR),
difference ratio (DR), red-edge normalized difference vegetation index (NDVIred-edge), and chlorophyll index (CIred-edge). R refers to re-
flectance at a specific band (nm).

Index Formulation Reference

NDVI (R750− R681)/(R750+ R681) Rouse et al. (1973)
MSR (R750/R681− 1)/(R750/R681+ 1)1/2 Haboudane et al. (2004)
DR (R750− R720)/(R750− R681) Datt (1999)
NDVI red-edge (R750− R720)/(R750+ R720) Gitelson and Merzlyak (1994)
CIred-edge (R750/R720) − 1 Gitelson et al. (2003a)

Table 3.The four models for GEPm estimation tested in the presented study.

Model Model formulation

1 GEPm = b0 + b1VI
2 GEPm = b0 + b1(VI · PARm)

3 GEPm = b0 + b1R470+ b2R531+ b3R547+ b4R570+ b5R610+ b6R640+ b7R681
+b8R720+ b9R730+ b10R750+ b11R781+ b12R861+ b13R902+ b14R979

4 GEPm = b0 + b1R470+ b2R531+ b3R547+ b4R570+ b5R610+ b6R640+ b7R681
+b8R720+ b9R730+ b10R750+ b11R781+ b12R861+ b13R902+ b14R979+ b15PARm

was chosen due to the fact that during the observation pe-
riod of the study (∼May to November, 2008–2012) the EC
data set had an average of 16 % of missing or rejected val-
ues of NEE data collected during midday hours. Following
Moffat et al. (2007) these artificial gaps were superimposed
on the already incomplete data, without regard for the distri-
bution of real gaps in the time series. Three gap length sce-
narios were considered: gaps of 1, 3 and 5 observation days.
The artificial gaps were distributed randomly, and each of
the three scenarios was permuted 10 times and results were
averaged (Moffat et al., 2007). Secondary data sets with ar-
tificial gaps were used to calibrate the models that were ap-
plied for filling GEPm data. The gap-filling statistical metrics
(adjR2, RMSE, PRMSE) were calculated using the EC de-
rived GEPm in these artificial gaps to validate the predictions
of filling technique.

3 Results

Figure 1 shows the seasonal variations of (a) PARm and (b)
GEPm. During the snow-free period (May–November) the
average PARm was 1073 (±472), 1167 (±485), 1068 (±581),
1199 (±463) and 1065 (±523) µmol m−2 s−1 in 2008, 2009,
2010, 2011 and 2012, respectively, with maximum values
of approximately 2000 µmol m−2 s−1. The maximum dif-
ference in PARm means among the investigated growing
seasons was less than 11.5 %. Mean daily air temperature
(Fig. 2) for the same period was 9.1 (±5.3), 10.0 (±5.2), 8.4
(±5.6), 9.8 (±4.8) and 10.0 (±5.3) °C in 2008, 2009, 2010,
2011 and 2012, respectively, and the maximum difference
between temperature means was equal to 15.6 %. A higher

Figure 1. Seasonal variation of(a) mean midday PAR (PARm;
µmol m−2 s−1) and(b) mean midday GEP (GEPm; µmol m−2 s−1)

in the growing seasons of 2008–2012.

variability was observed in total precipitation recorded from
May to November (Fig. 2). The differences in precipitation
sums between the investigated years reached up to 50 %. The
precipitation amount in 2011 (1008 mm) was similar to the
20-year period average (990 mm, 1993–2012). The grow-
ing season of 2010 (1473 mm) was particularly wet, with a
precipitation sum 49 % higher than the long term average,
while 2009 (744 mm) was fairly dry, with a total precipitation
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Figure 2. Cumulative precipitation versus average daily air temper-
ature for the period May–November.

25 % lower than the average sum of precipitation in 1993–
2012. The precipitation amounts in 2008 (1193 mm) and
2012 (1305 mm) were higher than the 20-year period aver-
age by 21 % and 32 %, respectively.

Seasonal patterns of GEPm were driven by both environ-
mental variables (such as incoming PAR and air tempera-
ture) and grassland management (Marcolla et al., 2011). The
grassland cut occurred around mid-July, and split the grow-
ing season into two sub-periods. The maximum gross CO2
flux rates were recorded in the early summer (end of June –
mid July). After the cut event, the canopy regrowth generally
reached a peak at the beginning of September.

