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Abstract. In this study we evaluate a methodology for disag-
gregating land surface energy fluxes estimated with the Two-
Source Energy Balance (TSEB)-based Dual-Temperature
Difference (DTD) model which uses day and night polar
orbiting satellite observations of land surface temperature
(LST) as a remotely sensed input. The DTD model is run
with MODIS input data at a spatial resolution of around
1 km while the disaggregation uses Landsat observations
to produce fluxes at a nominal spatial resolution of 30 m.
The higher-resolution modelled fluxes can be directly com-
pared against eddy covariance (EC)-based flux tower mea-
surements to ensure more accurate model validation and also
provide a better visualization of the fluxes’ spatial patterns
in heterogeneous areas allowing for development of, for ex-
ample, more efficient irrigation practices. The disaggrega-
tion technique is evaluated in an area covered by the Danish
Hydrological Observatory (HOBE), in the west of the Jut-
land peninsula, and the modelled fluxes are compared against
measurements from two flux towers: the first one in a het-
erogeneous agricultural landscape and the second one in a
homogeneous conifer plantation. The results indicate that
the coarse-resolution DTD fluxes disaggregated at Landsat
scale have greatly improved accuracy as compared to high-
resolution fluxes derived directly with Landsat data without
the disaggregation. At the agricultural site the disaggregated
fluxes display small bias and very high correlation (r ≈ 0.95)
with EC-based measurements, while at the plantation site the
results are encouraging but still with significant errors. In ad-
dition, we introduce a modification to the DTD model by re-
placing the “parallel” configuration of the resistances to sen-

sible heat exchange by the “series” configuration. The latter
takes into account the in-canopy air temperature and substan-
tially improves the accuracy of the DTD model.

1 Introduction

The reliable estimation of surface energy fluxes (latent heat
– LE, sensible heat –H , ground heat –G, and net radia-
tion –Rn) in agricultural landscapes requires that the model’s
spatial resolution matches the dominant landscape feature
scale (Kustas and Albertson, 2003; Kustas et al., 2004). Since
most of the models require satellite observations, particu-
larly of land surface temperature (LST), for operational use
over larger areas, their spatial resolution is limited by the
resolution of those satellite observations. In many heteroge-
neous agricultural landscapes the field sizes can be of order
of a couple of hectares, meaning that the spatial resolution
of the LST satellite observation needs to be in the order of
100m× 100 m. Among the few satellites which can provide
this information on a regular basis is the Landsat satellite
family with LST resolution of 120 m for Landsat 5, 60 m for
Landsat 7 and 100 m for Landsat 8. In all three cases the LST
is resampled by the data provider to 30 m (http://landsat.usgs.
gov/band_designations_landsat_satellites.php, last accessed
17 March 2014). There are a number of methodologies which
can exploit the Landsat-derived LST for estimating surface
energy fluxes. They range from empirical, like the triangle
approach (Stisen et al., 2008), to more physically based, such
as one-source energy balance (Bastiaanssen et al., 1998) or
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two-source energy balance (TSEB) models (Norman et al.,
1995). The empirical methods suffer limitations due to the
simple assumptions and ratios employed within the models.
On the other hand, the physically based models are highly
sensitive to errors in absolute temperature measurements, ei-
ther of satellite LST or of air temperature from numerical
models or remotely located meteorological stations (Ander-
son et al., 1997). This is particularly important when using
Landsat LST estimates, since they are derived from only one
thermal band and so are highly susceptible to atmospheric
water vapour absorption (Sobrino et al., 2004). Although the
new Landsat 8 satellite has two thermal bands it is recom-
mended to refrain from using one of them for LST estima-
tion (USGS,http://landsat.usgs.gov/calibration_notices.php,
last accessed 14 January 2014).Li et al. (2004) have esti-
mated LST using the older Landsat 5 and Landsat 7 satellites
and obtained a mean absolute difference of between 1 and
1.5◦C when compared to tower-based brightness tempera-
ture measurements.

To overcome issues arising from uncertainty in absolute
temperature measurements, models such as Atmosphere-
Land-Exchange-Inverse (ALEXI) (Anderson et al., 1997) or
Dual-Temperature Difference (DTD) (Norman et al., 2000),
both based on the TSEB modelling scheme, make use of
the temperature difference between early morning and late
morning or early afternoon observations. Both models re-
quire LST estimates provided by geostationary satellites,
due to their high temporal resolution, and therefore produce
flux estimates at low spatial resolution of around 5 km. The
ALEXI model has previously been coupled to the DisALEXI
disaggregation algorithm (Anderson et al., 2004), allowing
the fluxes estimated at the geostationary satellite spatial res-
olution to be disaggregated using a Landsat LST observa-
tion to Landsat spatial scale while preserving the advan-
tages provided by using the differential temperature esti-
mates. This allows the ALEXI modelled fluxes to be directly
validated against EC-based flux tower measurements, which
have a measurement footprint that ranges from tens to hun-
dreds of metres away from the tower and is constantly chang-
ing depending on wind speed and direction, atmospheric sta-
bility and surface roughness. It also provides a better visual-
ization of the fluxes’ spatial patterns in heterogeneous areas,
such as typical agricultural landscapes, allowing for moni-
toring of individual fields and development of, for example,
more efficient irrigation practices (Anderson et al., 2011).

More recently, a modification of the DTD model has been
developed to allow the use of LST derived by polar orbit-
ing satellites with night-time and daytime overpass times
(Guzinski et al., 2013). This was done by exploiting the day
and night LST estimates provided by the MODIS sensor on
board of the Aqua and Terra satellites and by replacing the
early morning temperature measurement in the DTD model
with one taken at night by the Aqua satellite. By using the
data provided by polar orbiting satellites the geographical re-
gion of the applicability of the DTD model has been extended

to areas at high latitudes, such as Scandinavia, whose land
surface processes cannot be reliably monitored with geosta-
tionary satellites due to severe geometric and atmospheric
effects. The modified DTD model was run with the LST es-
timates provided by the MODIS sensor aboard the Terra and
Aqua satellites and compared to flux tower observations in
a number of ecosystems, in most cases obtaining satisfactory
results (Guzinski et al., 2013).

However, one site where the modified DTD model did not
perform satisfactorily was the Voulund (VOU) agricultural
site in western Denmark. A possible factor contributing to
the poor performance of the model at this particular loca-
tion is the highly heterogeneous nature of the site (Guzinski
et al., 2013). Figure1a shows the orthophoto of the VOU site,
with the overlaid grid indicating the location of MODIS pix-
els in the MODIS sinusoidal projection. Within each 930 m
MODIS pixel there are a number agricultural fields present,
each one at a different stage of crop development, as well
as shrubs and small plantations of young spruce and fir. The
LST contrast within the MODIS pixel, caused by heterogene-
ity, should not have such a large influence on the coarse-scale
modelled fluxes, especially for estimates which are not either
very high or very low (Kustas and Albertson, 2003). There-
fore we hypothesize that the discrepancy between the mod-
elled and measured fluxes is in large measure due to the mis-
match between the footprint of the flux tower measurements
and the size of the MODIS pixel. In addition, as the dominant
wind direction in the region is from the west, a large part of
the flux tower footprint lies in the MODIS pixel adjacent to
the one containing the flux tower.

To test the hypothesis, our objective was to develop a DTD
disaggregation algorithm, based on DisALEXI (Anderson
et al., 2004), using high-resolution observations from the
Landsat family of satellites. This disaggregation methodol-
ogy has not been previously applied to fluxes derived with
the DTD model or fluxes derived purely with polar orbiting
satellites. We tested the disaggregation at two different sites,
the agricultural site mentioned previously (VOU) as well as
a conifer plantation Gludsted (GLU), which in contrast to
VOU is homogeneous at MODIS pixel scale but with cer-
tain heterogeneity at a smaller spatial scale (Fig.1b). This
allowed us to evaluate the performance of the disaggrega-
tion algorithm in different ecosystems and at different spatial
scales of heterogeneity. At both sites we tested the robustness
of the disaggregation algorithm by comparing it to fluxes
estimated by running the TSEB model directly with Land-
sat data without performing the disaggregation. In addition,
we also modified the DTD formulation to enable interaction
between the modelled canopy and soil sensible heat fluxes,
which has a significant impact on the accuracy of the output
energy flux estimates. Finally, we tested the performance of
DTD when used with modelled, instead of in situ, meteoro-
logical data for operational applications at regional scales.

In Sect. 2 we present the data used in this study: the
validation fluxes and meteorological observations from the
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Figure 1. Flux towers at the two sites used for evaluating the model performance: Voulund (VOU,a), and Gludsted (GLU,b). The grid
indicates the location of MODIS pixels in MODIS sinusoidal projection. The red plumes originate from the locations of the flux towers and
are an example of a typical flux measurement footprint of the EC system mounted on each of the towers.

VOU and GLU tower-based measurements, satellite-based
inputs and modelled meteorological data. Section3 explains
the principles behind the TSEB and DTD models and the
disaggregation algorithm used in this study, with the ac-
tual model equations presented in AppendicesA1 and A2
respectively. In Sect.4 we first compare the performance
of the DTD model at MODIS pixel scale with the old and
new model formulations. Then, we evaluate the disaggre-
gated high-resolution fluxes and compare them with fluxes
obtained by using Landsat data directly with TSEB without
disaggregation and the low-resolution DTD fluxes. This is
done using both locally measured and modelled meteorolog-
ical inputs. We end with conclusions in Sect.5.

2 Data

2.1 Flux tower data

The models were run over an area covering the measure-
ment footprints of two EC flux towers located on the Jut-
land peninsula in western Denmark (Fig.1). The first flux
tower is placed in a highly heterogeneous agricultural site,
Voulund (VOU), while the second is in a coniferous plan-
tation, Gludsted (GLU), dominated byPicea abieswith an
average height of 20 m and homogeneous at MODIS spatial
resolution while displaying small-scale heterogeneity due to
forest roads and clearings and stands of different species and
ages (Ringgaard et al., 2012). Both sites are in sandy soils
with a temperate maritime climate experiencing mean an-
nual precipitation of 990 mm and mean annual temperature
of 8.2◦C. The two ecosystems encompassed by the VOU and
GLU flux tower sites together represent around 85 % of the
land cover type of the Skjern river catchment, which is the
largest river in Denmark in terms of water volume. A more
detailed description of the sites is presented inRinggaard
et al.(2011).

