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Abstract. Amino sugars are quantitatively significant con-
stituents of soil and marine sediment, but their sources and
turnover in environmental samples remain poorly under-
stood. The stable carbon isotopic composition of amino sug-
ars can provide information on the lifestyles of their source
organisms and can be monitored during incubations with la-
beled substrates to estimate the turnover rates of microbial
populations. However, until now, such investigation has been
carried out only with soil samples, partly because of the
much lower abundance of amino sugars in marine environ-
ments. We therefore optimized a procedure for compound-
specific isotopic analysis of amino sugars in marine sed-
iment, employing gas chromatography–isotope ratio mass
spectrometry. The whole procedure consisted of hydrolysis,
neutralization, enrichment, and derivatization of amino sug-
ars. Except for the derivatization step, the protocol intro-
duced negligible isotopic fractionation, and the minimum re-
quirement of amino sugar for isotopic analysis was 20 ng,
i.e., equivalent to∼ 8 ng of amino sugar carbon. Compound-
specific stable carbon isotopic analysis of amino sugars ob-
tained from marine sediment extracts indicated that glu-
cosamine and galactosamine were mainly derived from or-
ganic detritus, whereas muramic acid showed isotopic im-
prints from indigenous bacterial activities. Theδ13C anal-
ysis of amino sugars provides a valuable addition to the
biomarker-based characterization of microbial metabolism in
the deep marine biosphere, which so far has been lipid ori-
ented and biased towards the detection of archaeal signals.

1 Introduction

Amino sugars are significant sedimentary components that
are mostly derived from microorganisms and invertebrates.
For example, the four major amino sugars, glucosamine
(GlcN), galactosamine (GalN), mannosamine (ManN) and
muramic acid (MurA), accounted for up to 12 % of total
organic carbon (TOC) in grassland soils in North America
(Amelung et al., 1999) and∼ 2 % of TOC in coastal Pe-
ruvian surface sediments (Niggemann and Schubert, 2006).
Amino sugars are preserved in the form of biopolymers such
as peptidoglycan, chitin, and lipopolysaccharides. Because
of the minor contribution of amino sugars from meso- and
macro-organisms (Simpson et al., 2004), the proportion of
amino sugar-derived C in the total C pool has been used fre-
quently as a proxy for microbial contributions to soil organic
matter, and the ratios between different amino sugars have
been employed as indicators of microbial community com-
positions (e.g., Guggenberger et al., 1999; Zhang et al., 1999;
Amelung, 2001; Glaser et al., 2004). In marine environments,
amino sugars could be derived from microbes, phytoplank-
ton and animals. Prokaryotic biomass is thought to be the
major source of GlcN and GalN in marine sediment (e.g.,
Niggemann and Schubert, 2006; Langerhuus et al., 2012) and
seawater (Benner and Kaiser, 2003); however, most amino
sugars in seawater are not likely associated with peptidogly-
can (Aluwihare et al., 2005; Aluwihare and Meador, 2008).
Planktonic bacterial sources may contribute to the sedimen-
tary MurA pool, and thus may complicate the use of MurA as
a biomarker for sedimentary bacteria. Recently, the investi-
gation of amino sugars has been extended to the marine deep
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biosphere by Lomstein et al. (2012), who used MurA as a
tool for indirectly quantifying endospores in subseafloor sed-
iment.

The stable carbon isotopic composition (δ13C) of individ-
ual cellular biomarkers can reveal the carbon metabolism
and/or lifestyles of the source organisms in natural environ-
ments (e.g., Lin et al., 2010; Schubotz et al., 2011), and incu-
bations with13C-labeled substrates have been used to probe
microbial communities by tracking the production of labeled
biomarkers over time (e.g., Veuger et al., 2006; Kellermann
et al., 2012; Lin et al., 2013). The latter technique has been
widely employed in soil science to investigate the formation
and/or turnover kinetics of amino sugars (e.g., Glaser et al.,
2005; Decock et al., 2009; Bai et al., 2012). However, to date,
the isotopic composition of amino sugars in marine sediment
remains poorly explored, partly because of the much lower
concentration of amino sugars in marine sediment compared
to soil, which results in the need for an efficient pretreatment
procedure to enable precise isotopic determination.

Compound-specificδ13C analysis of amino sugars is
commonly performed via isotope ratio mass spectrometry
(IRMS) after separation of compounds by either gas chro-
matography (GC; Glaser and Gross, 2005), liquid chro-
matography (LC; Bodé et al., 2009) or, more recently, ion
chromatography (IC; Dippold et al., 2014). Compared with
LC–IRMS, the GC-based method is less sensitive to ad-
verse effects of the sample matrix on detection (McCullagh,
2010; Morrison et al., 2010; Rinne et al., 2012), and re-
quires smaller amounts of amino sugars. The accuracy and
precision of the GC-based method, though compromised by
the introduction of carbon during derivatization (Glaser and
Gross, 2005), has been shown to sufficiently resolve molec-
ular isotopic differences caused by diverse biogeochemical
processes in marine sediments (cf. Lin et al., 2010). There-
fore, we consider GC–IRMS an attractive alternative to LC–
IRMS for the isotopic analysis of amino sugars in deep ma-
rine sediments. A substantial effort has been made during
the past few decades to optimize the pretreatment proce-
dure for GC-based quantification of amino sugars, which re-
quires three major steps: acid hydrolysis, purification, and
derivatization, with hydrolysis being the key step for releas-
ing amino sugars from biopolymers. Besides the most fre-
quently used hydrolysis protocol, namely 6 M hot hydrochlo-
ric acid (HCl; Zhang and Amelung, 1996), less destructive
procedures involving either hot trifluoroacetic acid (TFA;
Neeser and Schweizer, 1984) or sulfuric acid (H2SO4; Fox
et al., 1983) have been proposed for the simultaneous ex-
traction of neutral and amino sugars. Different purification
protocols, such as neutralization with a base solution (Zhang
and Amelung, 1996), precipitation of excess acid (Cowie
and Hedges, 1984; Neeser and Schweizer, 1984), and deion-
ization of hydrolysate (Cowie and Hedges, 1984), to name
a few, have been used to reduce the content of acid and
salts that are known to interfere with amino sugar derivati-
zation. Conversion of amino sugars for GC analysis has been