The VIs showed a similar behavior to GEPm, and the peaks
of these time series were almost synchronous. Starting from
the early part of September, VIs began decreasing gradu-
ally in all the investigated years due to the senescence phase
(characterized by a progressive canopy yellowing and wilt-
ing), but at varied rates.

Examples of seasonal courses of investigated VIs and
GEPm measured in 2012 are shown in Fig. 3. For better vi-
sualization and easier comparison, both GEPm and VIs were
normalized by scaling between 0 and 1. The graphs which re-
fer to other years of observations can be found in Appendix
Fig. B1.

The linear regression analysis (Table 4) showed that the
presented VIs explained at least 50 % of the variability of
GEPm.

The highest accuracy of model 1 was obtained in 2009
and 2012 (adjR2 up to 0.81). On the other hand, the low-
est accuracy of the same model was reported in 2011 (max
adjR2

= 0.64). This low value of adjR2 could be explained
by the fact that during this year the CROPSCAN sensor was
not operated during the autumn period, and thus the range
of VIs and GEPm was smaller as the senescence phase was
missed (Table 4).

Figure 3. Seasonal courses of normalized spectral vegetation in-
dices – nVIs (–) and normalized mean midday gross ecosystem pro-
duction – nGEPm (–) in the growing season of 2012; adjR2 between
GEPm estimated from EC measurements and GEPm obtained with
model 1 fed with the various VIs.
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Table 4. Summary of the statistics (n – number of observations, adjR2 – adjusted coefficient of determination, RMSE – root mean square
error, PRMSE – percentage root mean square error) of the two linear regression models tested in this study both annually and considering all
of the 5 observation years together. The three best-fitting models in each group are printed in bold. The best performing model is additionally
highlighted in italic. All the regressions were statistically significant (p < 0.01).

Model VIs Meteo 2008 2009 2010

data n adjR2 RMSE PRMSE n adjR2 RMSE PRMSE n adjR2 RMSE PRMSE

– – µmol m−2 s−1 % – – µmol m−2 s−1 % – – µmol m−2 s−1 %

NDVI –
11

6
0.65 3.97 22.95

13
9

0.80 3.12 14.88

12
3

0.64 3.71 18.50
MSR – 0.70 3.66 21.16 0.81 3.09 14.72 0.68 3.53 17.59

1 DR – 0.60 4.23 24.43 0.74 3.59 17.12 0.64 3.72 18.55
NDVI red-edge – 0.70 3.66 21.14 0.81 3.04 14.49 0.69 3.45 17.20
CIred-edge – 0.71 3.59 20.76 0.76 3.48 16.58 0.68 3.50 17.47

NDVI PARm

11
6

0.55 4.49 25.96

13
9

0.41 5.40 25.76

12
3

0.40 4.81 23.98
MSR PARm 0.62 4.14 23.94 0.53 4.84 23.07 0.64 3.73 18.59

2 DR PARm 0.50 4.75 27.47 0.40 5.47 26.07 0.38 4.88 24.33
NDVI red-edge PARm 0.65 3.96 22.89 0.56 4.69 22.36 0.60 3.92 19.52
CIred-edge PARm 0.68 3.79 21.89 0.60 4.46 21.30 0.70 3.38 16.83

Model VIs Meteo 2011 2012 2008–2012

data n adjR2 RMSE PRMSE n adjR2 RMSE PRMSE n adjR2 RMSE PRMSE

– – µmol m−2 s−1 % – – µmol m−2 s−1 % – – µmol m−2 s−1 %

NDVI –

88

0.53 3.70 15.16

10
7

0.63 3.40 15.36

57
3

0.63 4.07 19.57
MSR – 0.50 3.80 15.57 0.66 3.24 14.65 0.64 4.04 19.43

1 DR – 0.64 3.22 13.20 0.77 2.66 12.05 0.67 3.87 18.64
NDVI red-edge – 0.61 3.37 13.80 0.80 2.50 11.29 0.74 3.41 16.40
CIred-edge – 0.61 3.36 13.74 0.81 2.46 11.10 0.73 3.47 16.72