Both sites were equipped with a Gill R3-50 sonic
anemometer (Gill Instruments Ltd., Lymington, UK) and LI-
7500 open-path infrared gas analyser (IRGA) (Li-Cor Inc.,
Lincoln, NE, USA) to continuously measure wind com-
ponents in three dimensions and concentrations of water
vapour, sensible heat and CO2. The EC system at VOU is
mounted at a height of 6 m above ground level (a.g.l) and
air temperature is measured at 4 m a.g.l., while at GLU the
EC system is 38 m a.g.l. and air temperature is measured
at 30 m a.g.l. above ground. Turbulent fluxes were calcu-
lated using the EddyPro 4.2 software (Li-Cor Inc., Lincoln,
NE, USA). The routine to calculate the fluxes includes co-
ordinate rotation, block averaging (30 min windows), correc-
tions for density fluctuations (Webb et al., 1980) and spec-
tral corrections (Moncrieff et al., 1997). Additionally, the
fluxes were corrected for surface heating of the IRGA (Burba
et al., 2008), which has a most pronounced effect during cold
season. Fluxes were quality checked according toMauder
and Foken(2006) and flagged if quality criteria were not
met. The only setting that was different between the two
sites was the coordinate rotation. At VOU, where canopy
height and structure changes during the season, and where
the canopy is nearly homogeneous in all directions, dou-
ble rotation was applied. At GLU, where the lined struc-
ture of the trees could potentially cause flow distortions in
specific directions, the planar fit method (Wilczak et al.,
2001) was applied. Processed data were subjected to fur-
ther quality control to detect outliers in the calculated 30min
average fluxes according to the method proposed inPapale
et al.(2006). As some data were rejected in the quality con-
trol, there are gaps in the data set. Gaps are filled by the
standardized method proposed byReichstein et al.(2005)
with the online tool available at:http://www.bgc-jena.mpg.
de/bgi/index.php/Services/REddyProcWeb(last accessed 10
January 2014).

Both towers also have sensors for measuring the four
components of net radiation, incoming/outgoing and short
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wave/long wave, as well as air temperature and humidity. The
30 min averaged air temperature, wind speed, humidity and
incoming solar radiation observations from the towers were
used as input for the DTD and TSEB models. Energy clo-
sure in the measured fluxes was ensured by assigning resid-
ual energy flux to the latent heat, based on the assumption
that errors in the measurements of LE are larger than in the
measurements ofH due to the nature of the sensors and the
fluxes (Foken et al., 2011). In addition, at sites where Bowen
ratio (BR) is low, such as VOU, it is recommended to as-
sign the residual energy to LE (Kustas et al., 2012), while at
high flux towers, such as at GLU, the 30 min averaging pe-
riod can miss the low frequency eddies which, once again,
affects mostly LE (Finnigan et al., 2003).

During the validation of the model performance only
the measured, not gap filled, fluxes were used. Measure-
ments when eitherH or closed LE had implausible values
(H < −100 W m−2 or H > 900 W m−2 and LE< 0 W m−2

or LE> 900 W m−2) were also removed.

2.2 Satellite data

The use of MODIS data as input for the DTD algorithm is
presented inGuzinski et al.(2013). Briefly, the M*D11A1
V5 daily product (Wan, 2006) from Aqua and Terra satellites
was used for LST and emissivity estimations, with the night-
time observations taken from Aqua overpass around 1 a.m.
local time and daytime observations taken from Aqua, Terra
or both satellites (resulting in two flux estimates per day) de-
pending on the quality of the observations. LST observations
with all view zenith angles (VZAs), up to 65◦, were included.
Other MODIS products employed are 8-day MCD15A2 V5
for leaf area index (LAI) (Knyazikhi et al., 1999), 16-day
MOD13A2 V5 for vegetation indices required for estimating
the fraction of vegetation that is green (Guzinski et al., 2013)
and 8-day MCD43B3 V5 product for albedo.

LAI is used in the DTD and TSEB models for three major
functions: to estimate the fraction of vegetation viewed by
the sensor; to estimate the amount of net radiation (mostly
incoming short wave) intercepted by the canopy; and in cal-
culations of resistances to heat transfer, e.g. for wind pro-
file estimation through the canopy (see Appendices). In the
first two applications, the “view” of the canopy is from the
top. Therefore, in coniferous evergreen forests it is mainly
the needles which are in the field of view of the sensor and
which intercept net radiation. The woody biomass is mostly
hidden below the needles. In contrast, in crops where the
whole plant turns yellow during senescence, the green and
non-green parts of the plant form a more homogeneous mix-
ture and are significant in all three functions. Therefore, in
croplands the MCD15A2 green LAI was divided by frac-
tion of vegetation that is green to obtain plant area index
(PAI) before using it in the models, while in coniferous forest
MCD15A2 was used directly.

All Landsat data came from cloud-free observations taken
by Landsat 5, Landsat 7 and Landsat 8 over the period 2009–
2013 over the study area with the spatial resolution in the
visible/near-infrared part of the spectrum of 30 m and ther-
mal infrared observations resampled from 120 m (Landsat 5),
60 m (Landsat 7) and 100 m (Landsat 8) to 30 m by the data
provider (USGS,http://landsat.usgs.gov/band_designations_
landsat_satellites.php, last accessed 17 January 2014). An
atmospheric correction was performed with MODTRAN 5
(Berk et al., 2006) with the standard mid-latitude summer
atmospheric profile used for all of the atmospheric param-
eters except for the total column water vapour, ozone, at-
mospheric optical thickness and temperature and pressure
profiles which came from the Terra MOD08 gridded atmo-
spheric product produced daily at one degree spatial resolu-
tion. The top-of-canopy reflectances in the visible and near-
infrared parts of the spectrum were derived following the ap-
proach ofXu et al. (2008) which is based on the Fast Line-
of-sight Atmospheric Analysis of Hypercubes (FLAASH)
method (Anderson et al., 2002) with the adjacency effect
considered to be significant in an area with a diameter of
1 km (Verhoef and Bach, 2003). Cloud masking was per-
formed using the Fmask algorithm (Zhu and Woodcock,
2012), modified to also work with Landsat 8 bands assuming
that the Landsat 8 sensor has the same characteristics that the
Landsat 7 sensor has.

The vegetation indices (NDVI and EVI) were calculated
directly from the top-of-canopy reflectances of the appropri-
ate Landsat bands. LAI and albedo at Landsat scale were
derived using decision tree regression trained with high-
quality MODIS LAI and albedo observations and Landsat
reflectances, from all the VIS and NIR bands, aggregated to
MODIS pixel size (Gao et al., 2012). Therefore any errors
present in MODIS LAI or albedo products were inherited by
the Landsat estimates. The temporal distribution and mag-
nitude of Landsat LAI at the two study sites is shown in
Fig. 2. Emissivity was linearly scaled with fractional vege-
tation cover obtained from NDVI (Stisen et al., 2007), with
bare soil emissivity set to 0.950 at NDVI of 0.15 and full
vegetation cover emissivity set to 0.995 at NDVI of 0.70.
Landsat LST was estimated using the approach ofColl et al.
(2010) with the upwelling atmospheric radiance and atmo-
spheric transmittance obtained from a MODTRAN run with
the simulated sensor at satellite height, and LST of 0 K and
ground emissivity of 1 (albedo of 0) to avoid any emitted or
reflected long-wave radiation signal from the surface, and the
downwelling atmospheric radiance from a MODTRAN run
with the sensor just above the surface and ground emissivity
of 0 (albedo of 1). Finally, land cover classification was taken
from the 2006 update of the Corine land cover (Büttner et al.,
2004).
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Figure 2. Temporal distribution of Leaf Area Index (LAI) estimates at VOU and GLU sites. The x axis
indicates the day of year of the estimate, while the y axis shows the mean Landsat-scale LAI within
the flux tower footprint. Landsat LAI estimates were based on MODIS LAI esitmates. Empty circles
represent green LAI derived directly from MODIS estimates, while full circles represent total LAI, used
as input to the model and derived by (in some cases) dividing green LAI by fraction of vegetation that is
green. For details see sections 2.2.
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2.3 Modelled meteorological data

To determine regional-scale surface energy fluxes the lo-
cal, tower-based, meteorological observations need to be re-
placed by an interpolated or modelled meteorological data
set. We have therefore also tested the performance of the dis-
aggregation algorithm when such data are being used. The
modelled meteorological data are obtained from the ERA-
Interim reanalysis data set (Dee et al., 2011) provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). The products used were the 2 m air tempera-
ture (2T ), 2 m dew point temperature (2D) used to calculate
the vapour pressure, the 10 m horizontal wind speed (10U

and 10V ) and surface solar radiation downward (SSRD). Al-
though the air temperature field is nominally at 2 m height, in
our model it was assumed that it is the air temperature mea-
sured at 100 m above the ground. This can be justified based
on the fact that the air temperature is modelled at very low
spatial resolution indicating that is can be treated as regional
temperature above blending height. In addition the time dif-
ferential nature of DTD should remove any biases caused by
increasing the temperature measurement height. The wind
field was assumed to be at 10 m above the canopy, or the
ground if the canopy is shorter than 10 m. The data are pro-
vided at a 0.75◦ spatial resolution and were subset and resam-
pled into a MODIS sinusoidal grid projection for the MODIS
tile covering the area of interest. In the temporal domain the
data were linearly interpolated between the 3-hourly ERA-
Interim time steps.

3 Methods

3.1 TSEB

The TSEB model was developed byNorman et al.(1995) and
later underwent a number of modifications (e.g.Kustas and
Norman, 1999). The main innovation in the TSEB model is
to split the LST observed at VZAθ , namelyTR(θ), into vege-
tation canopy and soil temperatures,TC andTS respectively,
based on the fraction of view of the radiometer covered by
vegetation,fθ , which is estimated from observation geome-
try and the fraction of vegetation canopy cover:

TR(θ) ≈ (fθT
4
C + (1− fθ )T

4
S )0.25. (1)

This allows the sensible heat fluxes from the vegetation and
soil to be computed separately, based on the temperature gra-
dient from the canopy and soil respectively and air temper-
ature at some height above or within the canopy. The latent
heat flux from the canopy is initially estimated using a mod-
ified Priestley–Taylor approximation (Priestley and Taylor,
1972), while the latent heat flux from the soil is estimated as
a residual of the other fluxes, thus ensuring energy balance
closure. The TSEB model is used in this study for disaggre-
gating fluxes from low to high spatial resolutions as well as
for directly estimating fluxes with Landsat data. The equa-
tions used in the current implementation of the TSEB model
are presented in AppendixA1.
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3.2 DTD

One of the limitations of temperature-based energy balance
models, such as the TSEB model, is their sensitivity to the
temperature gradient between the LST (or its soil and canopy
components) and the air temperature. This makes the models
highly susceptible to errors introduced in the absolute mea-
surements of LST or air temperature. To improve the robust-
ness of the TSEB modelling scheme two approaches, ALEXI
(Anderson et al., 1997) and DTD (Norman et al., 2000), have
been developed which replace the absolute temperature es-
timates by a time-differential temperature measurement be-
tween a time early in the morning and another time later dur-
ing the day. ALEXI couples the surface energy balance to
a model of atmospheric boundary layer growth during the
morning hours and requires an atmospheric profile sound-
ing during the early morning hours, while DTD implements
a simpler model formulation requiring the same inputs as
TSEB but at the two observation times. Both ALEXI and
DTD models require the first temperature measurement at
one hour past sunrise, when surface heat fluxes are minimal
(Anderson et al., 1997). This means that they require pre-
cise timing of the morning temperature estimate and so are
dependent on observations from geostationary satellites with
their sub-hourly temporal resolution.