achieved via derivatization into alditol acetates (AA; Fox et
al., 1983), aldononitrile acetates (ANA; Guerrant and Moss,
1984), orO–methyloxime acetates (Neeser and Schweizer,
1984). However, to perform isotopic analysis of amino sug-
ars at trace levels, a systematic evaluation of these various
methods with regard to the product recovery and pretreat-
ment reproducibility is necessary.

The goal of this study is to devise a pretreatment proto-
col for GC-based isotopic analysis of amino sugars in sub-
seafloor sediments. Since deep sediment samples are gener-
ally severely limited in size and often contain substantially
lower TOC than surface sediments, a protocol for sensitive
isotopic analysis of amino sugars in trace amounts is criti-
cal. Hence, we tackled three major analytical tasks. (1) We
systematically evaluated existing pretreatment methods for
amino sugar analysis to select the method that gave the high-
est recoveries of products from marine sediments. (2) We
introduced the use of a new type of solid-phase extraction
(SPE) into the pretreatment protocol and demonstrated en-
hanced recoveries compared with existing methods. (3) We
developed a preparative high-performance liquid chromatog-
raphy (HPLC) method to enrich amino sugars to a desired
concentration for proper isotopic assessment. We then ap-
plied our protocol to determine the stable carbon isotopic
compositions of amino sugars from the selected subseafloor
sediment samples.

2 Experimental

2.1 Standards and environmental samples

The amino sugar standards, derivatization reagents, and all
other chemicals used in this study were purchased from
Sigma-Aldrich Chemie GmbH (Munich, Germany) or Merck
KGaA (Darmstadt, Germany). The Supelclean™ ENVI-
Carb™ Plus SPE cartridges and accessories were obtained
from Sigma-Aldrich Chemie GmbH or Carl Roth GmbH
(Karlsruhe, Germany).

A batch of surface sediment for method optimization
was collected from the upper tidal flat of the Wadden
Sea near Wremen, Germany, in February 2010 (53◦38′0 N,
8◦29′30 E). In addition, four marine sediment samples of dif-
ferent types were selected for stable carbon isotopic anal-
ysis of individual amino sugars. The seep sample was re-
covered from the continental margin off Pakistan (site GeoB
12315-9, 1–2 cm below the seafloor, cmbsf) during RVMe-
teor cruise M74/3 in November 2007. It was located within
the lower part of the oxygen minimum zone and associ-
ated with dense microbial mats from sulfide-oxidizing bac-
teria (Fischer et al., 2012). Two subseafloor samples were
retrieved from the Marmara Sea (site GeoB 15104-2) and
the Black Sea (site GeoB 15105-2) during RVMeteorcruise
M84/1 (DARCSEAS) in February 2011 (Zabel et al., 2013).
The sample from the Marmara Sea was collected at 2.88 mbsf
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and was located in a sapropel layer deposited under suboxic
bottom-water conditions (Çağatay et al., 2000). The Black
Sea sample was collected at 1.57 mbsf, where the sediment
was highly diluted by terrigenous components and showed
a lack of bioturbation. The deepest sediment sample was re-
covered from the Peru Margin (Ocean Drilling Program leg
201, 1229A-3H-2, 16.6 mbsf), and had a high TOC content
(3.8 %).

2.2 Hydrolysis tests

Hydrolysis tests were performed in triplicate in 40 ml glass
tubes by adding different acids to∼ 5 g of freeze-dried Wad-
den Sea sediment. The tubes were filled with nitrogen before
being sealed with Teflon-coated screw caps to prevent oxi-
dation of sugars at high temperature during hydrolysis. The
evaluated hydrolytic conditions were as follows.

1. The sample was kept at room temperature for 2 h af-
ter the addition of 12 M H2SO4, followed by dilution to
1.2 M H2SO4 and heating at 105◦C for 3 h (modified
from Cowie and Hedges, 1984).

2. The sample was hydrolyzed with 4 M TFA at 105◦C for
4 h (Amelung et al., 1996).

3. The sample was treated with 6 M HCl at 105◦C for 8 h
(Zhang and Amelung, 1996).

After hydrolysis, the samples were cooled to room tempera-
ture, spiked with 100 µg of myo-inositol as an internal stan-
dard, and centrifuged at 800 ×g for 5 min. After being passed
through combusted glass microfiber filters (GF/F, 70 mm8,
Whatman™), the hydrolysates obtained from treatments (2)
and (3) were evaporated to dryness with a rotary evapora-
tor (45◦C, under vacuum) and re-dissolved in 4 ml of MilliQ
water.

