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Abstract. We examined bulk soil properties and molecular
biomarker distributions in surface soils from Inner Mongo-
lian grasslands in order to understand the responses of soil
organic matter to different land use. A total of 16 soils were
collected from severely degraded grassland by overgraz-
ing (DG), native grassland without apparent anthropogenic
disturbance (NG), groundwater-sustaining grassland (GG)
and restored grassland from previous potato cropland (RG).
Compared to NG, soil organic carbon content was lower
by 50 % in DG, but higher by six-fold in GG and one-
fold in RG. Theδ13C values of soil organic carbon were –
24.2± 0.6 ‰ in DG, –24.9± 0.6 ‰ in NG, –25.1± 0.1 ‰
in RG and –26.2± 0.6 ‰ in GG, reflecting different degra-
dation degrees of soil organic matter or different water use
efficiencies. The soils in DG contained the lowest abundance
of aliphatic lipids (n-alkanes,n-alkanols,n-alkanoic acids,
ω-hydroxylalkanoic acids andα-hydroxyalkanoic acids) and
lignin-phenols, suggesting selective removal of these bio-
chemically recalcitrant biomarkers with grassland degrada-
tion by microbial respiration or wind erosion. Compared to
NG, the soils in GG and RG increasedω-hydroxylalkanoic
acids by 60–70 %, a biomarker for suberin from roots, and in-
creasedα-hydroxylalkanoic acids by 10–20 %, a biomarker
for both cutin and suberin. Our results demonstrate that the
groundwater supply and cultivation–restoration practices in
Inner Mongolian grasslands not only enhance soil organic
carbon sequestration, but also change the proportions of
shoot- versus root-derived carbon in soils. This finding has
important implications for the global carbon cycle since root-
derived aliphatic carbon has a longer residence time than the
aboveground tissue-derived carbon in soils.

1 Introduction

Soil organic carbon, representing 80 % of the terrestrial ac-
tive carbon pool, plays a key role in the global carbon cy-
cle (Janzen, 2004; Schlesinger and Andrews, 2000; Watson,
2000). Recently, increased human activities such as stock
grazing, cultivation, deforestation and plantation has sub-
stantially changed the carbon balance between soil and atmo-
sphere and thereby mitigated or accelerated global climate
change. Guo et al. (2007) reported that soil carbon stock up
to 100 cm decreased by 20 % after 16 yr plantation in a na-
tive pasture of Australia, while Islam et al. (2000) found a
44 % decline in soil quality in a tropical forest ecosystem in
Bangladesh that was under cultivation. The change in quality
and quantity of soil organic matter inevitably affects vari-
ous terrestrial ecosystem functions such as the soil fertility,
biological diversity and biomass productivity (Kaiser et al.,
2010).

Grasslands are important ecological landscapes in
China and account for 40 % of the national land area
(ca. 4 000 000 km2) (National Statistics Bureau of China,
2002). These grasslands are mainly distributed in the semi-
arid and semi-humid northern China (e.g., Inner Mongo-
lia) and Tibetan Plateau, and are highly susceptible ecosys-
tems for changes in climate and land use (He et al., 2008;
Xiao et al., 1995; Zhou et al., 2007). Previous studies have
demonstrated that improper land use can cause grassland
degradation and even desertification in Inner Mongolia (e.g.
Cui et al., 2005; Su et al., 2005; Wang et al., 2013; Zhao
et al., 2007). However, most of these studies focused on
bulk soil properties such as total organic carbon and nitro-
gen contents. Since SOM consists of heterogeneous mix-
tures of plant, microbe and animal-derived residues with

Published by Copernicus Publications on behalf of the European Geosciences Union.



5104 L. Zhao et al.: Soil organic matter dynamics

different environmental stabilities (Baldock and Skjemstad,
2000; Kögel-Knabner, 2002), the investigation for different
fractions and even molecular compositions of SOM is indis-
pensable for understanding carbon dynamics under different
land use practices (Leifeld and Kögel-Knabner, 2005).