NDVI PARm

88

0.55 3.60 14.73

10
7

0.28 4.75 21.49

57
3

0.47 4.90 23.58
MSR PARm 0.66 3.14 12.86 0.59 3.60 16.29 0.60 4.24 20.43

2 DR PARm 0.32 4.42 18.09 0.18 5.07 22.91 0.41 5.13 24.71
NDVI red-edge PARm 0.61 3.38 13.82 0.42 4.25 19.21 0.61 4.19 20.18
CIred-edge PARm 0.66 3.12 12.79 0.57 3.67 16.60 0.67 3.87 18.65

The estimation accuracy was also dependent on the VIs
used for the parameterization of model 1 (Table 4). VIs, in-
cluding the red-edge band in their formulation, turned out
to be the best candidates for GEPm estimations consider-
ing both the general model and the 5 different years on a
separate basis. The MSR, although it is based on the NIR
and red bands, also showed reliable performance. Taking
into account the models for the single years, MSR, DR, and
CIred-edgewere included in the group of the three best fitting
models 3, 2 and 4 times, respectively. NDVIred-edgewas in
the group of the three best performing models in each in-
vestigated year. On the contrary, NDVI was never included
among the best predictors of GEPm (Table 4).

The best estimation accuracy obtained when model 1
was parameterized with NDVIred-edgeresulted in PRMSE of
21.14 %, 14.49 %, 17.20 %, 13.80 % and 11.29 % for 2008,
2009, 2010, 2011 and 2012, respectively. The comparison of
linear regression slopes between NDVIred-edgeagainst GEPm
between each single year and the general model (which con-
sidered all 5 years of observation together) (Fig. 4) showed
that only the slopes of these linear relationships in 2011 and
2012 were significantly different from the general model
(p = 0.02 and 0.01 for 2011 and 2012, respectively). The
other years (2008, 2009, 2010) were statistically indistin-

guishable from the general model (slopes:p > 0.90, p >

0.46,p > 0.89 for 2008, 2009, 2010, respectively). This con-
tributed to the fact that NDVIred-edgeexplained more than
74 % of the variability of GEPm during the 5 years of ob-
servations (PRMSE of 16.40 %) (Table 4).

The inclusion of incoming PARm into the model resulted
in a general decrease of its performance. The PRMSE was
on average 14.64 % higher in model 2 than in model 1 con-
sidering all of the 5 years of observations. As an exam-
ple, the adjR2of the general model (2008–2012) fed with
NDVI red-edgedecreased from 0.74 to 0.61, RMSE increased
from 3.41 to 4.19 µmol m−2 s−1 and PRMSE increased from
16.40 to 20.18 %. A similar pattern was observed in each of
the investigated years (Table 4).

In order to investigate the impact of radiation quality on
these results, the light response of half-hourly GEP (data col-
lected between 11:00 a.m. and 1:00 p.m; during the snow-
free period of 2012) considering different levels of diffuse
radiation was investigated. Two different relationships be-
tween GEP and incoming PAR were found: one for cloudy
conditions (when diffusion index – DI, which is the ratio be-
tween diffuse and total incident PAR, exceeded 0.7) and one
for sunny conditions (DI < 0.3) (Fig. 5). The data when the
abovementioned populations were overlapping (PAR from
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Figure 4. Relationship between the red-edge normalized difference vegetation index (NDVIred-edge) and mean midday gross ecosystem
production (GEPm), considering both the 5 years of observation together and annual observations. Dashed and solid trend lines refer to the
general model 1 (considering each year of observation) and model 1 based on the observations from a specific year, respectively.

800 to 1350 µmol m−2 s−1) indicated that, in the Monte Bon-
done grassland site, photosynthesis rates were significantly
higher under diffuse compared to direct radiation.

A stepwise bidirectional procedure selected reflectance
(R) at 681, 781 and 720 nm (model 3) and R681, R781,
PARm and R720 (model 4) as significant drivers of GEPm,
considering each of the 5 years of observations simultane-
ously (Table 5).