2.3 Neutralization and desalting

Samples hydrolyzed with H2SO4 were neutralized by adding
finely ground barium hydroxide (Ba(OH)2; Cowie and
Hedges, 1984), whereas TFA-treated samples were freeze-
dried overnight to remove the acid. Hydrolysates liberated
with HCl were initially subjected to the procedure described
by Zhang and Amelung (1996), with slight modification. The
acidic solution was adjusted to pH 6.5–7.0 with 1 M potas-
sium hydroxide (KOH) and centrifuged to remove the precip-
itates. The supernatant was evaporated to dryness under N2,
the condensates were re-dissolved in 2 ml methanol (MeOH),
and amino sugars were collected in the supernatant after cen-
trifugation. Because treatments with HCl gave the best re-
coveries (see below), we went on to explore other neutraliza-
tion and desalting methods that are compatible with HCl. A
standard mixture containing 20 µg of each amino sugar was
treated with 1 ml of 6 M HCl, and the following three meth-
ods were performed in triplicate to compare the yields with
those of Zhang and Amelung (1996).

1. Silver carbonate (Ag2CO3) was added gradually to
the mixture to neutralize the HCl. The silver chloride
(AgCl) precipitate was removed by centrifugation (cf.
Neeser and Schweizer, 1984).

2. After neutralization with a 1 M KOH solution, the mix-
ture was desalted by percolating the solution through a
glass column filled with 3 g of pre-conditioned Dowex
50WX8 cation exchange resin (100–200 mesh, H+

form), as described by Amelung et al. (1996). The col-
umn was washed with 10 ml of MilliQ water to remove
excess salts, and amino sugars were subsequently eluted
with 10 ml of 2 M ammonium hydroxide (NH4OH).

3. We evaluated for the first time the applicability of
Supelclean™ ENVI-Carb™ Plus SPE cartridges in car-
bohydrate analysis. ENVI-Carb™ Plus is a microporous
amorphous carbon molecular sieve developed for the
extraction of highly polar compounds from water. Its
predecessor, Supelclean™ ENVI-Carb™, has been used
to extract oligosaccharides in aqueous samples (Itoh
et al., 2002). Prior to use, the SPE cartridge was pre-
conditioned sequentially with 10 ml methylene chloride
(DCM), 20 ml MeOH, and 15 ml MilliQ water. The hy-
drolysate containing amino sugars was neutralized with
1 M KOH and desalted by pulling through the SPE car-
tridge coupled with an SPE manifold (Carl Roth GmbH,
Karlsruhe, Germany) under vacuum. The SPE cartridge
was then dried for 10 min and eluted under vacuum in
the reversed direction with 5 ml MeOH, followed by
5 ml DCM/MeOH (1: 1,v : v) to recover the amino sug-
ars.

All the desalted products were evaporated under a stream
of N2, lyophilized overnight, and converted to GC-amenable
derivatives for analysis. Quantities and recoveries of individ-
ual amino sugars were determined via calibration curves that
were generated from pure standards. The Wadden Sea sedi-
ment was also used to assess the efficiencies of the neutral-
ization and desalting methods for environmental samples.

2.4 Derivatization and purification

Amino sugar standards were transformed to alditol acetate
(AA) or aldononitrile acetate (ANA) derivatives in tripli-
cate following the methods of Fox et al. (1983) or Guer-
rant and Moss (1984), respectively. After being converted
to ANA derivatives, amino sugars extracted from the envi-
ronmental samples were further purified with a self-packed
silica gel column (0.5 g; Kieselgel, 0.06–0.2 mm; Carl Roth
GmbH, Karlsruhe, Germany; cf. Lin et al., 2010). The best
recovery (> 95 % of each amino sugar as an ANA deriva-
tive) was achieved by elution with 8 ml hexane/ethyl acetate
(1 : 4,v : v). The eluent was evaporated to dryness under a N2
stream and re-dissolved in hexane/ethyl acetate (1: 1, v : v)
prior to analysis.
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2.5 Preparation of amino sugar-enriched fractions by
preparative HPLC

For samples containing low concentrations of amino sug-
ars and/or elevated sedimentary matrices, amino sugar ex-
tracts were separated and enriched via preparative HPLC.
A mixture of amino sugar standards and desalted hy-
drolysate of the Wadden Sea sediment sample were em-
ployed to develop the preparation protocol. The sam-
ple was re-dissolved in acetonitrile (ACN)/ H2O (7 : 3,
v : v) prior to injection. The flow rate was 1 ml min−1,
and the eluent gradient ramped steadily from 100 % elu-
ent A to 100 % eluent B over 15 min, then held at
100 % eluent B for 15 min, followed by 10 min re-
equilibration with 100 % eluent A. Eluent A was composed
of ACN / H2O/ NH4OH/ formic acid (90: 10 : 0.1 : 0.2, v :

v : v : v); eluent B was ACN/ H2O/ NH4OH/ formic acid
(30 : 70 : 0.1 : 0.2, v : v : v : v). Amino sugars were there-
after separated into two fractions, the first (F1; 5.0–7.6 min)
containing the three basic amino sugars, and the second (F2;
7.6–9.6 min) MurA. Fractions collected during preparative
HPLC were evaporated to dryness and converted to GC-
amenable derivatives to monitor separation efficiency and the
isotopic fractionation effect. With this method, we also ob-
tained the ManN-free and MurA-free sedimentary matrices
(i.e., F2 and F1, respectively), which were used to determine
the accessible amino sugar concentrations for isotopic anal-
ysis (see below).