Organic matter biomarkers are compounds specific for cer-
tain organisms (e.g., higher plants, fungi and bacteria) or tis-
sues (e.g., leaves and root) (Kögel-Knabner, 2000; Otto et al.,
2005). Free lipids from plant waxes and biopolymers such as
suberin and cutin are the major sources of the aliphatic con-
stituents of SOM, while lignin is an important contributor to
aromatic components of SOM (Kögel-Knabner, 2002). Over
the past decades, biomarker approaches have been success-
fully used to estimate SOM responses to different environ-
mental changes such as soil warming (e.g. Feng et al., 2008),
vegetation shifts (e.g. Pisani et al., 2013) and elevated atmo-
spheric CO2 (e.g. Wiesenberg et al., 2008).

In this study, we analyzed the composition and distribution
of bulk organic matter and molecular biomarkers in grass-
land soils from Inner Mongolia, northern China (Appendix
Fig. A1). These grasslands have developed in the same cli-
mate region and have the same dominant grass species, but
are subject to different levels of human disturbances. The
main objectives of our study are to understand the chemi-
cal characteristics of SOM at the bulk and molecular levels in
temperate grasslands in Inner Mongolia and to evaluate influ-
ences of land use practices on SOM. We also attempt to an-
swer whether certain components of SOM such as aliphatic
lipids, cutin/suberin and lignin, usually thought to be refrac-
tory components, are preferentially preserved with changes
in grassland uses.

2 Materials and methods

2.1 Study area and sampling

Our study was conducted on the Keshiketengqi Grassland in
the Inner Mongolia Autonomous Region (northern China),
400 km away from Beijing (Appendix Fig. A1). The semi-
arid climate has a long, cold winter (November to March) and
a short summer (June to August). The mean annual tempera-
ture is –1.5◦C and the mean annual precipitation is 400 mm
(Feng and Zhao, 2011; Tan et al., 2013). The soil is classified
as a chestnut soil.

Four experimental fields with the size of 100 m× 100 m
were chosen in our study (Fig. 1), representing severely de-
graded grassland (DG; 42◦37′ N, 117◦05′ E), native grass-
land (NG; 42◦35′ N, 117◦05′ E), groundwater-sustaining
grassland (GG; 42◦32′ N, 117◦08′ E) and restored grassland
from previous cropland (RG; 42◦33′ N, 117◦13′ E). The DG
has been subject to intense sheep and cattle grazing and tram-
pling for over 15 yr and its vegetation is sparse. At NG, graz-
ing activity is rare and there was no apparent anthropogenic
disturbance. Pristine grassland at the site RG was converted

Figure 1. Pictures taking from the study sites, DG: degraded grass-
land by overgrazing; NG: native grassland without apparent anthro-
pogenic disturbance; GG: groundwater-sustaining grassland; RG:
restored grassland from potato cropland.

into a potato cropland in 1990, and the cultivation activi-
ties lasted until 2010. Since then, this cropland has been re-
stored to grassland by planting indigenous grasses and ban-
ning stock grazing. The GG is in a lowland area and supplied
by groundwater in summer (June to September) when rain-
fall is relatively high. Similar to NG, grazing activity is rare
at GG.

Among the four sampling sites, the dominant vegetation
species areLeymus secalinusand Agropyron mongolicum
var. villosum. However, in the RG, weed annuals such as
Chenopodium acuminatumand Sonchus arvensisare also
present besidesL. secalinusand A. mongolicum var. villo-
sumin the RG. Vegetation cover varied from 38 % to 84 % in
an increasing order of DG, NG, RG and GG. Since the NG
is subject to the least anthropogenic impact and resembles
the major native grasslands in the Keshiketengqi Grassland,
it is regarded as the reference site. In May 2012, four soil
samples (0–10 cm) were collected from each site by a soil
auger. After sampling, the soils were freeze-dried at –40◦C
and passed through a 2 mm sieve to remove large roots and
coarse particles. Soil samples were stored at –20◦C until fur-
ther analyses.
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2.2 Grain size, elemental and stable isotope analyses

The detailed methods for grain size measurement has been
described in Sun et al. (2011). About 1.0 g of dried soils were
reacted with excess 1 M hydrochloric acid and then with hy-
drogen peroxide to remove carbonates and oxidize organic
matter, respectively. After that, sodium hexametaphosphate
was added, and the solutions were allowed to settle for 24 h.
After ultra-sonication for 1 min, the grain size distributions
were measured by a Mastersizer 2000 Laser Particle Size An-
alyzer. The scan range was from 0.02 to 2000 µm, and catego-
rized into three fractions: sand (20–2000 µm), silt (2–20 µm)
and clay (< 2 µm).