It is interesting to note that in both model 3 and 4, refer-
ring to each observation year on a separate basis (data not
shown), the red-edge bands were included as important pre-
dictors in all of the 5 investigated years. In model 3 the red
region was chosen as a highly predictive variable in 40 % of
cases, while the NIR region in three out of five investigated
growing seasons. In model 4, red and NIR bands contributed
to the stepwise regression model in 3 and 2 out of 5 obser-
vation years, respectively. PARm, as an additional variable of
model 4, was included in the model three out of five times.
The range of adjR2 values for different years considered on a

Figure 5.Light response of half-hourly gross ecosystem production
(GEP; from 11:00 a.m. to 1:00 p.m.) to the incident photosyntheti-
cally active radiation (PAR) in the snow-free period of 2012 (May–
November). Diffusion index (DI) is the ratio between diffuse and
total incident PAR. It ranges from 0 to 1.
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Table 5.Summary of the general multiple regressions: partial adjustedR2, variance inflation factor (VIF), significance levels of the predictor
variables (p), number of observations (n), cumulative adjustedR2, root mean square error (RMSE) and percentage root mean square error
(PRMSE). R refers to reflectance at a given waveband (e.g., R720 – reflectance at 720 nm).

Model Explanatory Partial VIF p n Cumulative RMSE PRMSE
variables adjustedR2 adjustedR2

R681 0.44 5.65 0.00412 573 0.73 3.50 16.83
3 R781 0.26 3.54 < 2e−16

R720 0.04 6.78 < 2e−16

4

R681 0.44 5.69 0.0323 573 0.79 3.06 14.75
R781 0.26 6.74 < 2e−16
PARm 0.07 1.25 < 2e−16
R720 0.03 7.25 2.60e−16

separate basis varied from 0.61 to 0.87 and from 0.70 to 0.88
for model 3 and 4, respectively (data not shown).

A stepwise bidirectional multiple regression with re-
flectance at 681, 781 and 720 nm as predictors did not yield
any improvement in the explained variance of GEPm when
the entire data set was considered (adjR2

=0.74 – general
model 1; adjR2

=0.73 – general model 3; Table 4 and 5, re-
spectively). Also, adding PARm as an independent variable
of the model resulted only in a slight improvement in the
accuracy of the GEPm estimation compared to the general
linear regression model 1 based on NDVIred-edge. In fact, the
adjR2 increased from 0.74 to 0.79, while the PRMSE de-
creased from 16.40 to 14.75 % (Tables 4 and 5).

Validation of model 1 based on NDVIred-edge showed
that there was no relevant difference in prediction accuracy
among validation years (RMSE was varying between 3.12
and 3.85 µmol m−2 s−1, Fig. 6). Validation results of general
model 4 showed that considering all the 5 validated years
RMSE was on average 3.26 µmol m−2 s−1.

The differences in the adjR2 performance of the gap-
filling scenarios showed that the accuracy of gap filling
decreased slightly with gap length, while the range of the
goodness of fit statistics (adjR2, RMSE, PRMSE) generally
increased with gap size (Table 6). However, on average,
GEPm gaps were filled with an accuracy of 73 % with model
1 fed with NDVIred-edge (RMSE= 3.40 µmol m−2 s−1,
PRMSE= 16.48 %), and with an accuracy of 76 %
(RMSE= 3.14 µmol m−2 s−1, PRMSE= 15.25 %) with
model 4 using reflectance at 681, 720 and 781 nm and PARm
data.

4 Discussion

Continuous and simultaneous measurements of narrow-band
canopy reflectance and EC carbon dioxide fluxes have been
successfully performed for 5 consecutive years in a sub-
alpine grassland ecosystem. The multispectral CROPSCAN
MSR16R system demonstrated to be a reliable instrument for

monitoring carbon dioxide fluxes. The results of this study
provided important information on how consistent and ro-
bust the relationships between VIs and GEPm are in such a
dynamic ecosystem. Additionally, they allowed the compari-
son of different approaches (correlation analysis and multiple
regression) for predicting GEPm.

