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Abstract. Phaeocystis globosa,a red tide alga, often forms
blooms in or adjacent to coastal waters and experiences
changes in pH and seawater carbonate chemistry caused
by either diel/periodic fluctuation in biological activity, hu-
man activity or, in the longer term, ocean acidification due
to atmospheric CO2 rise. We examined the photosynthetic
physiology of this species while growing it under differ-
ent pH levels induced by CO2 enrichment and investigated
its acclimation to carbonate chemistry changes under dif-
ferent light levels. Short-term exposure to reduced pHnbs
(7.70) decreased the alga’s photosynthesis and light use ef-
ficiency. However, acclimation to the reduced pH level for
1–19 generations led to recovered photosynthetic activity, be-
ing equivalent to that of cells grown under pH 8.07 (control),
though such acclimation required a different time span (num-
ber of generations) under different light regimes. The low-
pH-grown cells increased their contents of chlorophyll and
carotenoids with prolonged acclimation to the acidification,
with increased photosynthetic quantum yield and decreased
non-photochemical quenching. The specific growth rate of
the low-pH-grown cells also increased to emulate that grown
under the ambient pH level. This study clearly shows that
Phaeocystis globosais able to acclimate to seawater acidi-
fication by increasing its energy capture and decreasing its
non-photochemical energy loss.

1 Introduction

Ocean acidification is another global environmental problem
caused by increasing atmospheric CO2, which is projected to
increase up to 1000 ppmv by 2100, based on the IPCC A1F1
scenario (business as usual scenario) (IPCC, 2007). Increas-
ing pCO2 in seawater causes a decrease in pH (ocean acidifi-
cation, OA) and brings about chemical changes in the seawa-
ter carbonate chemistry, decreasing carbonate ion concentra-
tion and increasing bicarbonate ions. On the other hand, in
coastal waters, interactions of OA with eutrophication and
deoxygenation are suggested to induce faster pH declines
compared to pelagic waters (Cai et al., 2011), though day–
night pH fluctuations are large due to high productivity and
respiration (Cornwall et al., 2013).

Effects of the CO2 enrichment on phytoplankton have
been widely studied (see the reviews, and literature therein,
by Beardall et al., 2009; Tanaka et al., 2013; Brussaard et al.,
2013; Gao and Campbell, 2014). Algal responses to elevated
CO2 concentrations have indicated a stimulation of growth
or photosynthesis (Gao et al., 1991; Hein and Sand-Jensen,
1997; Zou et al., 2011; Trimborn et al., 2013), reduced cal-
cification (Riebesell et al., 2000; Gao and Zheng, 2010) or
growth rates (Gao et al., 2012b; Trimborn et al., 2013) and
stimulation of respiration (Wu et al., 2010; Yang and Gao,
2012). Other reports have indicated neutral responses with
insignificant influences on growth (Arnold et al., 2013), cal-
cification (Langer et al., 2006, 2009) or photosynthesis (Wu
et al., 2008; Trimborn et al., 2013). While elevated CO2 in
air, and hence in water, might stimulate algal photosynthesis,
the CO2-induced pH drop and change in carbonate chemistry
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of seawater could bring about different physiological im-
pacts on phytoplankton (Raven, 2011; Gao and Campbell,
2014). It is known, for instance, that OA stimulates non-
photochemical quenching when diatoms or surface phyto-
plankton assemblages are grown under bright sunlight (Gao
et al., 2012b). Nevertheless, the balance between CO2 en-
richment and negative impacts of lower pH could act to min-
imize the observable effects of OA, so that, overall, neutral
responses would be recorded. Recently, it has been shown
that the effects of OA on diatoms could be stimulatory, neu-
tral or inhibitory for growth depending on the levels of solar
radiation or depth in the water column (Gao et al., 2012b).

Phaeocystis globosa, a heteromorphic marine phytoplank-
ter, forms gelatinous colonies during blooms (Schoemann
et al., 2005; Peperzak and Poelman, 2008) but predomi-
nantly lives as flagellated solitary cells (Rousseau et al.,
2007; Peperzak and Gäbler-Schwarz, 2012). This organism is
known to operate highly efficient CO2-concentrating mech-
anisms (Rost et al., 2003; Chen and Gao, 2011), tolerate
high solar UV irradiances (Chen and Gao, 2011), acclimate
flexibly to the changes in photosynthetic active radiation
(PAR) light intensity (Schoemann et al., 2005) and show
strain-specific responses to elevated CO2 (Wang et al., 2010;
Hoogstraten et al., 2012). In the present study, we exposed
cells ofPhaeocystis globosato a range of light and pH levels
and found that this species can readily acclimate to changes
in seawater carbonate chemistry caused by OA, with differ-
ent rates of acclimation under different light levels.