2.6 Accessible amino sugar concentrations for
GC–IRMS analysis

To determine the accessible concentration range of amino
sugars for compound-specificδ13C analysis, 10–140 ng of
the two minor amino sugars found in natural marine envi-
ronments (i.e., ManN and MurA) were converted to ANA
derivatives and injected as pure standards into the GC–IRMS
in triplicate. Additionally, pure ManN or MurA was spiked
to the ManN-free or MurA-free sedimentary matrix, to vali-
date theδ13C values for realistic conditions. These sedimen-
tary matrices were obtained from the preparative HPLC sep-
aration of the Peru Margin sample. Monitored by GC-mass
spectrometry (MS) in selective ion monitoring (SIM) mode,
the concentration of the corresponding analyte in the matrix
was below the detection limit (< 0.05 ng on column).

2.7 Instrumentation

Quantification of amino sugars was accomplished using an
Agilent 6890N GC instrument coupled to an Agilent 5973
inert Mass Selective Detector (MSD) with an electron im-
pact (EI) source, whereas compound-specific isotopic analy-
sis of amino sugars was performed with a Trace GC Ultra
instrument coupled to a Delta Plus XP isotope ratio mass
spectrometer via Combustion Interface III (Thermo Finni-

gan MAT GmbH, Bremen, Germany). Two columns with dif-
ferent polarities, an Optima 17MS column (30 m × 0.25 mm,
0.25 µm film thickness; Macherey-Nagel GmbH & Co. KG,
Düren, Germany) and an Rxi-5ms column (30 m × 0.25 mm,
0.25 µm film thickness; Restek GmbH, Bad Homburg, Ger-
many), were applied to optimize the separation of sugar
derivatives.

The ANA method produced the most stable derivatives and
satisfying results (see below); the corresponding GC opera-
tion conditions were specified here in detail. Separation of
ANA derivatives in the Optima 17MS column was modi-
fied from Glaser and Gross (2005). The injector temperature
was 250◦C, and helium was used as a carrier gas at a con-
stant flow rate of 1 ml min−1. The GC temperature program
was initiated at 80◦C and held for 4 min, then increased to
250◦C at 30◦C min−1 and held for 10 min, and finally raised
to 280◦C at 3◦C min−1 and held for 5 min. The GC param-
eters for the Rxi-5ms column were as follows: injector tem-
perature, 250◦C; carrier gas, helium; flow rate, 1.1 ml min−1.
The oven temperature was kept at 70◦C for 1 min, ramped
up to 230◦C at 20◦C min−1, held for 20 min, and further in-
creased at 20◦C min−1 to 300◦C and held for 5 min. The
mass spectrometer was programmed in SIM mode to target
specific mass fragment ions of the derivatives for quantifi-
cation. The selected ions werem/z 187 and 289 for GlcN,
GalN and ManN, andm/z 236 and 356 for MurA.

Separation and detection of amino sugars were achieved
with an Agilent 6130 MSD single quadrupole mass spec-
trometer coupled to an Agilent 1200 Series HPLC sys-
tem via a multimode ion source in electrospray ionization
mode (Agilent Technologies Deutschland GmbH, Böblin-
gen, Germany) equipped with an Econosphere NH2 column
(250 mm × 4.6 mm, 5 mm particle size; Alltech Associates
Inc., Deerfield, IL, USA).

Stable carbon isotopic compositions of the pure amino
sugars, internal standards and the acetylation reagent were
determined independently by a Flash 2000 organic elemen-
tal analyzer coupled to a Delta V Plus isotope ratio mass
spectrometer (EA–IRMS) via a ConFlo IV interface (Thermo
Finnigan MAT GmbH). The EA–IRMS was operated in C,
N mode and controlled by the Finnigan Isodat 3.0 software.
The oxidation and reduction reactors were heated to 999◦C
and 680◦C, respectively. Helium was used as a carrier gas
at a flow rate of 100 ml min−1, while the oxidation reagent
oxygen had a flow rate of 200 ml min−1. The CO2 reference
gas pulse was introduced two times (20 s each) at the begin-
ning of each run. Quadruplicate measurements by EA–IRMS
generated highly accurateδ13C values of each compound.

2.8 Calculations

Isotopic compositions were expressed using theδ notation:
δ13C= (Rsample/Rstandard−1) × 1000 ‰, withR =

13C/ 12C
andRstandard= 0.011180 ± 0.0000028; the reference standard
was Vienna Pee Dee Belemnite. We determined the isotopic
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Table 1.Amino sugars liberated from surface sediment by different hydrolytic procedures. The sample used in this test was collected from
the Wadden Sea. All the amino sugars were quantified by GC-MS in SIM mode and are shown as concentration ± standard deviation (n = 3);
the ions selected for detection werem/z 187 and 289 for GlcN, GalN and ManN, andm/z 236 and 356 for MurA.