Although several studies have already compared VIs ob-
tained from in situ observations against EC CO2 fluxes (Gi-
telson et al., 2003b; Inoue et al., 2008; Peng and Gitel-
son, 2012; Peng et al., 2011; Rossini et al., 2010; Sims et
al., 2006), and a few studies have focused on very sim-
ilar canopies (Gianelle et al., 2009; Rossini et al., 2012;
Wohlfahrt et al., 2010), we are not aware of any study based
on such a long time series, acquired on a continuous basis
during the growing seasons.

From the data presented, it follows that MSR and DR
indices, which are modified and improved variants of the
most commonly used VIs, showed generally a slightly
stronger linear relationship with GEPm when compared to
NDVI. Nevertheless, considering all of the observation years,
the most robust estimates of GEPm were obtained when
NDVI red-edgeand CIred-edgewere used to parameterize the
model (Table 4). These results confirmed the findings of pre-
vious studies on both similar (Rossini et al., 2012) and dif-
ferent ecosystems (Gitelson et al., 2003b; Peng and Gitel-
son, 2012; Peng et al., 2011; Rossini et al., 2010), indicating
that VIs based on the red-edge part of the spectrum are the
most sensitive to the seasonal GEP dynamics due to their bet-
ter linearity with chlorophyll content (Gitelson et al., 2003a;
Sims and Gamon, 2002; Wu et al., 2008), and with green
leaf area index – green LAI (Gitelson et al., 2003c; Viña
et al., 2011). In general, VIs (such as NDVI) calculated as
a normalized difference between NIR bands – characterized
by a high reflectance due to leaf and canopy scattering, and
visible bands (e.g., red), where absorption by the chlorophyll
pigments is predominant (Jackson and Huete, 1991) – tend to
lose their sensitivity to moderate–high aboveground biomass
due to the saturation of reflectance in the visible bands and
due to the limitation of the normalized difference approach
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Table 6. Summary of the statistical metrics of gap-filling procedure: adjustedR2 (adjR2), root mean square error (RMSE) and percentage
root mean square error (PRMSE).

Model Input variables

Gap length

1 observation day 3 observation days 5 observation days

adjR2 RMSE PRMSE adjR2 RMSE PRMSE adjR2 RMSE PRMSE
– µmol m−2 s−1 % – µmol m−2 s−1 % – µmol m−2 s−1 %

1 NDVIred−edge
mean 0.76 3.41 16.45 0.72 3.43 16.71 0.70 3.34 16.28
range 0.16 0.73 3.80 0.28 1.19 5.45 0.46 0.95 6.50

R681

4
R781 mean 0.78 3.16 15.25 0.77 3.10 15.08 0.73 3.17 15.42
PARm
R720 range 0.14 0.46 2.72 0.18 0.81 4.23 0.33 0.75 5.13

Figure 6. Root mean square error (RMSE) of the validated mod-
els based on the red-edge normalized difference vegetation index
(NDVI red-edge).

(Fava et al., 2007; Gao et al., 2000; Mutanga and Skidmore,
2004). Better performances of NDVIred-edgeand CIred-edge
stem from the fact that even though the red-edge part of
the spectrum is characterized by lower absorption by chloro-
phyll, it still remains sensitive to changes in its content, re-
ducing the saturation effect and enhancing the sensitivity of
these VIs to moderate–high vegetation densities (Clevers and
Gitelson, 2013; Wu et al., 2008).

Incorporating PARm into the model resulted in a general
decrease in the goodness of fit of the linear regression. One
reason for this is that sunlight is used by plants more ef-
ficiently under cloudy than clear sky conditions due to a
more uniform illumination of the canopy, and thus a smaller
fraction of the canopy likely to be light saturated (Baldoc-
chi and Amthor, 2001; Chen et al., 2009; Mercado et al.,
2009). Accordingly, significantly higher photosynthesis rates
under diffuse as regards direct radiation conditions (with
similar values of PAR) were noted in the Monte Bondone
site (Fig. 5). Similar results have been reported by Rossini
et al. (2012), who also pointed out that, in a similar sub-
alpine grassland ecosystem, the inclusion of incident PAR in
a model formulation did not result in an improved estimation