2 Materials and methods

2.1 Organism and culture conditions

Phaeocystis globosaScherffel (ST-97) was isolated from a
bloom in the South China Sea in 1997 (Chen et al., 2002)
and was maintained thereafter at Xiamen University as an ax-
enic unialgal culture growing in a modified f/2 medium (Si
not enriched). We chose the flagellated form for this study
since this accounts for most of the time during the life cycle
of P. globosaand is responsible for the occurrence of harm-
ful algal blooms (HAB) (Rousseau et al., 2007; Peperzak and
Gäbler-Schwarz, 2012). The flagellated cells (3–8 µm) were
grown for 3 days (about nine generations) in modified tur-
bidostat cultures (Chen and Gao, 2011) under photosynthet-
ically active radiation (PAR) levels of 25, 200 or 800 µmol
photons m−2 s−1 at 20◦C before the cells were used in the
following experiments.

2.2 Seawater acidity and its adjustment

We set up two ocean acidity treatments of pHnbs 8.07 and
7.70, which represent the mean pH in seawater at the present
time and that expected by 2100, respectively, and which are
consistent with the recommendations by Barry et al. (2010)
for ocean acidification research.

Since photosynthetic carbon fixation often exceeds disso-
lution (hydration) of CO2 from aeration in algal cultures,
making the pH rise even under elevated CO2 levels (Gao
et al., 1991), the best way to maintain constant pH level is
to use continuous cultures while maintaining low cell con-
centrations (LaRoche et al., 2010). We therefore operated
turbidostat cultures in a CO2 chamber (Conviron EF7, Con-
trolled Environments Limited, Canada), in which designated
CO2 concentrations were automatically achieved by mix-
ing pure CO2 and ambient air (390 ppmv CO2), and the
cell concentration was maintained within a range of 0.9–
1.1× 105 cells mL−1 (concentrations of Chla were 0.23–
0.64 pg cell−1). The medium flow rates (efflux from and in-
flux to the culture) were adjusted in order to maintain stable
levels of cell concentration and carbonate chemistry. The tur-
bidostat culture system consisted of a culture vessel (a quartz
tube of 1200 mL, 7.0 cm in diameter and 40 cm in length) and
a medical transfusion unit for transferring the medium and
adjusting the flow rate (Chen and Gao, 2011). The culture
vessels were aerated with filtered (SLLG013SL, Millipore,
USA, 0.2 µm-pore size) air with 1000 ppmv CO2 or with an
ambient CO2 level to adjust the pH in the cultures to 7.70
or 8.07. The aeration rate was adjusted within a range of
700–900 mL min−1 in order to maintain the stability of the
seawater carbonate chemistry (change of carbonate system
parameters < 3 %; Table 1). The pH in the cultures was mea-
sured with a pH meter (Seveneasy, Mettler-Toledo, Switzer-
land), which was frequently calibrated with standard NBS
buffer solution (Merck, Germany). The quartz culture tubes
were maintained in a water bath for temperature control at
20± 1◦C using a refrigerating circulator (CAP-3000, Tokyo
Rikakikai, Japan).

2.3 Determinations of growth rate and
photosynthetic pigments

Since the cultures were operated continuously, the specific
growth rate (µ) was calculated asµ = F/V , whereF repre-
sents the flow rate andV is the volume of the culture.

Photosynthetic pigments were determined by filtering
100 mL of culture through a Whatman GF/F filter, extract-
ing in 5 mL absolute methanol overnight and centrifuging for
10 min (2000 g) at 4◦C, and measuring the absorbance of the
supernatant with a spectrophotometer (DU530 DNA/Protein
Analyzer, Beckman Coulter, USA) as previously reported
(Gao et al., 2007). Chla, Chl c and carotenoids were cal-
culated according to Jeffrey and Welschmeyer (1997) and
Ritchie (2006).