Hydrolysis and neutralization methods Reference GlcN GalN ManN MurA
(µg g−1 dw) (µg g−1 dw) (µg g−1 dw) (µg g−1 dw)

12 M H2SO4 – 1.2 M H2SO4; Ba(OH)2 Cowie and Hedges (1984) 8.8 ± 1.1 4.7 ± 0.8 0.7 ± 0.1 0.1 ± 0.2
4 M TFA; 105◦C, 4 h; evaporation Amelung et al. (1996) 1.2 ± 0.1 1.0 ± 0.4 0.3 ± 0.5 0.2 ± 0.1
6 M HCl; 105◦C, 8 h; KOH – MeOH Zhang and Amelung (1996) 17.6 ± 0.8 15.7 ± 0.6 1.5 ± 0.2 0.5 ± 0.2
6 M HCl; 105◦C, 8 h; KOH – SPE This study 34.8 ± 0.3 26.0 ± 0.7 2.2 ± 0.3 0.7 ± 0.02

Abbreviations: GlcN, glucosamine; GalN, galactosamine; ManN, mannosamine; MurA, muramic acid.

Table 2. Recoveries and standard deviations of HCl-treated amino sugar standards after different neutralization and desalting procedures
(n = 3).

Methods Reference GlcN (%) GalN (%) ManN (%) MurA (%)

KOH – MeOH Zhang and Amelung (1996) 95.4 ± 4.7 86.5 ± 4.2 77.3 ± 9.6 97.8 ± 10.7
Ag2CO3 Neeser and Schweizer (1984) 26.4 ± 6.7 12.0 ± 1.0 82.8 ± 6.4 7.0 ± 0.6

Dowex 50WX8 H2O Amelung et al. (1996) 7.0 ± 1.5 8.7 ± 1.9 8.5 ± 1.8 7.1 ± 0.2
Dowex 50WX8 NH4OH Amelung et al. (1996) 104.5 ± 29.9 63.7 ± 23.9 71.6 ± 23.7 107.7 ± 28.5

KOH – SPE Our proposed method 103.6 ± 6.6 92.7 ± 5.5 89.4 ± 4.9 95.0 ± 2.4

values only for ANA derivatives of amino sugars, which
exhibited the highest yields. Theδ13C values and the cor-
responding standard deviations (sTotal) of individual amino
sugars were calculated following the procedure described by
Glaser and Gross (2005), with a slight modification. 3-O-
methyl-D-glucopyranose (3-O-Me-Glc) was applied as an
internal standard to correct the isotopic fractionation that is
known to occur during acetylation of the hydroxyl groups
(Lin et al., 2010). A compound-specific factorF to cor-
rect for fractionation during derivatization was introduced by
Glaser and Gross (2005, Eq. 1).

F = δ13CDer× NDer− δ13CAS × NAS

−δ13CAcet× NAcet, (1)

whereN is the number of C atoms of the amino sugar deriva-
tive (NDer), the original amino sugar (NAS), and the acetyl
group (NAcet) of acetic anhydride used for derivatization. We
determined theF factor experimentally using ANA deriva-
tives of seven external standard solutions in the concentration
range of 1–20 µg per batch for ManN and MurA, and 1–60 µg
per batch for the other standards.

3 Results and discussion

3.1 Hydrolytic conditions for releasing amino sugar
monomers

Table 1 summarizes the results of the hydrolysis tests. Hy-
drolysis with 6 M HCl provided the highest recoveries of

amino sugars from the Wadden Sea surface sediment sam-
ple, followed by H2SO4 and TFA. GlcN and GalN were the
most abundant amino sugars, with concentrations being one
order of magnitude higher than those of ManN and MurA.
Based on these results, further work aimed to optimize the
neutralization and desalting steps that followed the hot HCl
treatment. We observed that the HCl method yielded lower
recoveries of neutral sugars compared with the other two pro-
tocols (data not shown), a result in agreement with the pre-
vious finding of Amelung et al. (1996), and suggesting the
occurrence of a dehydration reaction between HCl and the
monosaccharides.

3.2 Comparison of neutralization and desalting
methods after hydrolysis by HCl

Recoveries of amino sugar standards ranged from 77 to
98 % using the procedure proposed by Zhang and Amelung
(1996), i.e., neutralization with 1 M KOH and desalting with
MeOH (Table 2). We did not observe significant differences
in amino sugar recoveries using standard compounds after
employing either the ENVI-Carb™ Plus SPE cartridge or the
method described by Zhang and Amelung (1996). However,
for the surface sediment sample, recoveries using the former
method exceeded those of the latter by factors of 1.5 to 2 (Ta-
ble 1), suggesting that the SPE method is less sensitive to the
presence of sedimentary matrices. Moreover, we noted that
the SPE cartridge allowed for excellent recoveries of neutral
hexoses such as glucose, galactose, and mannose (data not
shown).
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Table 3. Recoveries andδ13C values of amino sugar standards after separation by preparative HPLC. Standard deviations of GC–IRMS
measurements (sGC) are reported for individual amino sugars, and the total analytical error ofδ13C values (sTotal) was calculated according
to error propagation (n = 3).