The procedures for elemental and stable isotopic analyses
were modified from Wu et al. (2014). The dried soil sam-
ples were treated with 1 M hydrochloric acid to remove in-
organic carbon. The residues were analyzed by a CHNOS
Element Analyzer (Elementar Germany) for total organic
carbon (TOC) and total nitrogen (TN), while theδ13C and
δ15N were determined on a Flash EA1112HT coupled with
MAT 253 (Thermo Fisher Scientific, Inc). The standard devi-
ations based on the replicate analyses were 0.02 % for TOC,
0.005 % for TN, 0.15‰ forδ13C and 0.10‰ forδ15N.

2.3 Extractions of free lipids, bound lipids and
lignin-phenols

Figure 2 shows the procedures for biomarkers analyses.
About 6 g soil samples were mixed with 2 µg squalane
and extracted with ultrasonication three times, each with
15 mL dichloromethane:methanol (1:1; v/v) for 15 min. The
combined solvent extracts were filtered through glass fiber
columns, concentrated by rotary evaporation, and dried un-
der N2 gas in 2 ml glass vials.

Soil residues after the solvent extraction were subjected to
base hydrolysis to cleave bound lipids (Otto et al., 2005). Af-
ter the addition of 1 M methanolic KOH (15 mL) and 20 µg
5α-cholestane (internal standard), the air-dried soil residues
(∼ 3 g) were sealed and heated at 100◦C for 3 h. After cool-
ing, the suspension was acidified to pH 1 by the addition
of 6 M HCl. The bound lipids were recovered from the wa-
ter phase by liquid–liquid extraction with 20 mL ethyl ac-
etate three times. Anhydrous Na2SO4 was added to remove
any remaining water. The ethyl acetate extracts were concen-
trated by rotary evaporation, transferred to 2 mL glass vials
and dried under nitrogen gas.

Subsamples after the base hydrolysis were oxidized with
CuO to release lignin-derived phenols. Teflon-lined bombs
were loaded with 2 g of dry soil, 1 g CuO, 100 mg ammo-
nium iron (II) sulfate hexahydrate and 15 mL of 2 M NaOH.
The teflon vessels were purged with nitrogen gas for oxygen
exhaustion, then sealed and heated for 2.5 h at 170◦C. Af-
ter reaction, the liquid was decanted into a 50 mL centrifuge
tube, and the residue was washed twice, each with 10 mL
deionized water. The combined washings were centrifuged

for 10 min at 3000 rpm. The supernatant was transferred into
another centrifuge tube, acidified to pH 1 by the addition of
6 M HCl and kept for 1 h at room temperature in the dark
to prevent reactions of cinnamic acids. After centrifugation
for 10 min at 3000 rpm again, the supernatant was trans-
ferred to a separation funnel and liquid–liquid extracted three
times, each with 20 mL ethyl acetate. Anhydrous Na2SO4
was added to remove water. The ethyl acetate extracts were
concentrated by rotary evaporation, transferred to 2 mL glass
vials and dried under nitrogen gas.

2.4 Derivatization of extracts and instrumental analyses

The base hydrolysis extracts were first methylated by a re-
action of 14 % BF3:MeOH for 90 min at 70◦C. The bound
lipids were obtained by liquid–liquid extraction with 2 mL
hexane (3×), and dried under an N2 stream. After that, all
biomarkers from solvent extracts, base hydrolysis and CuO
oxidation were trimethylsilyl (TMS) derivatized by reac-
tion with 50 µL N,O-bis-(trimethylsilyl) trifluoroacetamide
(BSTFA) and 10 µL pyridine for 2 h at 60◦C. After cooling,
DCM was added to dilute to 1 mL.

The biomarkers were identified by gas chromatography-
mass spectrometry (GC-MS). This instrument was composed
of an Agilent 7890A GC coupled to an Agilent 5973N
quadruple mass selective detector. The biomarkers were sep-
arated by a DB-5 capillary column (30 m; 0.25 mm i.d.;
0.25 µm film thickness). A 1 µL of samples was injected in
the splitless mode under a constant flow (1.0 mL min−1).
The injector temperature was 300◦C. High pure helium
(> 99.999 %) was used as carrier gas. The mass spectrome-
ter was operated in the electron impact mode (70 eV). The
mass scan range was 50 to 550 Da.