2.4 Assessment of photochemical activity

Chlorophyll fluorescence parameters indicative of photo-
chemical activity were determined with a pulse ampli-
tude modulated fluorometer (WATER-ED-PAM, Walz, Ger-
many). The effective quantum yield (8PSII = 1F/F ′

m) was
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Table 1. Parameters of the seawater carbonate system under ambient (39.3 Pa or 390 µatm) and enriched (101.3 Pa or 1000 µatm) CO2
levels in the turbidostat cultures under different photon flux densities (LL: 25; ML: 200; HL: 800 µmol photons m−2 s−1) of PAR. Dissolved
inorganic carbon (DIC), pH, salinity (33 ‰), nutrient concentration (phosphate, 3.6; silicate, 11.3; nitrate, 882.4 µM) and temperature (20◦C)
were used to derive all other parameters using the CO2 system analyzing software CO2SYS. The stoichiometric equilibrium constantsK1
andK2 for carbonic acid used were 6.04 and 9.16, respectively. The data represents the mean± SD (n = 24) except measured total alkalinity
(TAm) (n = 9). Superscripts with different letters indicate significant differences between groups.

39.3 Pa CO2 LL ML HL 101.3 Pa CO2 LL ML HL

pH 8.08± 0.02a 8.09± 0.02a 8.09± 0.03a 7.70± 0.03b 7.71± 0.02b 7.70± 0.03b

DIC (µM) 2011.3± 97.2c 2006.6± 106.1c 2007.8± 103.5c 2213.6± 100.4d 2187.2± 104.8d 2168.3± 91.8d

HCO−

3 (µM) 1797.1± 83.4e 1789.0± 77.3e 1790.1± 90.4e 2082.3± 93.6f 2056.1± 101.3f 2039.7± 96.6f

CO2aq (µM) 12.1± 0.5g 11.8± 0.5g 11.8± 0.6g 33.7± 0.8h 32.5± 0.7h 33.0± 0.9h

CO2−

3 (µM) 202.0± 7.5p 205.8± 6.6p 205.9± 6.8p 97.6± 3.9q 98.6± 3.7q 95.6± 3.2.q

TA (µM) 2287.6± 97.1n 2288.7± 103.2n 2290.0± 95.3n 2318.6± 99.7n 2295.3± 96.4n 2272.0± 103.1n

TAm (µM) 2271.3± 101.6n 2268.2± 107.1n 2272.6± 102.6n 2288.6± 113.8n 2269.6± 97.8n 2243.6± 109.3n

determined on the basis of the instant maximal fluores-
cence (F ′

m) and the steady-state fluorescence (Ft) of the
light-adapted cells according to Genty et al. (1989):8PSII =

1F/F ′
m = (F ′

m − Ft)/F
′
m. Non-photochemical quenching

(NPQ) was determined on the basis of the maximal fluo-
rescence (Fm) of the dark-adapted cells at 06:00 h (before
the growth light was switched on) and the instant maximal
fluorescence (F ′

m) of the light-adapted cells during daytime
; this was done as follows: NPQ= (Fm − F ′

m)/Fm (Bilger
and Björkman, 1990). In the course of measuringFm, F ′

m
andFt, the saturating pulse (0.8 s) and actinic light were set
to 4000 and 150 µmol photons m−2 s−1, respectively. Rapid
light curves (RLCs) were obtained by exposing samples to
10 s of blue light at eight incremental steps of PAR rang-
ing from 0 to 2000 µmol photons m−2 s−1. Relative electron
transport rate (rETR) was determined according to the fol-
lowing formula: rETR= 8PSII× I × F × 0.5, where8PSII
is the photochemical yield in the light,I is the actinic ir-
radiance in µmol quanta m−2 s−1, F is the species-specific
fraction of incident quanta absorbed by the cells and 0.5 is
a factor allowing for the fraction of the absorbed light uti-
lized by PSII. Parameters, such asα (photosynthetic light
harvesting efficiency; the initial slope of the curve),Ik (ir-
radiance of maximum photosynthesis) and rETRmax (max-
imum rETR), were obtained by fitting a curve to the RLC
data in Sigmaplot 2001 (version 7.0, SPSS) according to Platt
et al. (1980) and Ralph (2005) and using the equationP =