of GEP. However, in several other studies referring to other
dynamic ecosystems, GEP was successfully estimated as a
product of VIs and PAR (Peng and Gitelson, 2012; Rossini
et al., 2010; Wu et al., 2009). A recent study of Peng et
al. (2013) confirmed that the use of PAR in the model can
introduce noise and unpredictable uncertainties in GEP es-
timations. As suggested by these authors, the response of
productivity to changes in PAR is quite complex and is in-
fluenced by many variables such as vegetation physiological
status, canopy structure and light distribution in the canopy.
Some other authors also brought to light some important as-
pects related to the use of PAR. Sims et al. (2008) showed
that the variation in PAR is a more relevant determinant of
GEP over very short timescales, and appears to be important
for diurnal trends. Gitelson et al. (2012) demonstrated that
seasonal variation of PAR potential (defined as the maximal
value of incident PAR that may occur when the concentra-
tions of atmospheric gasses and aerosols are minimal) can
be used to improve the performance of the models. There-
fore, further analyses of the response of different vegetation
types to various levels of diffuse radiation are required, and
the hypothesis that the DI and PAR potential can improve the
performance of the models including radiation as an input
parameter needs to be verified.

The use of the reflectance approach instead of the VI ap-
proach did not lead to considerably improved results in es-
timating GEPm. Including additional predictors in multiple
stepwise regression resulted in only a 6 % improvement of
the explained variance, considering all of the 5 years of ob-
servations collectively. We believe this was partly due to the
limited number of available bands of the CROPSCAN sys-
tem, and that further studies are needed to explore the ben-
efits of using hyperspectral data for predicting CO2 uptake
across different terrestrial ecosystem types.

A detailed analysis of the full vegetation spectrum and of
the various spectral absorption features appears to be partic-
ularly meaningful for providing a solid basis for upscaling of
GEP estimations using airborne and satellite platforms.

In this study the reflectance value at 720 nm, which was
used in the multiple regression models, did not bring a rele-
vant increase in the adjR2 values (partial adjR2 was 0.04 and
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0.03 for model 3 and 4, respectively). On the other hand, the
successful performance of VIs using this band confirms the
important role of this part of the spectrum in monitoring the
dynamics of ecosystem carbon dioxide fluxes.

Validation results of general model 1 fed with
NDVI red-edge showed that RMSE increased on average
from 3.41 to 3.48 µmol m−2 s−1, compared to non-validated
general model 1 (averaging the values obtained from the
5 different validation years). Validation results of general
model 4 showed that RMSE increased on average from 3.06
to 3.26 µmol m−2 s−1, compared to non-validated general
model 4. The highest decrease of the GEPm estimation
accuracy was noted in the growing season of 2012 (Table
4, Fig. 6), which was presumably caused by the unusual
drought which occurred just after the cut event. The pre-
cipitation to temperature ratio for a 15-day period after
the cut in the growing season of 2012 was more than 10
times lower than in the other years, and this fact could
have affected GEPm to a higher extent than VIs related to
canopy “greenness”. As a consequence, models calibrated
with the first 4 years of the data set overestimated the GEPm
measured in the second part of the growing season of 2012.

During the observation period, the study site experienced
a high variability in both precipitation and air temperature
(covering approximately 88 % and 54 % of the variability ob-
served in a 20-year period for precipitation and temperature,
respectively) (Fig. 2). General model 1 parameterized with
NDVI red-edge(adjR2

= 0.74), and general model 3 (adjR2
=

0.73) and 4 (adjR2
= 0.79) based on the reflectance data

were successful in capturing the inter-annual variability of
GEPm among the 5 years characterized by different climatic
conditions. Therefore, these results support the use of ground
spectral measurements for monitoring GEPm in a long-term
framework. We must however emphasize that the possible
limitation of the approach based on VIs related to “canopy
greenness” is that variations of GEP due to the short term en-
vironmental stresses cannot be monitored by these VIs, un-
less these stresses affect chlorophyll content (Gitelson et al.,
2008).