An Agilent 7890A GC coupled to a flame ionization de-
tector (FID) was used for quantification of biomarkers. The
separation was achieved on an HP 5 capillary column (30 m;
0.32 mm i.d.; 0.25 µm film thickness). The injector temper-
ature was 300 °C. A 1 µL volume of sample was injected in
splitless mode under a constant flow (1.5 mL min−1). Helium
(purity > 99.999 %) was the carrier gas.

Oven programs for GC-MS and GC-FID were set as fol-
lows: temperature was held at 60◦C for 1 min, increased to
300◦C at a rate of 6◦C min−1 with a final isothermal hold
at 300◦C for 20 min. For solvent extracts and base hydrol-
ysis, the biomarkers were quantified by comprising the peak
areas of biomarkers to an internal standard (squalane for free
lipids and 5α-cholestane for bound lipids), while the amounts
of lignin phenols were determined by the calibration curves
of eight lignin-phenol standards.
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Grassland soils in Inner Mongolia
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Figure 2. Flow chart of bulk parameters and molecular biomarker analyses for grassland soils, Inner Mongolia. FA= fatty acids.

3 Statistical analysis

The program package SPSS 18.0 (Illinois, USA) was used
for statistical analyses. One-way ANOVA analysis was con-
ducted to examine the differences in bulk properties and
molecular biomarkers among soils from different grasslands.
All analyses were performed with a significance level of
P < 0.05.

4 Results

4.1 Elemental and isotopic compositions

Table 1 shows the grain size distributions, elemental and iso-
topic compositions of grassland soils. All soils were dom-
inated by sand (64.4 to 87.3 %), while clay fractions ac-
counted for only 1.7 to 6.4 % in an increasing order of
DG, NG, GG and RG. The TOC content ranged from
3.2± 0.2 g kg−1 (DG) to 46.6± 16.7 g kg−1 (GG), while
the TN content gradually increased from 0.32± 0.15 g kg−1

(DG) to 3.9± 1.5 g kg−1 (GG). The values ofδ13C andδ15N
varied from –24.2± 0.6 ‰ (DG) to –26.2± 0.6 ‰ (GG) and
0.36± 0.3 ‰ (DG) to 4.8± 1.6 ‰ (GG), respectively. The
C/N ratio increased from 9.9 to 12.5 in an order of DG,
NG, GG and RG. A significant linear correlation was ob-
served between theδ13C and C/N ratio (r = −0.667,n = 16,
p < 0.01), suggesting that both parameters are controlled by
the same factors such as the source and degradation stage of
SOM.

4.1.1 Compositions and distributions of solvent extracts

The major components of the solvent extracts weren-
alkanoic acids,n-alkanols, ω-hydroxyalkanoic acids,n-

alkanes, steroids and sugars (Fig. A2). The concentrations
of each type of biomarkers were summarized in Fig. 3.
Long-chain (> C20) aliphatic lipids includingn-alkanes,n-
alkanols andn-alkanoic acid are derived from epicuticular
waxes of vascular plants, while short-chain (< C20) aliphatic
lipids are of a microbial origin (Otto et al., 2005; Si-
moneit, 2005). The soils from NG contained the highest con-
centrations of free aliphatic lipids (3.53± 1.18 mg g−1OC),
followed by those from DG (2.23± 1.03 mg g−1OC), RG
(1.36± 0.73 mg g−1OC) and GG (1.20± 0.65 mg g−1OC).
Since the biomarker abundances have been normalized to
organic carbon, the lowest concentrations of free aliphatic
lipids at GG and RG were attributed to a dilution ef-
fect of their relatively high TOC contents. The homo-
logues ofn-alkanoic acids (C14 to C32) were detected at
the total concentrations of 1.20± 0.39 mg g−1OC in NG,
0.54± 0.24 mg g−1OC in DG, 0.40± 0.37 mg g−1OC in RG
and 0.38± 0.23 mg g−1OC in GG. Thesen-alkanoic acids
were characterized by the strong even-over-odd carbon num-
bered predominance and the Cmax at C16 and C24, suggesting
a mixed input of soil microbes and vascular plants. Besides
saturated acids, mono- and di-unsaturated C16 and C18n-
alkanoic acids were also detected at the concentrations lower
than 0.25 mg g−1OC. These short-chain unsaturated alkanoic
acids are mainly biosynthesized by bacteria and fungi.