However,Guzinski et al.(2013) have established that it
is possible to replace the early morning temperature obser-
vation in the DTD model with night-time observations with
minimal degradation in the retrieved fluxes. They have also
introduced modifications to the model to accommodate the
two LST observations having different VZAs thus allowing
the use of DTD with polar orbiting satellites with both night-
time and daytime overpasses. Another modification of the
DTD model, presented in this paper, is to use a “series” re-
sistance network instead of a “parallel” one for the calcula-
tion of the sensible heat fluxes. The advantage of the “series”
resistance network is that it takes into account the interac-
tion between the fluxes coming from the canopy and the soil
by estimating the in-canopy air temperature. The differences
between the two resistance network configurations are pre-
sented inNorman et al.(1995) while the modification to the
DTD model, together with other implementation details, is
shown in AppendixA2. This modified DTD model is used in
this study to estimate the coarse-resolution fluxes.

3.3 Disaggregation

The disaggregation methodology is based on the DisALEXI
algorithm, developed for disaggregating fluxes derived with
the ALEXI model (Norman et al., 2003). Since ALEXI re-
quires geostationary observations as input it produces flux
estimates with a pixel resolution ranging from 3 to 10 km
depending on the satellite resolution at a given latitude and
longitude. Another output of ALEXI is the air temperature
at blending height, assumed to be 50 m above the surface,

also at 3–10 km resolution (Anderson et al., 1997). During
the disaggregation procedure this air temperature is used as
an upper boundary condition, while LST derived with a high-
resolution sensor (such as Landsat) is bias corrected to match
the LST used as input to ALEXI at 3–10 km scale and then
used as the lower boundary condition for a TSEB model (see
Fig. 1 in Norman et al., 2003). This ensures that the sur-
face to air temperature gradient, and therefore the surface
fluxes, are consistent between the lower-resolution ALEXI
estimates and the higher-resolution TSEB ones. One of the
assumptions of DisALEXI is that the temperature at blend-
ing height is constant within the 3–10 km pixel. Even though
the blending height air temperature is more spatially uniform
than near-ground air temperature, this assumption might not
necessarily hold in highly heterogeneous landscapes due to
advection and localized couplings between the surface and
the atmosphere (Anderson et al., 2004; Kustas and Albert-
son, 2003). However, in this application we are disaggregat-
ing from 1 km MODIS pixels which means that the assump-
tion has a better chance of being met than if 3–10 km pixels
were used.

In a recent application of DisALEXI, consistency be-
tween the low-resolution and high-resolution model runs
was ensured using the dailyH estimates, up-scaled from
the instantaneousH estimates provided by ALEXI and the
higher-resolution TSEB model using the assumption of self-
preservation of evaporative fraction (EF) (Cammalleri et al.,
2013). This removes the requirement of having the low- and
high-resolution flux estimates coincident in time and allows
the technique to be used with polar orbiting satellites with
different overpass times. In this approach the ALEXI-derived
blending height temperature is used as the initial value for the
upper boundary condition of the high-resolution TSEB run
and is then iteratively adjusted until the dailyH estimates of
ALEXI and TSEB, aggregated to ALEXI pixel size, match.

However, there is no general agreement on the best way
to up-scale instantaneous fluxes to daily values, or to com-
pare two instantaneous flux measurements taken at different
times of the same day while removing their time-dependent
component. Some recent studies suggest that EF remains sta-
ble, especially around noon hours in cloud-free condition, in
a wide range of ecosystems (Peng et al., 2013) while others
have proposed the replacement of EF with the ratio of LE to
incoming solar radiation at ground level (Cammalleri et al.,
2014). Therefore in this study we evaluate three approaches
to estimate what we term the constant ratio (CR): EF, ratio
of LE to incoming solar radiation, LE/Rs, in, and the ratio of
H to incoming solar radiation,H/Rs, in. The third approach
is included since TSEB-based models estimate LE as a resid-
ual of the other fluxes, whileH is calculated directly from the
model inputs. It can therefore be assumed that errors present
in all the other flux estimates will contribute to error in the
LE estimate, meaning that it can potentially be less accurate
than theH estimate.
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Since the CRs are assumed to remain constant between
the Terra/Aqua and Landsat overpass times, it is not neces-
sary to determine daily fluxes, as was done inCammalleri
et al. (2013), to ensure consistency between the low- and
high-resolution estimates. To obtain mean daily fluxes from
the CRs, the ratios would have to be multiplied by the mean
daily net radiation (in the case of EF) or mean daily incom-
ing solar radiation (in the case of other ratios). Since the same
mean daily net/solar radiation would be used for estimating
mean daily fluxes from the instantaneous MODIS and Land-
sat fluxes, the mean daily net/solar radiation would just serve
as a scaling factor. Therefore our hypothesis is that the use
of daily fluxes is redundant and it is possible to perform the
disaggregation on instantaneous fluxes, even though there is
a time offset of a couple of hours between the low- and high-
resolution satellite observations, by using any of the CRs in-
stead.

In summary the disaggregation method is as follows:

1. Estimates of instantaneous fluxes at MODIS pixel scale
are provided by running DTD with MODIS inputs.

2. For each MODIS pixel the constant ratio, which is as-
sumed to remain constant during the daylight hours, is
calculated using the DTD output fluxes.

3. TSEB is run for all Landsat pixels falling within one
MODIS pixel, with the air temperature at blending
height (50 m) set at some plausible initial value.

4. The instantaneous TSEB estimated fluxes within one
MODIS pixel are aggregated and the constant ratio of
the aggregated fluxes is calculated.

5. If the ratios derived from DTD and TSEB runs do not
match, the air temperature at blending height is adjusted
and the TSEB model is rerun. This is repeated until the
ratios match.

6. Once all the MODIS pixels in the region of interest have
been processed, a 2km× 2 km moving average filter is
run over the resulting air temperature map under the as-
sumption that air temperature at blending height should
be rather homogeneous at that spatial scale. The filtered
air temperature is then used for a final run of TSEB over
the whole region to produce flux estimates at Landsat
scale.

In Norman et al.(2003) and Cammalleri et al.(2013)
the disaggregation is performed on fluxes produced with the
ALEXI model, which also outputs an estimate of blending
height air temperature (Anderson et al., 1997). This air tem-
perature can then be used during the disaggregation proce-
dure. This is not possible with the DTD model, since this
output is not produced. Therefore, when running the model
with tower-measured meteorological inputs the air tempera-
ture at tower height is used as the initial value of air tem-
perature at blending height in step 3 of the disaggregation

procedure. When using ERA-Interim meteorological data the
air temperature from the 2T data set is used as the initial air
temperature at blending height.

3.4 Model configurations

Figure 3 illustrates model configurations used during the
study. To perform the disaggregation (Fig.3a), first the DTD
model (Sect.3.2) is run with MODIS and meteorological
data as inputs to produce one of the three CRs as output.
This CR is then used during the disaggregation procedure
(Sect.3.3) to establish boundary conditions for the fluxes
derived with TSEB model (Sect.3.1), which in addition to
Landsat data, uses the same meteorological inputs as DTD.
In order to evaluate the performance of the disaggregation
procedure, DTD-derived fluxes at 930 m spatial resolution
(Fig. 3b) and TSEB-derived fluxes at a nominal resolution
of 30 m (Fig.3c) are also produced. The model configura-
tions are run with either tower-based meteorological obser-
vations (Sect.2.1) or the ERA-Interim reanalysis meteoro-
logical data set (Sect.2.3) used as input.

3.5 Flux tower footprint

The accuracy of the disaggregated modelled fluxes is evalu-
ated by comparison with sensible and latent heat flux mea-
surements from the tower-mounted EC systems. Since the
disaggregated fluxes are at a spatial scale comparable to the
size of the area contributing to the measured fluxes it is im-
portant to establish the actual flux tower footprint before per-
forming the comparisons. The 2-D footprint is estimated us-
ing the approach ofDetto et al.(2006). The footprint weights
in the upwind direction are derived using the model ofHsieh
et al.(2000), which takes atmospheric stability into account,
and the weights in the cross-wind direction are assumed to
be normally distributed with a standard deviation dependent
on the standard deviation of the horizontal crosswind veloc-
ity fluctuations (Schmid, 1994). This results in a 2-D grid of
pixels representing the relative contribution of each pixel to
the total EC measurement, with the sum of all pixels being
1 (Fig. 1). When evaluating the high-resolution fluxes, each
modelled pixel is scaled according to the strength of the con-
tribution of its location to the EC measurement.

4 Results

4.1 “Parallel” vs. “Series” DTD

The DTD model was run at the VOU and GLU flux tow-
ers using remotely sensed MODIS inputs with the excep-
tion of meteorological parameters which were taken from
the tower-based observations. The model was run for all
suitable MODIS observations from 2009 to 2013 giving
around 200 modelled fluxes at each of the sites. The two ver-
sions of DTD, “parallel” and “series”, used the same model
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Figure 3. An overview of the different model runs being evaluated
in this study. Set-up(a) shows the models and inputs/outputs used
during disaggregation of 930 m DTD fluxes to TSEB derived fluxes
with a nominal resolution of 30 m. The three constant ratios (EF,
H/Rs, in and LE/Rs, in) form three separate, alternative model runs.
Set-up(b) shows the models and inputs/outputs used for producing
930 m DTD fluxes, while set-up(c) shows the same when producing
TSEB fluxes at nominal resolution of 30 m directly with Landsat
data and without disaggregation.

formulations with the exception of the equation for the esti-
mation ofH . In the case of “parallel” DTD the original equa-
tion (Eq.A37) was used while in the “series” DTD version
the new equation (Eq.A40) was used. The results for sensi-
ble and latent heat fluxes are presented in Fig.4 and Table1.

The model output fluxes were split into two groups. The
first group consisted of all model outputs, while the second
group (numbers in parentheses in Table1) consisted only of
outputs where “parallel” DTD converged to a plausible solu-
tion with positive LE. When a plausible solution could not be
found at the end of model run, it was assumed that due to dry
conditions there is no evapotranspiration (LE= 0) and the
net radiation was split betweenH andG (see the Appendix
for details). This is a backup behaviour of the model and can
lead to inaccurate results when the lack of convergence in the
model is not due to low ET but due to, for example, noise in
the input parameters. The “series” implementation of DTD
always produced plausible solution whenever “parallel” im-
plementation did, and often managed to converge even when
“parallel” implementation could not (Fig.4).

The “series” implementation of DTD improved the accu-
racy of the modelled fluxes significantly, especially at VOU
where the RMSE ofH is significantly reduced (87 W m−2

vs. 160 W m−2 when all modelled fluxes are considered) and
bias is reduced by a factor of around 3. At GLU the results are
less pronounced with bias ofH switching from positive to
negative and increasing, although the RMSE is still reduced
(118 W m−2 vs. 127 W m−2). In the case of LE, the “series”

implementation reduced RMSE and bias significantly at both
sites, while also improving correlation.