Fraction Amino sugars Recovery (%)
GC–IRMS

δ13CAS, GC (‰ ) sGC (‰) sTotal (‰)

1
GlcN 86.6 ± 1.5 −20.6 0.26 1.57
GalN 113.8 ± 3.0 −20.1 0.36 1.73
ManN 70.8 ± 2.8 −19.8 0.75 1.44

2 MurA 105.8 ± 6.7 −20.9 0.35 1.02

The other two methods tested in this study yielded less
satisfying results. Ag2CO3 reacts with HCl to form CO2 and
AgCl, which has very low solubility in water and eliminates
the need for a desalting step. However, with the exception
of ManN, major losses of amino sugars were observed (Ta-
ble 2), presumably owing to interactions between amino sug-
ars and the AgCl–Ag2CO3 mixture. Cation exchange using
the Dowex 50WX8 cation exchange resin allows for the sepa-
ration of amino sugars (in the NH4OH fraction) from neutral
sugars (in the H2O fraction). Recoveries of amino sugars by
this method were highly variable (Table 2), partly because of
the incomplete evaporation of NH4OH, which might affect
the efficiency of ANA derivatization. Nevertheless, further
evaluation should be performed in future work using a re-
cently optimized cation exchange-based procedure (Indorf et
al., 2013).

3.3 Derivatization of amino sugars

Although the AA derivatization method has been employed
previously to investigate amino sugars (Fox et al., 1995,
1996), it was rather time consuming (∼ 1 d; cf. Fox et al.,
1983), and the derivative of MurA exhibited poor stability
compared with the corresponding basic amino sugar deriva-
tives (data not shown). The addition ofN -methylimidazole
as a catalyst helped to accelerate the acetylation of basic
amino sugars, but it failed to produce an appreciable signal
peak for the MurA derivative (Whiton et al., 1985). By con-
trast, the acetylation time of the ANA derivatization method
was reasonably low (20 min), and the derivatives remained
stable at−20◦C for up to 1 yr, as confirmed by repeated
injections of amino sugar ANA derivatives over the course
of 12 months (data not shown). Such long-term stability of
derivatives is essential for isotope determination. Each amino
sugar, including MurA, yielded a single, well-resolved chro-
matographic peak during GC analysis, with either an Rxi-
5ms or an Optima 17MS column, when the injected amount
was less than 120 ng per amino sugar. We therefore con-
cluded that the ANA method was superior to the AA ap-
proach for GC-based analysis of amino sugars, and subse-
quently implemented this step in our method optimization.
Like Glaser and Gross (2005), we also noted that the elu-

tion order of ANA derivatives differed between the two GC
columns (Fig. 1a, b). The availability of two alternative sep-
arations was advantageous for determining theδ13C values
of the minor components, which co-eluted with major peaks
when using the Optima 17MS column, but were separable
when using the Rxi-5ms column for environmental samples.
However, additional samples with different matrix effects
should be tested to determine the column type with the best
peak separation.

3.4 Performance of the preparative HPLC procedure

MurA was the primary target compound when developing
the preparative HPLC protocol, because it serves as a specific
biomarker for bacteria, but is typically low in abundance in
subseafloor sediments (Fig. 1c). ManN, another minor amino
sugar, could not be isolated from GlcN and GalN using this
approach. Nevertheless, preparative HPLC was beneficial for
isotopic analysis of ManN, due to partial removal of the sam-
ple matrix, which allowed us to concentrate the sample into a
small volume for GC injection. We observed minimal losses
of GalN and MurA after preparative HPLC, but recoveries of
GlcN and ManN were only 87 and 71 %, respectively (Ta-
ble 3). The F2 and waste fractions contained less than 1 %
of the original GlcN and ManN, suggesting that GlcN and
ManN were either lost via preferential adsorption in the col-
umn, or that derivatization of these two amino sugars was
hampered by the presence of ammonium formate originating
from the HPLC eluents.

3.5 Summary of the protocol and isotope data
assessment

Figure 2 summarizes the optimized pretreatment procedure.
In brief, amino sugars are released from marine sediments by
hot HCl. The hydrolysate then undergoes a series of purifica-
tion steps, including filtration with combusted glass fiber fil-
ters, evaporation under vacuum, neutralization with a KOH
solution, and desalting with a ENVI-Carb™ Plus SPE car-
tridge. After freeze-drying overnight, amino sugars in the
extract are transformed to ANA derivatives, and further puri-
fied by a self-packed silica gel column. The recoveries of the
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Figure 1. GC–IRMS chromatograms of a standard mixture containing 100 ng of each amino sugar separated by an Rxi-5ms column(a) and
an Optima 17MS column(b), respectively, and a marine sediment sample from the Peru Margin separated by an Optima 17MS column(c).
Key to peak numbers: aldononitrile derivatives of 3-O-methyl-D-glucopyranose (internal standard) (1), myo-inositol (2), glucosamine (3),
mannosamine (4), galactosamine (5), muramic acid (6), unknown compounds (7) and reference CO2 gas (8).

whole procedure, estimated from parallel tests (n = 3) us-
ing a mixture of amino sugar standards, were 111.6 ± 1.9 %,
95.0 ± 9.2 %, 47.0 ± 3.8 % and 102.5 ± 2.6 % for GlcN, GalN,
ManN, and MurA, respectively. The lower recovery of ManN
may result from successive preferential losses during each
step and is probably related to its steric structure, but the un-
derlying mechanism is not yet fully understood.