Pm[1− e−(α×I/Pm)
], wherePm is the light-saturated photo-

synthetic electron transport rate,α the initial slope of the
RLC before the onset of saturation andI the photosynthet-
ically active radiation (400–700 nm). The three major con-
stituents of non-photochemical quenching (NPQ) (energy-
dependent quenching, qE; state transition quenching, qT; and
photoinhibitory quenching, qI) were determined by dark re-
laxation measurements after the actinic light had been turned
off (Lichtenthaler et al., 2005). For this purpose, a saturat-
ing pulse was applied at 1, 5 and 18 min after turning off the

actinic light (with the measuring light remaining switched
on throughout the dark relaxation measurement of NPQ),
andF ′

m1, F ′
m5 andF ′

m18 were obtained. The corresponding
Fv(Fv = Fm − F0) values of the samples were determined
before measuringF ′

m1, F ′
m5 andF ′

m18. qE, qT and qI were
calculated as follows:

qE= (F ′
m5− F ′

m1)/Fv (1)

qT = (F ′
m18− F ′

m5)/Fv (2)

qI = (Fm − F ′
m18)/Fv (3)

In the above formulae,F ′
m1, F ′

m5 andF ′
m18 represent the

maximal Chl fluorescence at 1, 5 and 18 min of the dark re-
laxation period after turning off the actinic light.

2.5 Determination of photosynthesis and respiration

Photosynthetic oxygen evolution and dark respiration were
measured with a Clark-type O2 electrode (YSI 5300; Yellow
Springs Instrument Co., Inc., USA). The cells grown under
the low or high CO2 levels for one to nine generations were
incubated and their photosynthesis/respiration was measured
in the seawater equilibrated with different levels of CO2 un-
der PAR of 400 µmol photons m−2 s−1 or in complete dark-
ness, respectively.

2.6 Measurements of dissolved inorganic carbon and
total alkalinity

Dissolved inorganic carbon (DIC) was determined using a
total carbon analyzer (TOC-5000, Shimadzu, Japan), which
automatically measured DIC and total carbon (TC) in the
culture supernatant (after centrifugation). Other parameters
for the seawater carbonate system were estimated according
to the measured values of DIC and pH using the software
CO2SYS (Lewis and Wallace, 1998).
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Figure 1. The specific growth rates (open symbols) ofP. globosa
grown at pH 8.07 and the ratios (solid symbols) of the specific
growth rate at pH 7.70 to that at pH 8.07 (µ7.70 : µ8.07) under dif-
ferent irradiance levels (LL, 25; ML, 200; HL, 800 µmol photons
m−2 s−1). The data represent the mean± SD (n = 3, triplicate cul-
tures).

2.7 Data analysis

Pairedt test or One-way ANOVA (Rosner, 2011) was used
to establish the significance of differences among the treat-
ments atp < 0.05.

3 Results

3.1 DIC, pH, CO2aq and TA

When the pH was adjusted from 8.07 to 7.70 by adding
CO2-saturated seawater or aerating with CO2-enriched air,
DIC, CO2aq and HCO−

3 increased by 11.9 %, 164.5 % and
12.3 %, respectively, and CO2−

3 decreased by 51.4 % (p <

0.05), while total alkalinity (TA) showed no significant dif-
ference between low- and high-CO2 cultures (p > 0.05). All
parameters showed no significant changes under the different
irradiance levels (LL, low light; ML, middle light; HL, high
light) (p > 0.1) (Table 1).

3.2 Growth

The effects of acidification onP. globosa growth
rates were different under 25 (LL), 200 (ML), and
800 µmol photons m−2 s−1 (HL).

In the pH 8.07 (high pH, HpH) culture, with bubbling us-
ing ambient air, the specific growth rates (µ) of the alga
under LL, ML and HL were 0.732–0.751, 1.096–1.131
and 1.244–1.269 d−1, respectively. Correspondingly, growth
rates were 0.732–0.781, 1.054–1.148 and 1.013–1.225 d−1

in the pH7.70 (low pH, LpH) culture, with bubbling CO2-
enriched air. Under the corresponding light regimes (LL,
ML, HL), at day 1 (generation 1), rates were lower by 1.4 %
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Figure 2. Contents of chlorophyll(a) and carotenoids(b) of P. glo-
bosacells grown at pH 8.07 (open symbols) and the ratios (solid
symbols) of the pigments at pH 7.70 to those at pH 8.07 under dif-
ferent irradiance levels (LL, 25; ML, 200; HL, 800 µmol photons
m−2 s−1). The data represent the means± SD (n = 3, triplicate cul-
tures).