Combining proximal sensing with EC observations may
be relevant also for the EC data gap filling. In fact, the ac-
curacy and reliability of the EC measurements depend on
certain theoretical assumptions (e.g., requirement for turbu-
lent and non-advective atmospheric conditions, stationarity
of the measured fluxes) which often cannot be fulfilled in real
field conditions (Foken et al., 2004; Göckede et al., 2004; Pa-
pale et al., 2006). The need for rejecting data acquired during
periods when the abovementioned micrometeorological con-
ditions were not met or due to other reasons such as non-
optimal wind directions, equipment failures etc. results in
data set gaps constituting from 20 % to 60 % of annual data
(Falge et al., 2001; Hui et al., 2004; Moffat et al., 2007). One
of the most widely used gap-filling routines is based on the
modeling of flux data with available environmental variables
by means of nonlinear regression (Aubinet et al., 2000; Falge

et al. 2001). This technique uses two equations – one for the
response of ecosystem respiration (Reco) to temperature and
one for the light response of GEP (Moffat et al., 2007) –
allowing their predictions during gaps. The implementation
of VIs into the light response model might help to improve
the gap-filling results, especially in very dynamic ecosys-
tems such as croplands, grasslands or deciduous forests. This
could be particularly useful in case of long gaps in the EC
data, which are inherently associated with a large degree of
uncertainty (Moffat et al., 2007; Richardson and Hollinger,
2007; Wohlfahrt et al., 2010) and in case of managed ecosys-
tems, where carbon dioxide uptake depends not only on the
incoming radiation seasonality but also on cutting and graz-
ing events. The results of a simple gap-filling approach pre-
sented in this study (based on creating and superimposing
randomly distributed artificial gaps of three different lengths
on the real data set and comparing GEPm values derived from
EC with GEPm values filled with the best performing spectral
models) encourage the use of spectral data in the gap-filling
procedures of EC flux time series. The spectral based models
were able to predict GEPm values with a performance com-
parable with others methods (Moffat et al., 2007) with adjR2

ranging from 0.70 (5-day-long gap, general model 1 param-
eterized with NDVIred-edge) to 0.78 (1-day-long gap, general
model 4 based on reflectance at 681, 720 and 781 nm and
PARm data) (Table 6).

5 Conclusions

This study investigated the potential of a commercially
available system – based on a 16-band multispectral sen-
sor – for monitoring mean midday gross ecosystem pro-
duction (GEPm) in a dynamic subalpine grassland ecosys-
tem of the Italian Alps. Chlorophyll-related indices includ-
ing the red-edge part of the spectrum in their formulation
(such as NDVIred-edgeand CIred-edge) were the best predic-
tors of GEPm, and were able to explain most of its variability
(adjR2

= 0.74 for NDVIred-edge, adjR2
= 0.73 for CIred-edge)

during the 5 consecutive years of observations, characterized
by different climatic conditions. Our results confirm the find-
ings of the literature regarding the complexity of the response
of ecosystem productivity to change in PAR (Peng et al.,
2013). This response is influenced by many variables. In fact,
in our study, the accuracy of GEPm estimation decreased af-
ter including incident PARm into the linear regression model,
and the photosynthesis process was shown to be more ef-
ficient under diffuse compared to direct radiation. Further
investigations are planned in order to explore the utility of
including DI and PAR potential in the models to improve
their performances. Also, the use of the reflectance approach
instead of the VI approach did not lead to considerably im-
proved results in estimating GEPm. Although a more detailed
analysis of the full vegetation spectrum is desirable (for pro-
viding best performing algorithms and a solid basis for in situ
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validation and upscaling of optical models to the airborne and
satellite platforms), the results indicate that such relatively
low-cost multispectral sensors can be adopted to provide a
significant contribution in monitoring carbon dioxide fluxes
and biophysical parameters in dynamic ecosystems, for im-
proving gap-filling techniques and for further integration into
more complex biogeochemical models.
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Appendix A

Table A1. Spectral vegetation indices investigated in this study. R
refers to reflectance at a specific band (nm).