It is established that derivatization with acetic anhydride to
ANA derivatives is associated with an isotope effect (Glaser
and Gross, 2005; Decock et al., 2009); this effect can be cor-
rected with the use of a derivatization standard such as 3-
O-Me-Glc (e.g., Lin et al., 2010). After processing authentic
amino sugar standards using our proposed preparation proce-
dure (Fig. 2), and correcting for the isotope effect, theδ13C
values measured by GC–IRMS (δ13CAS, GC) were in good

agreement with those obtained by EA–IRMS (δ13CAS, EA;
Table 4), indicating negligible isotopic fractionation during
the other sample pretreatment steps. The standard deviations
of repeated injections for GC–IRMS were less than 1 ‰, but
the total errors were up to 1.4 ‰, i.e., about 1 ‰ greater than
those reported for the HPLC-based method developed for
soils (Bodé et al., 2009). The total errors, which are derived
from the addition of C atoms and fractionation during deriva-
tization, impose constraints on the isotopic resolving power
of our method, and should be taken into account during data
interpretation. Despite this disadvantage, the much lower re-
quirement of C (see below) renders the GC-based method
an attractive avenue for the analysis of amino sugars in trace
amounts.
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Table 4.δ13C values of amino sugar standards analyzed by EA–IRMS (δ13CAS, EA) or according to the pretreatment procedure described in
Fig. 2 prior to GC–IRMS analysis (δ13CAS, GC). sEA andsGC stand for standard deviations of EA– or GC–IRMS measurements, respectively.
sTotal is the total analytical error ofδ13C values of individual amino sugars calculated according to the error propagation (n = 3).

EA–IRMS GC–IRMS

Compounds Pure standard Hydrolyzed standard

δ13CAS, EA (‰) sEA (‰) δ13CAS, GC (‰) sGC (‰) sTotal (‰)

3-O-Me-Glc −21.62 0.02 −21.6 0.32 0.95
Ino −30.25 0.02 −29.2 0.65 1.54
GlcN −20.02 0.03 −19.9 0.41 1.34
GalN −20.06 0.02 −20.1 0.29 1.36
ManN −20.32 0.05 −20.1 0.98 1.32
MurA −20.77 0.02 −20.8 0.30 0.84
Acetic anhydride −38.55 0.03 – – –

Figure 2.Schematic of the optimized procedure for isotope analysis
of amino sugars. Each step has been validated and/or optimized in
this study.

For samples that exhibited low signals of MurA and/or
ManN due to the high background generated by the sedimen-
tary matrix or a high abundance in the adjacent peak of GalN
(i.e., the Peru Margin sample), amino sugar extracts were
separated into two fractions (i.e., basic amino sugar fraction
and MurA fraction) via the preparative HPLC procedure de-
scribed above (Fig. 2), which could be further concentrated
for GC–IRMS analysis. Tests using authentic amino sugar
standards confirmed that this additional step did not intro-
duce significant isotopic fractionation, as theδ13C values
(Table 3) deviated from those obtained by EA–IRMS (Ta-
ble 4) by less than 0.6 ‰.

Theδ13C values of ANA derivatives of ManN and MurA
were consistent with the EA–IRMS reference values within
the range of 20 to 140 ng per injection, i.e., equivalent to∼ 8–
56 ng of amino sugar carbon (Fig. 3), regardless of the pres-

Figure 3. Stable carbon isotopic analysis of ManN(a) and
MurA (b) in a range from 20 to 140 ng. Open circles represent the
δ13CAS, GC values of pure standards. Solid squares designate the
δ13CAS, GC values of the same standards spiked into sediment ex-
tract that did not contain the corresponding amino sugar. The dashed
lines are the isotopic values of ManN and MurA determined by EA–
IRMS, respectively (n = 3). The error bars represent the total ana-
lytical errors.

ence of a sedimentary matrix; we note that these two amino
sugars are usually expected to have the lowest concentration
in environmental samples (e.g., Guggenberger et al., 1999;
Niggemann and Schubert, 2006; Carsten et al., 2012). At in-
jected quantities below 20 ng, the peak height of the respec-
tive compound was usually below 100 mV, which precluded
proper determination of the isotopic composition. The mini-
mum threshold of 20 ng of amino sugar on GC–IRMS is one
order of magnitude lower than the values reported for HPLC–
IRMS (Bodé et al., 2009), and enables the isotopic analysis
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Figure 4.Concentrations and stable carbon isotopic values of amino sugars released from selected marine sediment samples. The depositional
settings of the sediment samples are indicated in parentheses. Error bars indicate the total analytical errors (sTotal) of δ13C values of individual
amino sugars calculated according to error propagation. The isotopic values of dissolved inorganic carbon (DIC) and total organic carbon
(TOC) are also plotted for comparison.

of amino sugars at trace levels, as required by their low abun-
dances in subseafloor sediment.