(p > 0.05), 5.3 % (p < 0.05) and 19.1 % (p < 0.05), respec-
tively, in the LpH cultures, whereas at day 7 (generation 19)
they were higher by 9.1 % (p < 0.05), 4.6 % (p < 0.05) and
−2.4 % (p > 0.05), respectively, compared to the HpH cul-
tures (Fig. 1).

3.3 Photosynthetic pigments

Under different irradiances, acidification affected chloro-
phyll (Chl) and carotenoids (Carot) to different extents. In
the HpH culture, bubbled with ambient air, the Chl con-
tents of the cells grown under LL, ML and HL treatments
were 0.715–0.759, 0.337–0.344 and 0.223–0.236 pg cell−1,
respectively, and the Carot levels were 0.290–0.299, 0.318–
0.323 and 0.359–0.372 pg cell−1. However, in the LpH cul-
ture aerated with the CO2-enriched air, the Chl values were
higher by 7.7 % (p < 0.05), 9.7 % (p < 0.05) and 12.9 %
(p < 0.05), in the LL, ML and HL treatments, respectively,
when the cells had acclimated to the acidification by day 7,
compared to the values at day 1. The corresponding Carot
values increased by 19.8 % (p < 0.05), 12.1 % (p < 0.05)
and 8.8 % (p < 0.05) (Fig. 2).
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Figure 3. Effective quantum yield (Yield) (a) and non-
photochemical quenching (NPQ)(b) of P. globosagrown at pH
8.07 (open symbols), and the ratios (solid symbols) of either the
yield or the NPQ at pH 7.70 to that at pH 8.07 under different irra-
diance levels (LL, 25; ML, 200; HL, 800 µmol photons m−2 s−1).
The data represent the means± SD (n = 3, triplicate cultures).

3.4 Photosynthetic characteristics

During the continuous cultures under LL, ML and HL, the ef-
fective photochemical efficiencies (8PSII = 1F/F ′

m) of the
algal cells in the HpH culture ranged from 0.685–0.689,
0.569–0.573 and 0.415–0.421, respectively, while the non-
photochemical quenching (NPQ) values were 0.367–0.379,
0.569–0.596 and 1.233–1.248 (Fig. 3). On day 1,8PSII val-
ues were lower by 6.8 % (p < 0.05), 14.8 % (p < 0.05) and
39.9 % (p < 0.01), while NPQ values were higher by 8.4 %
(p < 0.05), 11.5 % (p < 0.05) and 17.8 % (p < 0.05) under
the three light levels in the LpH cultures, compared to those
grown in the HpH cultures. At day 7, acclimation to the acid-
ification led to8PSII values increased by 11.9 % (p < 0.05)
and 11.3 % (p < 0.05) under the LL and ML levels, but to
a value decreased by -2.3 % (p > 0.05) under the HL in the
LpH cultures compared to in the HpH culture, while NPQ
was also correspondingly higher by 6.8 % (p > 0.05), 4.6 %
(p > 0.05) and 2.6 % (p > 0.05) (Fig. 3).

The effects of the seawater acidification on the three major
non-photochemical quenching parameters of the alga were
similar (Table 2). At day 1 (generation 1) under LL, ML
and HL, the acidification increased the energy-dependent
quenching (qE) by 28.6 % (p < 0.05) under LL, 33.3 % (p <

0.05) under ML and 40.0 % (p < 0.01) under HL; the state
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Figure 4. Net photosynthesis ofP. globosacells, acclimated to ei-
ther pH8.07 or pH7.70 cultures in the corresponding irradiances to
the measurement for 3 days (nine generations), under irradiances
of (a) 25 and(b) 200 µmol photons m−2 s−1 at different pH levels
induced by different CO2aq concentrations. The data represent the
means± SD in triplicate incubations.∗ and∗∗ indicate significant
differences between the two pH levels atp < 0.05 andp < 0.01,
respectively.

transition quenching (qT) increased by 36.4 % (p < 0.05),
26.1 % (p < 0.05) and 20.0 % (p < 0.05), and the pho-
toinhibitory quenching (qI) increased by 75.0 % (p <0.05),
93.8 % (p < 0.01) and 121.8 % (p < 0.05). By day 7 (about
generation 19), when the alga had acclimated to the acidifi-
cation, qE values were higher by 77.8 % (p < 0.01), 31.3 %
(p < 0.05) and 14.3 % (p < 0.05) under LL, ML and HL,
respectively, compared to those on day 1; qT values were
higher by 13.3 % (p < 0.05), 18.8 % (p < 0.05) and 27.8 %
(p < 0.05); and qI values were lower by 14.3 % (p < 0.05),
41.9 % (p < 0.01) and 52.9 % (p < 0.01) (Table 2).