At both sites using the “series” implementation of DTD
reduced the magnitude of the modelled sensible heat flux
mainly when sensible heat was relatively high and latent heat
was relatively low, i.e. during dry conditions. This is similar
to the effect that the “series” formulation has on the TSEB
model and is explained by the importance of the heating up
of the in-canopy air temperature, which is explicitly mod-
elled in the “series” formulation while being left out in the
“parallel” formulation (Norman et al., 1995).

Since the “series” version of the DTD model provides sub-
stantial improvements, it is the version that is used in the re-
minder of this study.

4.2 Disaggregation at the agricultural site – VOU

The DTD model was run at the MODIS resolution of 930 m
over the VOU site using MODIS data and tower-based me-
teorological observations as input and the results were dis-
aggregated to 30 m resolution using the TSEB model with
Landsat data and tower-based meteorological observations
as input. All the dates between 2009 and 2013 when high-
quality, cloud-free MODIS and Landsat observations were
available were considered. Figure5 shows the comparison
between the instantaneous modelled heat fluxes, aggregated
to the estimated flux tower footprint, and the 30 min EC-
based measurements. The results for the three methods of
estimating the CR ratio are presented (Fig.5a–c) together
with the fluxes estimated purely using TSEB with Landsat
(Fig. 5d) and with DTD without disaggregation (Fig.5e).
The latter fluxes are not aggregated to the flux tower foot-
print but instead the value of the MODIS pixel containing
the flux tower is used. A statistical comparison is presented
in Table2.

The results are split into two sets. The first set (called S70)
contains dates on which the disaggregation was successfully
performed and Landsat pixels contributing to at least 70 %
of the EC measured flux are present but there also might be
missing Landsat pixels within the modelled MODIS pixels.
The second set (called S100) is a subset of S70 and consists
of dates where, additionally to S70 criteria, all the Landsat
pixels within the modelled MODIS pixels are present. This
does not necessarily mean that pixels representing 100 % of
EC measured flux are present, since sometimes the measure-
ment footprint extends slightly beyond the modelled MODIS
pixels. However, in practice all the dates in S100 set contain
pixels representing at least 98 % of EC measured flux foot-
print. For dates when pixels representing less than 100 % of
flux footprint contribution are present, the aggregated flux is
scaled by the fraction of the missing footprint. For example,
if pixels representing only 80 % of EC footprint are present
then the aggregated modelled flux is divided by 0.8 before it
is compared with EC measured flux.
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Table 1. Statistical comparison of modelled vs. observed sensible and latent heat fluxes at VOU and GLU for the “parallel” and “series”
implementation of DTD. Modelled fluxes are instantaneous at the time of daytime Terra/Aqua overpass and observed fluxes are 30 min
averaged EC measurements. Numbers in parentheses indicate statistics only for model runs when “parallel” DTD converged to a plausible
solution (LE> 0 W m−2) while numbers outside brackets present statistics for all model runs, even when a backup formulation was used.
The statistical parameters used are bias (modelled–measured), root mean square error (RMSE), coefficient of variation (CV – RMSE divided
by mean of observed values), and correlation (r). Bias and RMSE are in W m−2, the other parameters are unitless.

Site Implemen- H LE

tation No. points Bias RMSE CV r Bias RMSE CV r

VOU
parallel

194 (180)
105 (90) 160 (141) 1.33 (1.19) 0.24 (0.22) −87 (−70) 158 (137) 0.52 (0.45) 0.20 (0.26)

series 29 (19) 87 (76) 0.72 (0.64) 0.31 (0.33) −11 (0) 100 (90) 0.33 (0.30) 0.44 (0.52)

GLU
parallel

191 (158)
16 (−26) 127 (95) 0.42 (0.32) 0.54 (0.64) −80 (−37) 147 (93) 0.53 (0.34) 0.23 (0.42)

series −31 (−66) 118 (105) 0.39 (0.36) 0.54 (0.71) −32 (2) 116 (76) 0.42 (0.28) 0.30 (0.51)

The missing Landsat pixels are most frequently caused
by the faulty sensor aboard Landsat 7 satellite but can also
be caused by clouds smaller than the MODIS pixel size
(Fig. 6). In both cases the missing pixels can cause biases
during the disaggregation procedure, especially if the gaps
are over an area with flux values significantly different from
the mean MODIS pixel value, such as over an irrigated field
surrounded by drier shrubland. This is because the disaggre-
gation algorithm forces the high-resolution CR aggregated
to a MODIS pixel to match the MODIS CR even if there are
some high-resolution pixels missing within the MODIS pixel
footprint.

The results in Table2 show that the RMSE is reduced
by around a factor of 2 for bothH (from 51 W m−2 to 25–
27 W m−2 in the case of S70 and from 52 W m−2 to 27–
33 W m−2 in the case of S100) and LE (from 80 W m−2

to 35–37 W m−2 in the case of S70 and from 59 W m−2 to
24–32 W m−2 in case of S100) when the fluxes are disag-
gregated. The correlation is also improved, reaching a value
around 0.95 for both turbulent fluxes, with particularly strong
positive impact on LE in the S100 data set. The effect of dis-
aggregation on bias is very varied, with the magnitude mostly
increasing and sign changing from positive to negative in the
case ofH . However, there is significant increase in RMSE
of net radiation (from 24 W m−2 to 44–46 W m−2 in the case
of S70 and from 27 W m−2 to 48–51 W m−2 in the case of
S100) which can be attributed to more-than-doubling of un-
derestimation bias.

The statistical differences between the three disaggrega-
tion methods are not very pronounced. However, there is
clear distinction in where they allocate the deficit of en-
ergy, caused by the underestimation ofRn. WhenH/Rs, in
is used as CR, the bias ofH is the smallest and the bias of
LE is the largest in comparison to the other CRs. In con-
trast, when LE/Rs, in is used as CR the situation reverses
and the bias ofH becomes the largest and that of LE the
smallest. The magnitude of bias influences the magnitude of
RMSE with H/Rs, in producing the smallest RMSE forH
and LE/Rs, in leading to the smallest RMSE for LE. Using

EF as CR achieves an optimal compromise with biases ofH

and LE falling between the two extremes but RMSE staying
close to the minimum magnitude.

To evaluate whether using the low-resolution fluxes to es-
tablish boundary conditions for high-resolution fluxes actu-
ally improves the high-resolution model performance, the
TSEB model was also run with air temperature taken di-
rectly from tower measurements and not adjusted based on
the CR. In those cases the height of temperature measure-
ments was set to 4 m which is the height of the tower-based
temperature sensor. The results are presented in Fig.5d and
in column NDH of Table 2. When disaggregating the low-
resolution fluxes it is often possible to obtain two estimates
per day (although both at the same time of Landsat satel-
lite overpass): one produced by disaggregating fluxes mod-
elled with daytime Aqua satellite observation and the other
by using the daytime Terra satellite observation. When us-
ing Landsat data directly to obtain high-resolution estimates,
only one model run per Landsat overpass is possible. There-
fore, there are fewer points in panel (d) of Fig.5 than in
the other panels. The RMSE of high-resolution disaggregated
turbulent fluxes is significantly lower than when those fluxes
are derived without disaggregation. The correlation becomes
stronger with disaggregation when looking at the S70 data set
but decreases slightly (although still remaining above 0.94)
when considering just the fluxes in S100.

4.3 Disaggregation at coniferous plantation – GLU

The DTD model and the three variants of the disaggregation
algorithm were run over the GLU site in a similar fashion
as in VOU. The results are presented in Fig.7 and Table3.
In the case of GLU the disaggregation does not improve the
accuracy of the modelled turbulent heat fluxes when com-
pared to the MODIS-scale estimates. This was partially ex-
pected since the area around the tower is quite homogeneous
at MODIS scale. For the S70 data set the RMSE of low-
resolutionH fluxes (118 W m−2) was among the range of
RMSE of the disaggregated fluxes (from 116 to 160 W m−2).
The same is true for the correlation coefficient, having a value
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Figure 4. Comparison of DTD modelled vs. observed sensible heat (red dots) and latent heat (blue diamonds) fluxes for the period 2009–
2013 over the Voulund agricultural area, panels(a) and(c), and Gludsted coniferous plantation, panels(b) and(d). The satellite input was
taken from 930 m resolution MODIS instrument on board Terra and Aqua satellites. Modelled fluxes are instantaneous at the time of daytime
Terra/Aqua overpass and observed fluxes are 30 min averaged EC measurements. Empty symbols indicate model runs when “parallel” DTD
could not converge to a plausible solution (LE< 0 W m−2) and instead a backup formulation was used. In the top panels the “parallel”
implementation of DTD was used, in the lower panels the “series” implementation.

of 0.51 for low-resolution fluxes and between 0.33 and 0.55
for the disaggregated fluxes, while the bias increased in mag-
nitude during the disaggregation. When just the S100 data
set is considered, the disaggregation reduces the accuracy
of the modelled sensible heat fluxes. This situation is re-
flected when looking at statistics for LE, although in this case
the RMSE of the three disaggregation methods and the low-
resolution fluxes are much closer together. The correlation is
reduced from already very low value to around 0 or even be-
coming negative. As happened in VOU, the RMSE ofRn in-

creased significantly during the disaggregation (from around
50 W m−2 to around 90 W m−2) and this once again can be
attributed to a similar increase in the magnitude of bias. Sim-
ilarly to what happened at VOU, using EF as CR leads to the
most balanced partition of the energy deficit betweenH and
LE.

When TSEB is used directly with Landsat inputs (Fig.7d),
without performing the disaggregation, a very large nega-
tive bias of sensible heat flux is present (over−200 W m−2)
(Table 3). This also leads to very high values of RMSE.
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Figure 5. Comparison of modelled vs. observed fluxes at the Voulund agricultural area. Modelled fluxes
are instantaneous at the time of satellite overpass and observed fluxes are 30-minute averaged EC mea-
surements. The three approaches used for determining the constant ratio during the disaggregation are:
(a) evaporative fraction, (b) LE/Rs, in, (c) H/Rs, in. Panel (d) shows high-resolution fluxes derived with
TSEB model without disaggregation. The modelled fluxes in those panels are produced at 30m spatial
resolution and are aggregated to EC footprint. Panel (e) shows the low-resolution, non-disaggregated
fluxes modelled with DTD. Rectangles represent LE, circles represent H, triangles represent G and di-
amonds represent Rn. Empty symbols indicate aggregated fluxes where pixels comprising 70 % of EC
footprint were present (S70 set), full symbols where in addition there were no missing Landsat pixels
within the MODIS pixels (S100 set).
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Figure 5. Comparison of modelled vs. observed fluxes at the Voulund agricultural area. Modelled fluxes are instantaneous at the time of
satellite overpass and observed fluxes are 30 min averaged EC measurements. The three approaches used for determining the constant ratio
during the disaggregation are:(a) evaporative fraction,(b) LE/Rs, in, (c) H/Rs, in. Panel(d) shows high-resolution fluxes derived with
TSEB model without disaggregation. The modelled fluxes in those panels are produced at 30 m spatial resolution and are aggregated to EC
footprint. Panel(e) shows the low-resolution, non-disaggregated fluxes modelled with DTD. Rectangles represent LE, circles representH ,
triangles representG and diamonds representRn. Empty symbols indicate aggregated fluxes where pixels comprising 70 % of EC footprint
were present (S70 set), and full symbols where in addition there were no missing Landsat pixels within the MODIS pixels (S100 set).