3.6 Abundance and isotopic composition of individual
amino sugars in marine sediment

Figure 4 summarizes the concentrations andδ13C values of
individual amino sugars from four marine sediment samples
determined according to the protocol described in Fig. 2.
GlcN, accounting for 43.7–63.0 % of the total amino sug-
ars, was the most abundant amino sugar in all the investi-
gated samples, followed by GalN (29.0–39.7 %) and ManN
(4.4–12.4 %), while MurA was always less than 5 %. The
δ13C values of GlcN and GalN were similar, and fell be-
tweenδ13CTOC andδ13CDIC in sediment collected from the
Black Sea, the Marmara Sea, and the Peru Margin. In the cold
seep sample from the Pakistan Margin, GalN was depleted
in 13C by 9 ‰ compared to GlcN. This sample was collected
from a microbial mat composed of anaerobic methanotrophic
archaea (ANME) group 2 and associated bacterial partners
(Yoshinaga et al., 2012). These organisms were likely the
predominant sources of TOC in the seep sample, which also
exhibited the lowestδ13CTOC (−40.0 ‰). ManN exhibited
δ13C values ranging from−31.5 to−10.9 ‰, and showed

no consistent trend relative toδ13CTOC and δ13CDIC, or to
the other amino sugars. MurA spanned the widest range in
δ13C (from−46.0 to−13.6 ‰), and was more depleted than
δ13CTOC in the Pakistan Margin, Black Sea, and Peru Margin
samples.

GlcN and GalN are typically the major amino sugars
found in sediment and preserved in the form of peptido-
glycan, lipopolysaccharides, and pseudopeptidoglycan from
prokaryotes (Schleifer and Kandler, 1972; Kandler et al.,
1998; Madigan and Martinko, 2005). Moreover, GlcN has
also been detected in most fungal cell walls and inverte-
brate exoskeletons as chitin (Müller et al., 1986; Liang et
al., 2007; Davis et al., 2009). It is generally believed that
the basic amino sugars persist after cell death, and are sta-
ble in soils (Glaser et al., 2004). Assuming a similar behav-
ior in marine sediment, these amino sugars are likely de-
rived from a diverse assemblage of pelagic and sedimentary
organisms, and have been preserved in the sediment. The
lack of a significant discrepancy between theδ13C values of
GlcN and GalN (usually < 3.5 ‰) implies a common, likely
allochthonous source in the Black Sea, Marmara Sea, and
Peru Margin sediments. The distinct isotopic compositions of
GlcN (−28.2 ‰) and GalN (−37.2 ‰) in the Pakistan Mar-
gin cold seep sample can be explained best by an increasing
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fraction of these amino sugars from autochthonous microbes
that utilize13C-depleted carbon for biosynthesis, as is known
from other biomolecules at similar sites (e.g., Lin et al., 2010;
Schubotz et al., 2011). Further application of this method to
define the heterogeneity ofδ13C signatures of individual hex-
osamines in the downcore sediment profiles will help addi-
tionally to examine microbial activity in specific sediment
horizons.

In contrast to the basic amino sugars with their diverse
origins, MurA is a diagnostic bacterial biomarker, because
it is exclusively derived from peptidoglycan in bacterial cell
walls (Schleifer and Kandler, 1972), and is presumed to de-
grade rapidly after cell death (Moriarty, 1977). The relatively
high abundance of MurA (4.2 % of total amino sugars) and its
strong13C depletion (δ13C of −46.0 ‰) in the Pakistan Mar-
gin sample are consistent with our expectations of cold seep
sediment that hosts microbial biomass fueled by methane
(Hinrichs et al., 1999). Likewise, the13C-depleted MurA in
the Black Sea sample is probably an indigenous signal re-
sulting from bacteria that utilize relatively13C-depleted car-
bon at this depth (1.57 mbsf), which is close to the sulfate–
methane transition zone, based on this site’s methane profile
(Zabel et al., 2013). Although compound-specific isotopic
analysis of amino sugars is more demanding than that of
membrane lipids, these observations of putative indigenous
bacterial signals in the form of MurA make this compound a
valuable biomarker target for the isotopic analysis of micro-
bial biomass in the deep marine biosphere, which so far has
been based on lipids and intact cells, and biased towards de-
tection of signals of the Archaea (cf. Biddle et al., 2006). The
combined analysis of hydrolysable sugar-derived biomarkers
with lipid biomarkers, with each group derived from different
biosynthetic pathways and representing different preserva-
tion mechanisms, holds great potential for providing a more
balanced view for the study of microbial life in subseafloor
sediments.

4 Conclusion

Methods for the carbon isotopic analysis of amino sugars
have been developed for soils, but not for marine sediments,
where amino sugar concentrations tend to be lower. We tested
various steps in the workflow of amino sugar analysis in or-
der to establish a robust protocol for the stable carbon iso-
topic analysis of amino sugars in marine sediments. A com-
bination of the most effective steps, including a new SPE pro-
tocol for the post-hydrolysis clean-up and a new step for en-
richment of amino sugars via preparative HPLC, resulted in a
protocol optimized for GC-based isotopic analysis of amino
sugars at trace levels (the limit of detection is 20 ng, equiv-
alent to∼ 8 ng of amino sugar C). The conversion of amino
sugars to ANA derivatives results in GC-amenable analytes
that have long-term stability and are suitable for isotopic
analysis. Moreover, use of the protocol did not introduce sig-

nificant isotopic fractionation during sample preparation, ex-
cept for the derivatization step, which can be accounted for
with a derivatization standard. Applying this protocol, we de-
termined for the first time the carbon isotopic composition of
amino sugars in marine sediment samples. The stable car-
bon isotopic values of basic amino sugars indicated a major
contribution from organic detritus, whereas MurA was more
sensitive to an indigenous and active bacterial community.
This method thus enables investigation of the stable carbon
isotopic compositions of amino sugars, and provides a valu-
able addition to the lipid-based characterization of microbial
metabolism in the deep marine biosphere.
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