The responses of the alga to identical CO2 enrichment
(LpH) conditions were different among the different light
levels (Fig. 4). At both LL and ML, algal photosynthetic
rate initially increased with increasing CO2aq concentration.
However, it decreased with further increases in CO2aq con-
centrations above 26.3 µM or 33.3 µM for the cells grown in
the low or the high CO2, respectively, for 3 days (nine gener-
ations) (Fig. 4), with the LpH-grown cells tolerating higher
levels of CO2 (lower levels of pH).

At generation 1 after the CO2-induced acidification, the
algal photosynthetic light harvesting efficiency (α) and
maximal photosynthesis rate (Pm) of P. globosadecreased
from 0.007 mol electrons mol−1 photons and 0.360 µmol O2
(µg Chl a)−1 h−1 in the HpH culture to 0.003 mol elec-
trons mol−1 photons and 0.318 µmol O2 (µg Chla)−1 h−1 in
the LpH culture, representing decreases of 57.1 % (p < 0.01)
and 11.7 % (p < 0.05), while the light saturation point (Ik)

increased from 51.4 to 106.0 µmol photons m−2 s−1, an in-
crease of 106.2 % (p <0.01) (Table 3). After 7 days (about
19 generations) growth in LpH cultures, theα andPm values
were lower by 14.3 % (p > 0.05) and by 1.7 % (p > 0.5), re-
spectively compared to those in the HpH culture, while the
Ik was higher by 14.8 % (p > 0.05) (Table 3), reflecting an
insignificant impact of the acidification after the acclimation.
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Table 2. The energy-dependent (qE), state transition (qT) and photoinhibition quenching (qI) ofP. globosaat generation 1 and generation
19, grown in pH 7.70 culture under different irradiance levels (LL, 25; ML, 200; HL, 800 µmol photons m−2 s−1). HC and LC represent
high and low CO2, respectively. Superscripts with different letters indicate significant differences between groups. The data represent the
mean± SD (n = 3, triplicate cultures).

qE qT qI

Generation 1 LpH/HC HpH/LC LpH/HC HpH/LC LpH/HC HpH/LC
LL 0.09± 0.01a 0.07± 0.01c 0.15± 0.01g 0.11± 0.02h 0.14± 0.02q 0.08± 0.01p

ML 0.16± 0.03bdef 0.12± 0.02bd 0.16± 0.02mgk 0.13± 0.02hg 0.31± 0.03s 0.16± 0.03vq

HL 0.21± 0.03bef 0.15± 0.02bdef 0.18± 0.02k 0.15± 0.02g 0.51± 0.05t 0.23± 0.03r

Generation 19
LL 0.16± 0.01bde 0.07± 0.01c 0.17± 0.02gk 0.11± 0.02h 0.12± 0.01zq 0.09± 0.02p

ML 0.21± 0.02bef 0.13± 0.02bd 0.19± 0.03mk 0.14± 0.01hg 0.18± 0.02vq 0.15± 0.02q

HL 0.24± 0.02bf 0.16± 0.01bde 0.23± 0.04m 0.15± 0.02g 0.24± 0.03r 0.22± 0.03r

Table 3.The photosynthetic light-harvesting efficiency (α), maximum photosynthetic rate (Pm) and light saturation point (Ik), derived from
light-response curves forP. globosacells incubated in either pH 8.07 or pH 7.70 (induced by high CO2) cultures. The cells were grown in pH
8.07 culture for about 9 generations and in pH 7.70 (induced by high CO2) culture for 1 generation (G1) or 19 generations (G19) under an
irradiance of 200 µmol photons m−2 s−1 before the light-response curve was measured. Superscripts with different letters indicate significant
differences between groups. The data represent the mean± SD (n = 3, triplicate cultures).