Figure 6. Two examples of gaps present in the disaggregated high-resolution flux estimates. On the left stripped gaps at VOU due to the
failure of the sensor on board Landsat 7 and on the right gaps at GLU due to clouds during Landsat overpass. The darker reds indicate higher
sensible heat fluxes. Even though small-scale flux variations due to features such as roads or fields are properly modelled, the total heat flux
within a MODIS pixel might be biased due to the gaps.
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However, the correlation coefficient is the highest among all
the model runs at the GLU site. In the case of LE the magni-
tude of bias (around 100 W m−2) is significantly larger than
for any other model runs and it becomes positive whereas be-
fore it was mostly negative. RMSE also increases, although
not as much as forH .

4.4 Disaggregation when using modelled
meteorological inputs

To be able to operationally apply the models at regional
scales, the tower-based meteorological inputs (air tempera-
ture, wind speed, relative humidity and incoming short-wave
radiation) have to be replaced with spatially distributed in-
puts. As described in Sect.2.3 the ERA-Interim reanaly-
sis data set was used in this study. To evaluate the perfor-
mance of the models when run with the ERA-Interim inputs,
the low-resolution DTD modelled fluxes, the high-resolution
fluxes modelled directly with TSEB and Landsat data and
the disaggregated high-resolution fluxes were compared to
measured fluxes at both VOU and GLU flux tower sites.
Only the disaggregation algorithm which uses EF as CR is
analysed here since, when tower-based meteorological inputs
were used, it produced the most promising results.

The results are presented in Fig.8 and Table4 for VOU
and Fig.9 and Table5 for GLU. The first observation is that
the magnitude of bias and RMSE ofRn is increased by a fac-
tor of 2 to 3 between the model runs with ERA- and tower-
based meteorological data. This is due to underestimation of
incoming short-wave radiation by ERA SSRD product when
compared to tower measurements. Therefore it was decided
to also run the models with ERA meteorological inputs with
the exception ofRs, in, which was obtained from tower ob-
servations. The results of those runs are presented in Fig.10
and Table6 for VOU and Fig.11and Table7 for GLU.

It appears that using ERA meteorological inputs (both with
and withoutRs, in) does not have a big impact on the accuracy
of modelledH fluxes in all the model runs. For S70 data set
in VOU, the RMSE does not change significantly between
the runs with different inputs, with the exception of disag-
gregation using EF which is slightly more accurate when us-
ing tower-based observations. For dates in S100 there is a
reduction in error when using ERA meteorological inputs,
although that could be just due to rearrangement of the lim-
ited number of points present for the evaluation. Latent heat
flux is much more sensitive to the amount of available net
radiation, since it is calculated as a residual. Therefore, when
purely ERA meteorological inputs are used there is a large
increase in negative bias and RMSE. When ERA SSRD is
replaced by tower observations, the errors are similar to er-
rors obtained in model runs with purely tower-based observa-
tions, with RMSE of low-resolution LE not changing much,
the RMSE of high-resolution non-disaggregated LE improv-
ing a bit and the RMSE of disaggregated LE becoming a bit
bigger.

At GLU the statistics present a similar picture, with the
underestimation of incoming short-wave radiation present
in ERA SSRD affecting mostly the latent heat flux. Using
ERA meteorological inputs actually significantly improves
the statistics for the turbulent heat fluxes compared to when
field observations are used. ForH , there is a reduction in the
magnitude of both bias and RMSE, while the correlation in-
creases. In the case of LE the best results are obtained when
ERA inputs are combined with tower-basedRs, in.

4.5 Discussion

The results demonstrate that obtaining high-resolution fluxes
through disaggregation of the low-resolution, DTD-derived
fluxes is more accurate than obtaining the high-resolution
fluxes by applying TSEB directly to Landsat data. This im-
plies that there is some extra knowledge in the low-resolution
flux estimates which is not present in the fluxes derived di-
rectly by TSEB. Therefore, it can be inferred that the ac-
curacy of the low-resolution estimates is similar to that of
the disaggregated fluxes if those estimates were to be com-
pared to flux measurements on the same low-resolution spa-
tial scale. By disaggregating the fluxes to a spatial scale be-
low the flux tower footprint we were able to directly compare
the modelled and measured fluxes. It should be noted, how-
ever, that although the Landsat thermal data is provided at
30 m resolution it was acquired at a resolution of between 60
and 120 m depending on the satellite. This could contribute to
the uncertainty when comparing the model output with flux
tower measurements.

There were substantial differences observed between the
two flux tower sites and between the S70 and S100 data sets.
In theory, when looking at the non-disaggregated fluxes at
both at low and high resolutions (Tables2–7, columns NDH
and NDL), the statistical measures of accuracy of the mod-
elled fluxes should be the same for points in the S70 and S100
sets. This is because the membership of the sets was based
mostly on the Landsat sensor used: the S100 set had non-
stripped observations from Landsat 5 and Landsat 8 while the
S70 set contained all the observations, including Landsat 7
observations with a strip of missing pixels due to sensor fail-
ure. In practice, the statistical measures of non-disaggregated
modelled fluxes in S70 and S100 sets are only similar at
GLU. At VOU the non-disaggregated modelled fluxes in the
S70 data set have larger errors and lower correlation than the
ones in the S100 data set. This could be due to different cli-
matic conditions present at the study sites during the years
of operation of the different Landsat satellites. It could also
be due to the relatively small number of points present in the
data sets not being enough to represent the error distribution.

There is a larger difference between the three variations
of the disaggregation algorithm at GLU compared to VOU.
These differences could be due to large bias in the estimated
net radiation at Landsat scale in GLU. The modelled net ra-
diation is consistently underestimated with a bias of around
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Figure 7. Comparison of modelled vs. observed fluxes at the Gludsted coniferous plantation. Modelled
fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30-minute averaged EC
measurements. The three approaches used for determining the constant ratio during the disaggregation
are: (a) evaporative fraction, (b) LE/Rs, in, (c) H/Rs, in. Panel (d) shows high-resolution fluxes derived
with TSEB model without disaggregation. The modelled fluxes in those panels are produced at 30m spa-
tial resolution and are aggregated to EC footprint. Panel (e) shows the low-resolution, non-disaggregated
fluxes modelled with DTD. Rectangles represent LE, circles represent H, triangles represent G and di-
amonds represent Rn. Empty symbols indicate aggregated fluxes where pixels comprising 70 % of EC
footprint were present (S70 set), full symbols where in addition there were no missing Landsat pixels
within the MODIS pixels (S100 set).
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Figure 7. Comparison of modelled vs. observed fluxes at the Gludsted coniferous plantation. Modelled fluxes are instantaneous at the time
of satellite overpass and observed fluxes are 30 min averaged EC measurements. The three approaches used for determining the constant
ratio during the disaggregation are:(a) evaporative fraction,(b) LE/Rs, in, (c) H/Rs, in. Panel(d) shows high-resolution fluxes derived with
TSEB model without disaggregation. The modelled fluxes in those panels are produced at 30 m spatial resolution and are aggregated to EC
footprint. Panel(e) shows the low-resolution, non-disaggregated fluxes modelled with DTD. Rectangles represent LE, circles representH ,
triangles representG and diamonds representRn. Empty symbols indicate aggregated fluxes where pixels comprising 70 % of EC footprint
were present (S70 set), and full symbols where in addition there were no missing Landsat pixels within the MODIS pixels (S100 set).

80 W m−2 compared to the tower measurement and around
40 W m−2 compared to MODIS-scale modelled net radia-
tion. At VOU the underestimation of high-resolution net ra-
diation is around 40 W m−2 compared to the tower measure-
ment and around 25 W m−2 compared to low-resolution es-
timates. This mismatch could be partly due to the point na-
ture of net radiation measurement vs. the spatially distributed
nature of the modelled net radiation or due to inaccurate pa-
rameterization of physical parameters, such as LAI or albedo,
at Landsat scale at GLU. For example, at MODIS scale the
forested pixels have an albedo of around 0.09 while at Land-
sat scale that rises to around 0.10–0.12.

However, it could also be due to the long-wave compo-
nent of the net radiation, particularly due to changes in es-
timated air temperature during the disaggregation. It should
be noted that the value of the derived air temperature does
not necessarily reflect the actual air temperature. This is be-
cause the value is derived to compensate for any errors in

the Landsat LST and to ensure consistent fluxes between
the DTD and disaggregated estimates. At VOU the final es-
timatedTA usually does not change much from the initial
value, except for one date around DOY 200 when the large
decrease is most probably caused by incorrect estimation of
Landsat LST (Fig.12a and b). At GLU the finalTA is pre-
dominantly decreased, sometimes by up to 10◦C (Fig. 12c
and d). This is reflected in the changes in bias ofRn between
the disaggregated and non-disaggregated high-resolution es-
timates. At VOU the bias stays constant between the different
high-resolution model runs, while at GLU there is a differ-
ence of up to 40 W m−2 between the disaggregated and non-
disaggregated net radiation. This can be attributed purely to
changes inTA , since all the other inputs have remained the
same. Figure12 also illustrates that the final step of the dis-
aggregation procedure (spatial averaging ofTA between the
MODIS pixels) does not impact on the modelled fluxes and
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Figure 8. Comparison of modelled vs. observed fluxes at the Voulund agricultural area with meteorological inputs provided by the ERA-
Interim data set. Modelled fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30 min averaged EC measurements.
The three panels show:(a) fluxes disaggregated using the evaporative fraction method,(b) high-resolution fluxes derived with TSEB model
without disaggregation,(c) low-resolution, non-disaggregated fluxes modelled with DTD. The fluxes modelled at 30 m resolution (a and
b) are aggregated to EC footprint. Rectangles represent LE, circles representH , triangles representG and diamonds representRn. Empty
symbols indicate aggregated fluxes where pixels comprising 70 % of EC footprint were present (S70 set), and full symbols where in addition
there were no missing Landsat pixels within the MODIS pixels (S100 set).
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Figure 9. Comparison of modelled and EC measured fluxes at the Gludsted coniferous plantation with meteorological inputs provided by
the ERA-Interim data set. Modelled fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30 min averaged EC
measurements. The three panels show:(a) fluxes disaggregated using the evaporative fraction method,(b) high-resolution fluxes derived
with TSEB model without disaggregation,(c) low-resolution, non-disaggregated fluxes modelled with DTD. The fluxes modelled at 30 m
resolution (panels(a) and (b)) are aggregated to EC footprint. Rectangles represent LE, circles representH , triangles representG and
diamonds representRn. Empty symbols indicate aggregated fluxes where pixels comprising 70 % of EC footprint were present (S70 set), and
full symbols where in addition there were no missing Landsat pixels within the MODIS pixels (S100 set).

is purely cosmetic to produce smooth looking energy flux
maps.