Index Formulation Reference

NDVI (R750− R681)/(R750+ R681) Rouse et al. (1973)
(R781− R681)/(R781+ R681)
(R861− R681)/(R861+ R681)

NDVIgreen (R750− R547)/(R750+ R547) Gitelson et al. (1996)
(R781− R547)/(R781+ R547)
(R861− R547)/(R861+ R547)

SR R750/R681 Jordan (1969)
R781/R681
R861/R681

SRgreen R750/R547 Gitelson and Merzlyak (1997)
R781/R547
R861/R547

SRblue R470/R750 Zarco-Tejada et al. (2001)
R470/R781
R470/R861

MSR (R750/R681− 1)/(R750/R681+ 1)1/2 Haboudane et al. (2004)
(R781/R681− 1)/(R781/R681+ 1)1/2

(R861/R681− 1)/(R861/R681+ 1)1/2

RDVI (R750− R681)/(R750+ R681)1/2 Haboudane et al. (2004)
(R781− R681)/(R781+ R681)1/2

(R861− R681)/(R861+ R681)1/2

NDVI red-edge (R750− R720)/(R750+ R720) Gitelson and Merzlyak (1994)
(R781− R720)/(R781+ R720)
(R861− R720)/(R861+ R720)

MTCI (R750− R720)/(R720− R681) Dash and Curran (2004)
(R781− R720)/(R720− R681)
(R861− R720)/(R720− R681)

EVI 2.5 · (R750− R681)/(1+ R750+ 6 · R681− 7.5 · R470) Huete et al. (2002)
2.5 · (R781− R681)/(1+ R781+ 6 · R681− 7.5 · R470)
2.5 · (R861− R681)/(1+ R861+ 6 · R681− 7.5 · R470)

CIred-edge (R750/R720) − 1 Gitelson et al. (2003a)
(R781/R720) − 1
(R861/R720) − 1

CIgreen (R750/R720) − 1 Gitelson et al. (2003c)
(R781/R720) − 1
(R861/R720) − 1

Index Formulation Reference
PRI (R547− R531)/(R547+ R531) Gamon et al. (1992)

(R570− R531)/(R570+ R531)
(R610− R531)/(R610+ R531)
(R640− R531)/(R640+ R531)
(R681− R531)/(R681+ R531)

mSR (R750− R470)/(R720− R470) Sims and Gamon (2002)
(R781− R470)/(R720− R470)
(R861− R470)/(R720− R470)

DR (R750− R720)/(R750− R681) Datt (1999)
(R781− R720)/(R781− R681)
(R861− R720)/(R861− R681)

mND (R750− R720)/(R750+ R720− 2R470) Sims and Gamon (2002)
(R781− R720)/(R781+ R720− 2R470)
(R861− R720)/(R861+ R720− 2R470)

mNDVI (R750− R681)/(R750+ R681− 2R470) Main et al. (2011)
(R781− R681)/(R781+ R681− 2R470)
(R861− R681)/(R861+ R681− 2R470)

VOG R730/R720 Zarco-Tejada et al. (2001)

SIPI (R750− R470)/(R750− R681) Peñuelas et al. (1995)
(R781− R470)/(R781− R681)
(R861− R470)/(R861− R681)

SIPI 2 (R750− R547)/(R750− R681) Blackburn (1998)
(R781− R547)/(R781− R681)
(R861− R547)/(R861− R681)

MCARI [(R720− R681) − 0.2 · (R720− R547)](R720/R681) Daughtry et al. (2000)

MCARI 2 [(R750− R720) − 0.2 · (R750− R547)](R750/R720) Wu et al. (2008)
[(R781− R720) − 0.2 · (R781− R547)](R781/R720)
[(R861− R720) − 0.2 · (R861− R547)](R861/R720)

WDRVI (0.1 · R750− R681)/(0.1 · R750+ R681) Gitelson (2004)
(0.1 · R781− R681)/(0.1 · R781+ R681)
(0.1 · R861− R681)/(0.1 · R861+ R681)

ISI (R781− R750) Vescovo et al. (2012)
(R861− R750)

NIDI (R781− R750)/(R781+ R750) Vescovo et al. (2012)
(R861− R750)/(R861+ R750)

WBI R979/R902 Peñuelas et al. (1994)
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Appendix B

Figure B1. Seasonal courses of normalized spectral vegetation indices – nVIs (–) and normalized mean midday gross ecosystem production
– nGEPm (–) in the growing seasons of 2008–2011 (columns from left to right); adjR2 between GEPm estimated from EC measurements
and GEPm obtained with model 1 fed with the various VIs.
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