α Pm Ik
(µmol O2 (µg Chla)−1 h−1) (µmol photons m−2 s−1)

pH 8.07 0.007± 0.001a 0.360± 0.014c 51.4± 3.66g

pH 7.70 (G1) 0.003± 0.001b 0.318± 0.019d 106.0± 4.39h

pH 7.70 (G19) 0.006± 0.001a 0.354± 0.015c 59.0± 5.41g

4 Discussion

The results of this study showed that effects of CO2-induced
acidification onPhaeocystis globosaare strongly related to
the intensity of irradiance and stage of acclimation to the
acidification. Additionally, the present study provides the
first evidence thatP. globosacan adjust to the changes in
carbonate chemistry by upregulating its photosynthetic pig-
ments and photoprotective capability with downregulated
photoinhibitory non-photochemical quenching, leading to
the acclimated cells showing a higher tipping point of CO2aq
(lower pH) where net photosynthesis leveled off.

Exposure of theP. globosacells to 1000 ppmv CO2-
induced acidification reduced its growth rate under the light
levels above 200 µmol photons m−2 s−1 but led to little ef-
fect under low light (LL, 25 µmol photons m−2 s−1) (Fig. 1).
This result is consistent with that reported by Hoogstraten et
al. (2012), but contradictory to observations, on cells grown
under high light, of Wang et al. (2010). However, after the al-
gae had acclimated to the acidification for 3 (9 generations)
and 5 (14 generations) days under LL and ML, respectively,
the enhancement of the growth rate under the high CO2aq
(LpH) level became obvious (Fig. 1), which contradicts the
findings of Wang et al. (2010) and Hoogstraten et al. (2012),
who showed that the growth rate under low light was not in-
fluenced by elevated CO2. Although these findings appear

partly inconsistent, even contradictory, they might reflect the
fact that the responses of an alga to elevated CO2 are com-
plex and involve interactions with other environmental fac-
tors, such as nutrient levels. In the present study, continuous
cultures were operated with a stable supply of nutrients.

The photochemical performance of the alga differs be-
tween cells grown under different levels of light and pH,
with the highest effective quantum yield under LL and LpH
and the highest NPQ under the HL and LpH (Fig. 3). In
theory, elevated CO2aq can result in energy savings associ-
ated with downregulation of the energy necessary to operate
CO2-concentrating mechanisms (CCM), thereby improving
algal performance under light-limited conditions, whereas
elevated CO2aq might enhance photoinhibition at light lev-
els above saturation (Gao et al., 2012b). In high-CO2-grown
cells of the diatomPhaeodactylum tricornutum, the electron
transport rate from photosystem II (PSII) was photoinhib-
ited to a greater extent than in low-CO2-grown cells under
light stress (Wu et al., 2010). The combination of exposure
to increased light and CO2 levels reduced photosynthetic car-
bon fixation of phytoplankton in the South China Sea (Gao et
al., 2012b). These observations are consistent with the CCM
serving as a sink for excessive energy (Wu et al., 2010), so its
downregulation causes stimulation of high light stress. In our
findings, however, elevated CO2aq (LpH) imposed negative
effects onP. globosagrown at either low (growth-limiting)
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or high (saturating) light levels (Fig. 3), which might be as-
sociated with the intrinsic properties of the alga. A consti-
tutive CCM, the activity of which was not affected by in-
creases in CO2aq, has been found inP. globosa(Rost et al.,
2003; Chen and Gao, 2011). Therefore, the responses ofP.
globosa’sgrowth or photosynthesis to the acidification can-
not be linked to energy costs associated with downregulation
of CCMs. The contrasting responses of the diatomPhaeo-
dactylum tricornutum(Wu et al., 2010; Gao et al., 2012b)
andP. globosa(present work) to ocean acidification reflect
highly different strategies that different taxa employ to cope
with the changes in the carbonate chemistry of seawater.