Another possible reason why the modelled high-resolution
fluxes at GLU are less accurate than the low-resolution ones
is the accuracy of flux tower footprint modelling in the
forested landscape. The footprint model assumes a constant
roughness and while, as mentioned earlier, the area appears
homogeneous at MODIS scale, at Landsat scale different
stand ages, roads and clearings become apparent, causing the
assumption of uniformity to be broken. However, this does

not appear to be a major issue as illustrated by the accuracy
statistics when TSEB model is used directly with Landsat in-
puts without disaggregation (Table3, column NDH). In this
case the correlation between the modelled and observedH

fluxes is the highest of all the model runs (including the low-
resolution one) with the correlation coefficient having the
value of 0.65 for the S70 set, while the negative bias is at least
twice as large as in any disaggregated run. Similar correlation
values are obtained forH in the S70 data set for all model
runs with ERA meteorological inputs. Those reasonably high
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Figure 10. Comparison of modelled vs. observed fluxes at the Voulund agricultural area with meteorological inputs provided by the ERA-
Interim data set, with the exception of incoming short-wave radiation which was taken from tower observations. Modelled fluxes are in-
stantaneous at the time of satellite overpass and observed fluxes are 30 min averaged EC measurements. The three panels show:(a) fluxes
disaggregated using the evaporative fraction method,(b) high-resolution fluxes derived with TSEB model without disaggregation,(c) low-
resolution, non-disaggregated fluxes modelled with DTD. The fluxes modelled at 30 m resolution (a andb) are aggregated to EC footprint.
Rectangles represent LE, circles representH , triangles representG and diamonds representRn. Empty symbols indicate aggregated fluxes
where pixels comprising 70 % of EC footprint were present (S70 set), and full symbols where in addition there were no missing Landsat
pixels within the MODIS pixels (S100 set).
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Figure 11.Comparison of modelled and EC measured fluxes at the Gludsted coniferous plantation with meteorological inputs provided by
the ERA-Interim data set, with the exception of incoming short-wave radiation which was taken from tower observations. Modelled fluxes
are instantaneous at the time of satellite overpass and observed fluxes are 30 min averaged EC measurements. The three panels show:(a)
fluxes disaggregated using the evaporative fraction method,(b) high-resolution fluxes derived with TSEB model without disaggregation,(c)
low-resolution, non-disaggregated fluxes modelled with DTD. The fluxes modelled at 30 m resolution (panels(a) and(b)) are aggregated
to EC footprint. Rectangles represent LE, circles representH , triangles representG and diamonds representRn. Empty symbols indicate
aggregated fluxes where pixels comprising 70 % of EC footprint were present (S70 set), and full symbols where in addition there were no
missing Landsat pixels within the MODIS pixels (S100 set).

correlations would indicate that the footprint model, which is
the same for all high-resolution runs, is working satisfacto-
rily.

Yet another reason for the larger errors over the forested
site is the nature of the site and the flux tower setup. For ex-
ample, due to the large size of the canopy a large amount of
heat can be stored in the in-canopy air layer and in the tree
biomass (Lindroth et al., 2010). In addition, at sites in which

the EC equipment is mounted on a tall tower the 30 min av-
eraging period might not be enough to capture all the con-
tributing eddies (Finnigan et al., 2003). In a previous study
Ringgaard et al.(2011) have hypothesized that large-scale
advection can be a considerable factor in the current study
area and at the GLU site in particular. Even though the ap-
parent effects of advection were most significant in winter
they might still impact on the measured fluxes during other
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Figure 12.Temporal distribution of air temperature estimates at three stages of the disaggregation procedure with EF used as CR: initial value
(green circles), value after disaggregation (blue squares), and value after smoothing (red diamonds). The air temperature is the mean of the
estimates falling within the flux tower footprint. The panels on the left are with model runs using tower-based meteorological observations,
and those on the right are with model runs using ERA-Interim-based meteorological inputs with the exception of incoming short-wave
radiation which came from tower observations.

periods. It has also been observed that there are significant
differences in the fluxes from trees at the edges or inside of
the forest stands due to canopy structure (Ringgaard et al.,
2012). Errors in parameterization of model inputs related to
the canopy conditions, such as LAI or emissivity, could also
play a significant role at the forest site. For example, MODIS
LAI estimates are known to be not particularly accurate in
coniferous forests (Jensen et al., 2011; Kauwe et al., 2011).

All those issues affect flux modelling at both high and low
spatial resolutions, however they might be less significant
at low resolution due to spatial averaging of the modelled
fluxes.

Finally, we discuss the impact on the accuracy of estimated
fluxes of using model meteorological data, (Tables4–7) in-
stead of measured data (Tables2 and3) as input. It is clear
that the ERA-Interim meteorological fields are suitable as
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Table 4.Statistical comparison of modelled vs. observed fluxes at VOU with the meteorological inputs provided by the ERA-Interim data set.
Statistics are shown for the EF approach for estimating constant ratio used during the disaggregation procedure and for the non-disaggregated
high, NDH, and low, NDL , resolution fluxes. Modelled fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30 min
averaged EC measurements. The statistical parameters used are bias (modelled–measured), root mean square error (RMSE), coefficient of
variation (CV – RMSE divided by mean of observed values), and correlation (r). Bias and RMSE are in W m−2, the other parameters are
unitless.

H LE Rn G

EF NDH NDL EF NDH NDL EF NDH NDL EF NDH NDL

Bias
S70 12 −6 21 −80 −66 −72 −93 −94 −79 −25 −22 −38
S100 −4 14 9 −71 −93 −53 −107 −112 −95 −32 −33 −51

RMSE
S70 31 55 48 93 95 104 105 106 90 33 33 47
S100 16 28 41 86 95 97 116 120 104 40 41 58

CV
S70 0.23 0.38 0.34 0.33 0.34 0.38 0.22 0.22 0.19 0.62 0.61 0.79
S100 0.11 0.18 0.26 0.29 0.32 0.35 0.22 0.23 0.20 0.55 0.56 0.74

r
S70 0.93 0.79 0.80 0.85 0.67 0.63 0.90 0.87 0.91 0.79 0.73 0.77
S100 0.98 0.97 0.73 0.32 0.95−0.45 0.82 0.83 0.87 0.64 0.62 0.77

Table 5.Statistical comparison of modelled vs. observed fluxes at GLU with the meteorological inputs provided by the ERA-Interim data set.
Statistics are shown for the EF approach for estimating constant ratio used during the disaggregation procedure and for the non-disaggregated
high, NDH, and low, NDL , resolution fluxes. Modelled fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30 min
averaged EC measurements. The statistical parameters used are bias (modelled–measured), root mean square error (RMSE), coefficient of
variation (CV – RMSE divided by mean of observed values), and correlation (r). Bias and RMSE are in W m−2, the other parameters are
unitless.

H LE Rn G

EF NDH NDL EF NDH NDL EF NDH NDL EF NDH NDL

Bias
S70 −44 −205 −12 −128 32 −137 −155 −139 −139 17 34 10

S100 −81 −212 −29 −117 11 −138 −174 −165 −159 23 36 8

RMSE
S70 96 227 97 163 97 171 167 154 148 24 38 18

S100 112 231 100 154 89 167 185 175 165 32 39 21

CV
S70 0.32 0.74 0.31 0.61 0.36 0.63 0.28 0.26 0.25 1.25 1.84 1.14

S100 0.32 0.68 0.29 0.54 0.31 0.58 0.28 0.27 0.25 1.43 1.74 1.16

r
S70 0.72 0.67 0.65 0.08 −0.09 0.05 0.88 0.86 0.94 0.78 0.80 0.16

S100 0.58 0.56 0.35 0.00 −0.46 −0.15 0.75 0.76 0.84 0.22 0.14 −0.82

inputs into the DTD or TSEB models. The only exception
is the incoming short-wave radiation (SSRD) product which
severely underestimates the clear-sky incoming short-wave
radiation measured at the tower sites. The reason for this is
that SSRD is not a clear-sky product, so it models the ra-
diation for some estimated cloud cover. In regions such as
Denmark the estimated cloud cover within a 0.75◦ pixel can
be significant even though at certain locations within this
pixel (such as at the flux tower sites) the conditions are cloud
free. Fortunately, the clear-sky incoming short-wave radia-
tion around noon remains quite steady at regional scales.
Therefore, it is possible to extrapolate point observations
of the radiation to all cloud-free areas within a region. On
the other hand, using the ERA Interim air temperature esti-

mates instead of tower-based observation can even improve
the model performance. For example in GLU a large reduc-
tion in bias ofH is obtained when running the DTD model
(and the disaggregation) with ERA Interim meteorological
inputs. This could be caused by the fact that (1) DTD was de-
signed to reduce errors caused by systematic bias in the input
temperatures, and (2) that the air temperature estimated by
the meteorological forecast and analysis models is represent-
ing regional blended air temperature rather than local, tower
measured, air temperature. This indicates that while there is
a dominant unsystematic difference between the air temper-
ature measured at the flux tower site and air temperature at
another point in the modelling domain, due to different heat-
ing of the air from the underlying surfaces, the difference
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Table 6. Statistical comparison of modelled vs. observed fluxes at VOU with the meteorological inputs provided by the ERA-Interim data
set, with the exception of incoming short-wave radiation which was taken from tower observations. Statistics are shown for the EF approach
for estimating constant ratio used during the disaggregation procedure and for the non-disaggregated high, NDH, and low, NDL , resolution
fluxes. Modelled fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30 min averaged EC measurements. The
statistical parameters used are bias (modelled–measured), root mean square error (RMSE), coefficient of variation (CV – RMSE divided by
mean of observed values), and correlation (r). Bias and RMSE are in W m−2, the other parameters are unitless.

H LE Rn G

EF NDH NDL EF NDH NDL EF NDH NDL EF NDH NDL

Bias
S70 8 −5 22 −31 −21 −13 −37 −38 −12 −15 −12 −33
S100 −9 17 10 −12 −42 21 −41 −48 −14 −20 −22 −45

RMSE
S70 32 54 49 45 61 79 40 42 19 26 27 44
S100 21 28 40 31 53 59 42 50 20 29 31 53

CV
S70 0.24 0.37 0.35 0.16 0.22 0.29 0.08 0.09 0.04 0.48 0.50 0.73
S100 0.14 0.18 0.26 0.11 0.18 0.21 0.08 0.10 0.04 0.39 0.42 0.69

r
S70 0.91 0.78 0.79 0.93 0.73 0.60 0.99 0.99 0.99 0.81 0.73 0.72
S100 0.97 0.97 0.74 0.83 0.94−0.04 0.99 0.96 0.95 0.77 0.78 0.70

Table 7. Statistical comparison of modelled vs. observed fluxes at GLU with the meteorological inputs provided by the ERA-Interim data
set, with the exception of incoming short-wave radiation which was taken from tower observations. Statistics are shown for the EF approach
for estimating constant ratio used during the disaggregation procedure and for the non-disaggregated high, NDH, and low, NDL , resolution
fluxes. Modelled fluxes are instantaneous at the time of satellite overpass and observed fluxes are 30 min averaged EC measurements. The
statistical parameters used are bias (modelled–measured), root mean square error (RMSE), coefficient of variation (CV – RMSE divided by
mean of observed values), and correlation (r). Bias and RMSE are in W m−2, the other parameters are unitless.

