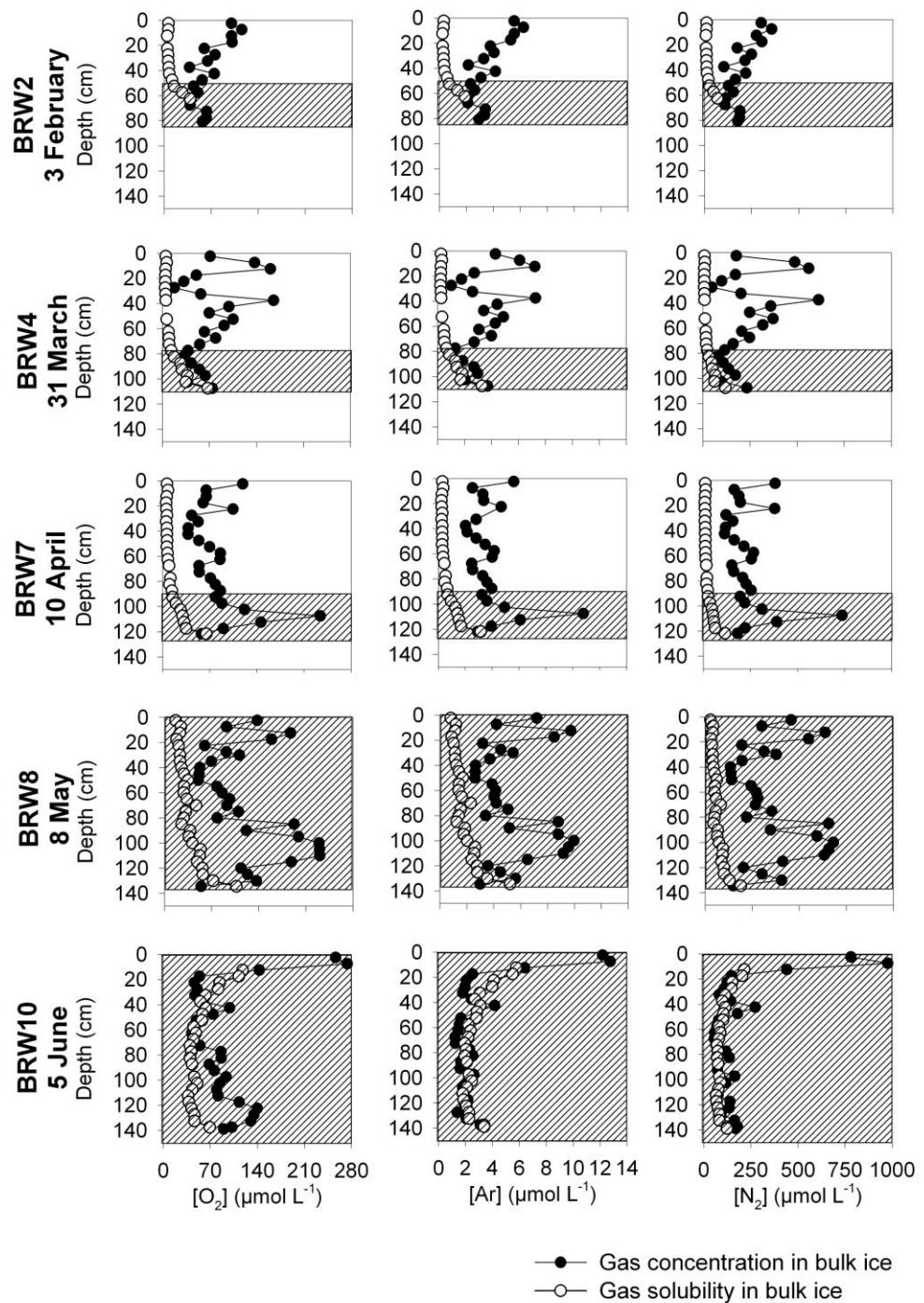


Supplement of

Insights into oxygen transport and net community production in sea ice from oxygen, nitrogen and argon concentrations

J. Zhou et al.

Correspondence to: J. Zhou (jiayzhou@ulb.ac.be)


1 **Supplementary material S1**

2 *Estimate of bias on O₂ concentrations due to diel O₂ production/respiration*

3 Since the ice cores were not always sampled at the same time of the day, but between 11AM
4 and 3PM, we estimated the potential bias on the measured O₂ concentrations as following:
5 According to the incubation experiments of Mar Fernández Méndez (https://www.mpi-bremen.de/Binaries/Binary16430/M.Sc._Thesis_Mar_Fern%C3%A1ndez.pdf, p.27), the net
6 primary production (NPP) of *F. cylindrus* (a typical cold-water species that can be found in
7 Arctic and Antarctic seawater and sea ice) was 1.73 $\mu\text{mol O}_2 \text{ L}_{\text{incubation water}}^{-1} \text{ h}^{-1}$. Assuming a
8 12 hours of daylight, we may expect a NPP of 20.76 $\mu\text{mol O}_2 \text{ L}_{\text{brine}}^{-1} \text{ d}^{-1}$ in the field. Because
9 brine volume fraction approach 20 % in the bottom of the ice where the highest chlorophyll-a
10 concentrations was observed (Figure 3), we may expect a NPP of 20.76 * 20 % $\mu\text{mol O}_2 \text{ L}_{\text{ice}}^{-1}$
11 d^{-1} , hence 4.15 $\mu\text{mol O}_2 \text{ L}_{\text{ice}}^{-1} \text{ d}^{-1}$. This accounts for 3 to 6 % of the mean O₂ concentrations in
12 bulk ice (ranging from 67.4 to 122.4 $\mu\text{mol O}_2 \text{ L}_{\text{ice}}^{-1}$).
13

14

1 **Supplementary material S2**

2

3 Gas concentrations in bulk ice (black dots) compared to their solubility in ice (white dots).
 4 From left to right, O_2 , Ar and N_2 concentrations. The dashed areas refer to ice layers with
 5 brine volume fraction above 5 %.