While Phaeocystis globosacells became acclimated to
the acidification, they synthesized more pigments (Fig. 2)
and performed better photochemistry (increased yield and
decreased photoinhibitory non-photochemical quenching)
(Figs. 1, 3 and Table 2), suggesting that the alga possesses
the potential to cope with the chemical changes induced by
elevated CO2 (lowed pH). The rate of acclimation to LpH,
however, appeared to depend on irradiance levels. At day 1
(1 generation), the cells grown at the LpH (high-CO2) ei-
ther under middle or high light levels all showed reduced
growth rate and quantum yield (Figs. 1, 3), whereas by day 7
(19 generations) their growth and yield became enhanced un-
der the middle and high light levels (Figs. 1, 3) compared to
those grown at HpH. Increased acidity in the ambient seawa-
ter might, to some extent, affect the intracellular acid–base
balance and hence cause a decrease in effective photochemi-
cal efficiency and an increase in NPQ (Fig. 3). During the ac-
climation, the state transition quenching (qT) of fluorescence
increased significantly (Table 2), suggesting that the ratio of
PSI to PSII activity in the algal cells increases, driving more
cyclic electron transport to produce additional ATP, which
may alleviate the stresses caused by high light to the PSII
reaction center as well as the alleviating acidification of the
stroma. While the energy-dependent quenching (qE), pho-
toinhibition quenching (qI) (Table 2) and light requirement
for saturating photosynthetic rate (Ik, Table 3) all increased
in the cells exposed to LpH at day 1, these parameters de-
clined, after 7 days acclimation to the LpH, to be comparable
to those in the HpH-grown cells. During the acclimation, qI
decreased with increases in cellular photosynthetic pigments
(Fig. 2, Table 2), supporting the notion that the increase in
tolerance of the acidification stress was associated with in-
creased light capture and use efficiency (Fig. 2, Tables 2, 3).
The time span for such acclimation was longer under high
light than in low light, reflecting the fact that growth-stressful
light levels delay the acclimation, probably due to additional
energy costs for the cells to cope with photoinhibition.

The apparent effects of CO2-induced acidification onP.
globosadepend on the balance between the positive effects
of increased CO2aq availability per se and the negative im-
pacts of simultaneous acidification. The former increases
with increases in CO2aq, whereas the latter stress (OA) is
enhanced with increasing acidification (Fig. 4). Hypotheti-

cally, when the positive effect (CO2) is balanced by the neg-
ative impact (pH and chemical changes), algal photosynthe-
sis shows an inflexion point, a tipping point, beyond which
net photosynthesis decreases progressively (Fig. 4). Elevated
pCO2 could enhance algal photosynthesis by improving CO2
supply to the active site of the carboxylating enzyme Ru-
bisco (Raven et al., 2003, 2008) or by indirect energy supply
from downregulated CCMs (Gao et al., 2012a). The acidifi-
cation, however, together with other chemical changes, could
alter periplasmic redox activity or the permeability of cellular
membranes (Sobrino et al., 2005) and perturb ion channels
across the cell membrane, therefore acting as a stressor and
increasing mitochondrial respiration (Wu et al., 2010; Yang
and Gao, 2012). The inflexion point from positive to negative
effects of elevated CO2 was affected by increases in light in-
tensity and the degree of acclimation to acidification (Fig. 4).
The tipping point was higher in cells grown under LL or LpH
compared to those grown under HL or HpH (Fig. 4).

Algal responses to OA can be species-specific (even strain-
specific) (Langer et al., 2006, 2009; Beardall et al., 2009;
Trimborn et al., 2013) and depend on multiple climate
change factors (Gao et al., 2012b). The ecological effects
of CO2-induced acidification onP. globosawill probably be
dependent on its ecological niche or ecosystem. In coastal
waters, diel pH changes with day–night pH oscillations can
expose the cells to fast pH and carbonate chemistry changes,
additional OA forcing in such ecosystem may lead to dif-
ferent responses of the alga to climate change.P. globosais
prone to be at an advantage under high pH (or low CO2aq)
conditions due to its highly efficient CCM compared to al-
gae with less active CCMs (Berry et al., 2002). While the pH
value decreases rapidly in waters due to either heavy rain-
fall, or seasonal upwelling, or eutrophication and deoxygena-
tion (Cai et al., 2011),P. globosamay experience disadvan-
tageous situations, with increases in CO2 in the atmosphere
and increased irradiance due to enhanced stratification (Boyd
and Doney 2002). This may cause a shift in the algal commu-
nity structure at different latitudes and seasons with increas-
ing pCO2 in the atmosphere. However, our data do suggest
thatP. globosahas the capability to acclimate to the expected
rise in atmospheric CO2 to 1000 ppmv by the end of the cen-
tury, so the ways in which it will be influenced ecologically,
as part of the broad algal community, in the long term remain
to be seen.

In conclusion, the red tide alga,P. globosa, was able to
increase its tolerance to lowered pH after it had acclimated
to the CO2-induced seawater acidification. Mechanistically,
the alga increased its photosynthetic and photoprotective pig-
ments and raised its energy use efficiency and excessive en-
ergy dissipation strategy. Along with its constitutive CCM
and associated energetics,P. globosawas able to increase
its competitiveness in phytoplankton communities under OA
and simultaneously increased irradiance due to enhanced
stratification.
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