H LE Rn G

EF NDH NDL EF NDH NDL EF NDH NDL EF NDH NDL

Bias
S70 −42 −192 8 −71 85 −64 −82 −56 −41 32 50 16
S100 −74 −196 −4 −52 79 −56 −85 −60 −46 41 56 14

RMSE
S70 104 214 101 115 120 113 85 59 44 35 52 23
S100 112 215 102 97 116 102 87 62 48 44 57 25

CV
S70 0.35 0.70 0.32 0.43 0.45 0.42 0.15 0.10 0.07 1.81 2.56 1.43
S100 0.32 0.64 0.30 0.34 0.40 0.36 0.13 0.10 0.07 1.96 2.51 1.41

r
S70 0.63 0.68 0.63 0.11 0.05 0.16 0.99 0.99 1.00 0.82 0.85 0.16
S100 0.49 0.59 0.27 0.07 −0.64 −0.06 0.95 0.98 0.98 0.37 0.47 −0.75

between the modelled blending height temperature at very
low resolution (0.75◦ in case of ERA interim) and air tem-
perature at a point within the modelling domain has a rather
dominant systematic bias. This allows DTD to obtain more
accurate results with the modelled meteorological inputs and
this improvement is propagated through the disaggregation
procedure.

5 Conclusions

In the current study we have looked at disaggregating
MODIS spatial scale (930 m) sensible heat fluxes derived
with the DTD model to Landsat thermal observations’ spa-
tial scale (60–120 m resampled to 30 m) using the TSEB

model, and the assumption of self-preservation of evapora-
tive fraction and ratios ofH/Rs, in and LE/Rs, in, at a highly
heterogeneous agricultural site and a more homogeneous
coniferous plantation forest. It was found that using EF as
the CR parameter during the disaggregation produces the
most balanced results forH and LE at both agricultural and
forested sites. The results at both sites also show that disag-
gregating the low-resolution fluxes to higher resolution pro-
duced more accurate results than when TSEB was applied di-
rectly to high-resolution Landsat data. This indicates that the
low-resolution fluxes are accurate at the 1 km spatial scale,
since they provide useful additional information to the high-
resolution fluxes during the disaggregation procedure. It also
corroborates the theory raised in the Introduction that the
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discrepancy between fluxes modelled with DTD and mea-
sured using tower-based EC equipment is in large part due to
the scale mismatch between the 930 m model pixel and the
measurement footprint, especially at heterogeneous sites.

At the agricultural site the disaggregated high-resolution
fluxes compare very well with the flux tower measurements
with small bias (−3 W m−2 for H and−25 W m−2 for LE)
and RMSE (25 W m−2 with CV of 0.19 forH and 37 W m−2

with CV of 0.13 for LE) and correlation coefficient above
0.94. At the physically more complex forest site the disag-
gregated high-resolution fluxes were not so accurate, with
the low-resolution fluxes comparing more favourably to the
flux tower measurements. We have also shown that when
the tower-measured meteorological model inputs are re-
placed with ERA-Interim model inputs (with the exception
of incoming short-wave radiation) the accuracy of the DTD
model, and the disaggregated fluxes, is not greatly affected
and sometimes even improves, which is encouraging for ap-
plying the models for the derivation of high-resolution fluxes
at regional scales. The results show that it is possible to ac-
curately model heat fluxes in highly heterogeneous areas at
both MODIS and Landsat spatial scales.

In addition to evaluating the disaggregation procedure we
have made a small, but significant, modification to the DTD
model by replacing the “parallel” resistance network with
“series” resistance network which explicitly takes the in-
canopy air temperature into consideration. The modification
resulted in large improvement in the accuracy of the mod-
elled fluxes at both evaluation sites.

Further work should be conducted to better understand the
processes occurring in forested ecosystems and to incorpo-
rate them into the TSEB models. Additionally, the perfor-
mance of DTD and the disaggregation procedure when us-
ing new-generation sensors, such as VIIRS on the Suomi
NPP satellite or SLSTR on the upcoming Sentinel-3 satellite,
should be evaluated since the Terra and Aqua satellites are
already running beyond their expected design life. Finally,
even though the spatial resolution of Landsat-scale flux esti-
mates is useful for many practical applications, such as pre-
cision agriculture, the low temporal resolution is a limiting
factor. This is especially true in regions such as Denmark
where the very frequent cloud cover results in only a few
high-resolution observations per year. Therefore, the recent
advances in temporal data fusion techniques (e.g.Cammal-
leri et al., 2013) should be tested in Danish climatic condi-
tions.
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Appendix A

When a study refers to model equations that come from a
number of different papers, it is often unclear to the reader
which formulation was actually used. Therefore, the purpose
of this appendix is not to describe new model developments
(apart from the series resistance network in DTD) but to
clearly show the model implementation used in this study.

A1 TSEB model description

The TSEB model implemented in this study assumes an in-
teraction between the soil and vegetation fluxes, i.e. the flux
resistance network is implemented in series (see Fig. 11 in
Norman et al., 1995). In the initial state of the model it is
assumed that there is neutral atmospheric stability, meaning
that the Obukhov length,L, is approaching±∞. The actual
stability of the boundary layer is later iteratively derived.

Firstly, the parameters which do not depend onL or
canopy and soil temperatures,TC and TS respectively, are
calculated. The fraction of vegetation that is green,fg =

1.2 EVI
NDVI , is estimated for all the land-cover types except

for croplands during the growing season (day of year≤

180) where it is assumed that the vegetation is fully green
(Guzinski et al., 2013). The leaf area index taken from the
MCD15A2 MODIS product is assumed to be the green leaf
area index, LAIg. Therefore the total leaf (plant) area index

is calculated as LAI=
LAI g
fg

and is used in all the following
equations with a symbolF . The only exception is in conifer-
ous forest, where LAIg is used, also represented by a symbol
F (see Sect.2.2).

The nadir-view clumping factor,�0, is assigned a value
of 1.0 for the croplands and 0.5 for the coniferous forest, al-
though in other studies the clumping factor is estimated (Kus-
tas and Norman, 1999). The fraction of view of the radiome-
ter covered by the vegetation depends on clumping factor and
LAI as well as the VZA of the radiometer in radians,θ , and
is calculated following Eq. (3) fromNorman et al.(2000) as

fθ = 1− exp

(
−0.5�θF

cos(θ)

)
, (A1)

where�θ is the clumping factor at VZAθ (Kustas and Nor-
man, 1999):

�θ =
�0

�0 + (1− �0)exp(−2.2θ3.8−0.46D)
, (A2)

whereD is the ratio of vegetation height to plant crown width
which is set to a value of 1.0 for the croplands and 3.5 for the
coniferous forest. A maximum limit of 0.95 has to be applied
to f (θ) to ensure that a fraction of soil is always visible to
the radiometer. Without this limitTS calculated by the model
can obtain extreme, and hence unrealistic, values.

Equations for deriving displacement height,d0 = 0.65hC,
local roughness length for momentum transport,z0M =

0.13hC, and local roughness length for heat transport,z0H =
z0M

exp(2)
, are taken fromNorman et al.(2000) and depend only

on vegetation height,hC. In coniferous foresthC is kept con-
stant at 20 m, while in cropland it depends on LAI and is
calculated as follows:

hC = 0.1hC,max+ 0.9hC,maxmin(F/Ff,1), (A3)

wherehC,max is the maximum value ofhC, set to 0.8 m, and
Ff is the value of LAI when the crop has reached a full height,
set to 2.

The net radiation reaching the ensemble soil and vegeta-
tion surface,Rn, is estimated as the sum of its short-wave
and long-wave components,Rs andRl respectively:

Rs = Rs,in− Rs,out= Rs,in(1− α) (A4)

Rl = Rl,in − Rl,out (A5)

Rl,in = εatmσT 4
A (A6)

Rl,out = εsurfσT 4
R + Rl,in(1− εsurf), (A7)

whereσ is the Stefan–Boltzmann constant,α is combined
soil and vegetation albedo derived from satellite observa-
tions, εsurf is combined soil and vegetation emissivity also
derived from satellite observation andεatm is the emissivity
of the atmosphere derived followingBrutsaert(1975) as

εatm = 1.24

(
ea

TA

)0.14286

(A8)

In the above equations air temperature,TA , and LST,TR, are
in Kelvin.

Once the parameters that remain constant for the duration
of an individual TSEB run are calculated, the iterative part of
the model can be computed initially with the assumption of
|L| → ∞. First the wind friction velocity,u∗, is calculated
following rearranged Eq. (2.54) fromBrutsaert(2005):

u∗ =
uk

ln(
zu−d0
z0M

) − 9M(
zu−d0

L
) + 9M(

z0M
L

)
, (A9)

whereu is the wind speed measured at heightzu, k is the
von Karman constant and9M(ζ ) is the Monin–Obukhov
stability correction function for momentum calculated as in
Eqs. (2.59) and (2.63) ofBrutsaert(2005):

9M(ζ ) = −6.1ln[ζ + (1+ ζ 2.5)
1

2.5 ], ζ ≥ 0 (A10)

9M(y) = ln(a + y) − 3by
1
3 +

ba
1
3

2
ln

[
(1+ x)2

1− x + x2

]
+ 3

1
2 ba

1
3 tan−1

[
2x − 1

3
1
2

]
+ 90, ζ < 0, (A11)

whereζ =
zu−d0

L
or ζ =

z0M
L

as required,y = −ζ , x = (
y
a
)

1
3 ,

90 = − ln(a) + 3
1
2 ba

1
3 π

6 , a = 0.33 andb = 0.41. In the sec-
ond equation the value ofy is limited such thaty ≤ b−3. In
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neutral atmospheric stability condition, when|L| → ∞, the
stability correction function is set to 0.

There are three resistances in the soil–canopy–atmosphere
heat flux network:RA – aerodynamic resistance to heat trans-
port in the surface layer,RS – resistance to heat transport
from the soil surface andRx – the total boundary layer re-
sistance of the leaf canopy. The first resistance is estimated
following Norman et al.(2000) as

RA =
ln(

zT−d0
z0H

) − 9H(
zT−d0

L
) + 9H(

z0H
L

)

u∗k
, (A12)

where9H(ζ ) is the Monin–Obukhov stability function for
heat, calculated in the same way as9M(ζ ) for stable condi-
tions and as in Eq. (2.64) fromBrutsaert(2005) for unstable
conditions:

9H(y) =
1− d

n
ln

(
c + yn

c

)
, ζ < 0, (A13)

wherey = −ζ , c = 0.33,d = 0.057 andn = 0.78.
Calculation ofRS is also taken fromNorman et al.(2000):

RS =
1

cT + buS
. (A14)

In the above equation the parametercT is varying smoothly
from a value of 0.006 ms−1 for LAI less than 2 to 0.004 ms−1

for LAI more than 2,b is a constant with a value of 0.012
(unitless) anduS is the wind speed just above the soil surface
and is determined from wind speed just above the canopy,uC,
following Norman et al.(1995) and taking�0 into account:

uC = ln

(
hC − d0

z0M

)
u∗

k
(A15)

uS = uCexp

(
−a

(
1−

hS

hC

))
(A16)

a = 0.28(F�0)
2
3 h

1
3
Cs−

1
3 , (A17)

wheres is the leaf size in metres,hS is set to 0.05 m andhC
has a minimum limit of 0.1 m in theuS equation. The final
resistanceRx is calculated as (Norman et al., 1995)

Rx =
C′

F

(
s

ud

)0.5

, (A18)

whereC′ is a constant with value of 90s1/2m−1 andud is
wind speed at heightd0 + z0M and is derived using the equa-
tion for uS with hS = d0 + z0M.

Once the values of the three resistances are known the tem-
perature of the canopy,TC, soil,TS, and the inter-canopy air,
TAC can be estimated. Firstly, the energy divergence in the
canopy,1Rn, has to be established. During the first itera-
tion, whenTC andTS are not yet known, the short-wave and
long-wave components of the net radiation are lumped to-
gether, and the divergence is calculated following Eq. (8b)

from (Norman et al., 2000) and taking�0 into account:

1Rn = Rn

[
1− exp

(
−κF�0

√
2cos(θs)

)]
, (A19)

whereθs is the sun zenith angle andκ is an extinction coeffi-
cient varying smoothly from 0.45 for LAI more than 2 to 0.8
for LAI less than 2. In the following iterations the divergence
of short-wave and long-wave radiation is treated explicitly so
that1Rn = 1Rs+1Rl . 1Rs is calculated the same as1Rn
in the first iteration withRn replaced byRs while 1Rl is cal-
culated as in Eq. (2b) ofKustas and Norman(1999):

1Rl = τ(Rl,sky + Rl,S − 2Rl,C), (A20)

whereRl,sky is the long-wave radiation from the sky calcu-
lated as in Eq. (A6) andRl,S andRl,C are long-wave radiation
emitted from soil and canopy respectively and calculated us-
ing Stefan–Boltzmann equation andTS andTC. τ is the trans-
missivity of the vegetation estimated asτ = 1− exp(−κLF)

andκL varies smoothly between 0.7 for LAI more than 1 and
0.95 for LAI less than 1. With1Rn it is possible to estimate
the sensible heat flux of the canopy by using the Priestley–
Taylor approximation (Norman et al., 2000):

HC = 1Rn

(
1− αPTfg

sp

sp+ γ

)
. (A21)

Initially it is assumed that the vegetation is transpiring at
potential rate and the Priestley–Taylor parameter,αPT, has
a value of 1.26. If implausible results are obtained,αPT can
be reduced as explained later. sp is the slope of the saturation
pressure curve andγ is the psychometric constant and both
were obtained from Annex 3 ofAllen et al.(1998). With the
value ofHC the temperature of the canopy can be estimated
following Norman et al.(1995) as

TC = TC,lin + 1TC, (A22)

whereTC,lin is the linear approximation of the canopy tem-
perature:

TC,lin =

TA
RA

+
TR

RS(1−fθ )
+

HCRx
ρcp

( 1
RA

+
1

RS
+

1
Rx

)

1
RA

+
1

RS
+

fθ

RS(1−fθ )

(A23)

and1TC is the correction factor:

1TC =
T 4

R − fθT
4
C,lin − (1− fθ )T

4
D

4(1− fθ )T
3
D(1+

RS
RA

) + 4fθT
3
C,lin

, (A24)

where

TD = TC,lin

(
1+

RS

RA

)
−

HCRx

ρcp

(
1+

RS

Rx
+

RS

RA

)
− TA

RS

RA
. (A25)
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The soil temperature can now be estimated from the canopy
temperature, theTR and the viewing geometry:

TS =

(
T 4

R − fθT
4
C

1− fθ

)0.25

. (A26)

Finally, the inter-canopy air temperature can be estimated:

TAC =

TA
RA

+
TS
RS

+
TC
Rx

1
RA

+
1

RS
+

1
Rx

. (A27)

With all the resistances and component temperatures now
known it is finally possible to calculate the fluxes. Firstly, the
canopy fluxes are calculated:

HC = ρcp

TC − TAC

Rx
(A28)

LEC = 1Rn − HC. (A29)

Those are followed by soil fluxes:

HS = ρcp

TS− TAC

RS
(A30)

Rn,S= Rn − 1Rn (A31)

G = 0.3Rn,S− 35 (A32)

LES = Rn,S− G − HS, (A33)

whereG represents the soil heat flux and the Eq. (A32) is
based onLiebethal and Foken(2007). The total sensible and
latent heat fluxes are taken as the sum of their canopy and
soil components:

H = HC + HS = ρcp

TAC − TA

RA
(A34)

LE = LEC + LES. (A35)

With the values ofH and LE it is possible to recalculateL
using the Eq. (2.46) fromBrutsaert(2005):

L = −
u3

∗

kg
TA

( H
ρcp

+ 0.61TA
E
ρ
)
, (A36)

whereg is gravitational constant with value of 9.8 ms−2 and
E is the rate of surface evaporation in kg m−2 s−1 derived
from LE using the equation from Annex 3 ofAllen et al.
(1998). The iterative part of the model is now re-run with the
new value ofL and the process is repeated untilL converges
to a stable value.

OnceL stabilizes, if the value of LES is negative then it
is assumed that the canopy transpiration has been overesti-
mated andαPT is reduced and the iterative part of the model

repeated once again. IfαPT reaches zero and the modelled
LES is still negative then it is considered that there is no
evaporation or transpiration in the modelled pixel (Norman
et al., 1995). In those cases LE= LES = LEC = 0 and since
αPT = 0 it follows from Eq. (A21) that HC = 1Rn. H can
then be estimated as normally and the output value limited
such thatH ≤ Rn − G. The limit is enforced since it is im-
plausible that on a dry day without evapotranspiration the
ground heat flux would be negative. IfH < Rn −G then any
residual energy is assigned toG.

A2 DTD model description

The DTD model replaces the observations of absolute air
temperature and LST with their time-differential values,
taken as a difference between a night-time observation and
another one in the late morning or early afternoon (Guzin-
ski et al., 2013). Therefore, although it uses many of the
TSEB model formulations, some of the key equations have
been modified. The original DTD formulation uses “parallel”
flux resistance network (see Fig. 1 inNorman et al., 1995),
instead of the “series” resistance network implemented in
TSEB. The former one is a simpler formulation which ig-
nores the interaction between soil and vegetation fluxes and
potentially can produce less accurate results (Kustas and
Norman, 1999).

The main DTD equation is derived by applying Eq. (14)
from Anderson et al.(1997) to night-time and daytime
temperature observations, taking the difference of the two
and simplifying by removing insignificant early morning, or
night-time, fluxes (Norman et al., 2000):

H1 = ρcp

[
(TR,1(θ1) − TR,0(θ0)) − (TA,1 − TA,0)

(1− fθ,1)(RA,1 + RS,1)

]
+ HC,1

[
1−

fθ,1

1− fθ,1

RA,1

RA,1 + RS,1

]
. (A37)

The subscripts 0 and 1 in the above equation, and in all
the following equations, refer to observations taken at night
and during the day respectively.fθ,1 can be calculated in
the same fashion as in the TSEB model. The sensible heat
flux of the canopy,HC,1, is derived using Eq. (A21) from
the TSEB model with1Rn estimated with the short-wave
and long-wave components ofRn lumped together. The re-
sistances used in the “parallel” resistance network,RA and
RS, can also be calculated using the same equations as in
TSEB. However, there is one important change in that the
Richardson number, Ri, is used as an approximation for
zu−d0

L
in all the resistance equations. Ri is calculated using

time-differential observations as inNorman et al.(2000):

Ri = −g
zu − d0

TA,1

(TR,1 − TR,0) − (TA,1 − TA,0)

u2
1

. (A38)

In this study a new formulation for estimatingH1 in
the DTD model using the “series” resistance network has
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been developed. It follows the principles used in deriving
Eq. (A37), by first taking a linear approximation of Eq. (1)
and combining it with Eqs. (A28), (A30) and (A34) to obtain

TR − TA = H

[
(1− fθ )RS+ RA

ρcp

]
+ HC

[
fθRx − (1− fθ )RS

ρcp

]
. (A39)

The above equation is then applied two times, subscripted
with 0 and 1, and rearranged to derive

H1 = ρcp

[
(TR,1(θ1) − TR,0(θ0)) − (TA,1 − TA,0)

(1− fθ,1)RS,1 + RA,1

]
+ HC,1

[
(1− fθ,1)RS,1 − fθ,1Rx,1

(1− fθ,1)RS,1 + RA,1

]
+ H0

[
(1− fθ,0)RS,0 + RA,0

(1− fθ,1)RS,1 + RA,1

]
+ HC,0

[
fθ,0Rx,0 − (1− fθ,0)RS,0

(1− fθ,1)RS,1 + RA,1

]
. (A40)

Since the first time, with subscript 0, is chosen when fluxes
are minimal the last two terms of the above equation can be
omitted similarly to what is done in the original DTD model.

The latent heat flux is calculated as residual of the other
fluxes:

LE1 = Rn,1 − H1 − G1. (A41)

The estimation ofG1 is changed from that in the TSEB
model sinceTR,1 −TR,0 can be used as approximation of the
diurnal variation in the soil surface temperature,1TR, and
this allows the usage of a more advanced soil heat flux model
from Santanello and Friedl(2003):

G = Rn,SA cos

(
2π

t + 10800

B

)
(A42)

A = 0.00741TR + 0.088 (A43)

B = 17291TR + 65013, (A44)

wheret is the time in seconds between the observation time
and solar noon andRn,S is the net radiation reaching the soil
if the sun is in nadir calculated asRn,S= Rnexp(−κF�0)

whereκ varies smoothly between 0.45 for LAI more than 2
to 0.8 for LAI less than 2 and�0 is the nadir view clumping
factor.

Once all of the above fluxes are estimated the latent heat
flux of the soil can be also derived as residual:

LES,1 = (Rn,1 − 1Rn,1) − (H1 − HC,1) − G1. (A45)

Similarly to TSEB, if LES,1 is negative it is considered that
the canopy transpiration has been overestimated and there-
foreαPT is reduced andHC,1, H1 and LES,1 are recalculated.
If LES,1 is still negative whenαPT reaches a value of zero,
the same procedure is followed as in the TSEB model.
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