The homologousn-alkanes (C22 to C33) displayed a
strong odd-over-even predominance and the maximum
abundance (Cmax) at C29. The soils in NG were composed
of the highest abundantn-alkanes (0.33± 0.08 mg g−1OC),
followed by soils in DG (0.32± 0.12 mg g−1OC), RG
(0.31± 0.20 mg g−1OC) and GG (0.06± 0.02 mg g−1OC).
Series of n-alkanols (C18–C32) presented a strong
even-over-odd predominance, with a concentration of
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Table 1. Grain size distribution, total organic carbon (TOC), total nitrogen (TN),δ13C andδ15N values of soils from degraded grassland
(DG), native grassland (NG), GG groundwater-sustaining grassland (GG) and restored grassland (RG) in Inner Mongolia. Four soil samples
were analyzed for each type of grassland.

Clay1 (%) Silt (%) Sand (%) TOC
(g kg−1)

TN
(g kg−1)

δ13C (‰ ) δ15N (‰ )

DG 1.7± 0.92c 11.0± .8b 87.3± 5.6a 3.2± 0.2d 0.32± 0.15d −24.2± 0.6a 4.14± 0.50a
NG 4.6± 1.6b 21.6± 7.8a 73.8± 9.4b 6.6± 0.25c 0.65± 0.25c −24.9± 0.6a 3.31± 0.45b
GG 5.3± 0.7ab 26.0± 4.5a 68.8± 5.1b 46.6± 16.7a 3.9± 1.5a −26.2± 0.6b 2.77± 0.27b
RG 6.4± 1.0a 29.2± 5.6a 64.4± 6.5b 15.9± 3.4b 1.3± 0.03b −25.1± 0.1a 4.51± 0.37a

1 Clay (< 2 µm), silt (2–200 µm) and sand (200–2000 µm).
2 All values are expressed as means of four replicates± standard errors.
∗ Different letters (a, b, c, d) in column indicate significant difference (P < 0.05).

Figure 3. Concentrations (mg g−1OC) of free lipids, bound lipids and lignin-phenols in the grassland soils in Inner Mongolia. DG: degraded
grassland by overgrazing; NG: native grassland without apparent anthropogenic disturbance; GG: groundwater-sustaining grassland; RG:
restored grassland from previous cultivated land. The values presented are the means of four replicates± standard errors. Different letters (a,
b, c, d) above each column bar indicate significant difference (P < 0.05).

0.66± 0.18 mg g−1OC (NG), 0.50± 0.13 mg g−1OC (DG),
0.32± 0.19 mg g−1OC (RG) and 0.19± 0.08 mg g−1OC
(GG). Five ω-hydroxyalkanoic acids (C22 to C28) were
detected with a concentration of 0.63± 0.24 mg g−1 OC in
NG, 0.26± 0.16 mg g−1 OC in GG, 0.23± 0.13 mg g−1OC
in DG and 0.16± 0.19 mg g−1OC in RG. Steroids, including
β-sitosterol, cholesterol, campesterol and stigmasterol,
were only minor components (< 0.21± 0.14 mg g−1OC).
Cholesterol is of a mixture origin from plants, fungi and
animals, while other steroids are predominantly derived
from higher plants (Otto et al., 2005 and references therein).

Several free carbohydrates, including glucose, mannose and
sucrose, were detected and their abundance was lower than
0.30± 0.46 mg g−1OC.

4.2 Compositions and distributions of bound lipids

Homologous aliphatic lipids (alkanoic acids, alkanols, alka-
nedioic acids, hydroxyalkanoic acids) and steroids were ma-
jor constituents of the base hydrolysis products (Fig. 3 and
Fig. A2). These bound aliphatic lipids are mainly derived
from the biomacromolecular suberin and cutin of vascular
plants (Kögel-Knabner, 2002; Nierop et al., 2003; Otto et
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al., 2005). Among them,n-alkanoic acids ranging from C14
to C32 (with Cmax at C16, mono- and di-unsaturatedn−C16
and n−C18) acids are dominant with the total concentra-
tions of 7.1± 0.9 mg g−1OC (RG) to 13.4± 2.1 mg g−1OC
(NG). Branched alkanoic acids includingiso-C14, iso-C15,
iso-C16, iso-C17 and iso-C18 were also detected and var-
ied in concentrations from 1.05± 0.23 mg g−1OC (GG)
to 2.28± 0.37 mg g−1OC (NG). Branched alkanoic acids,
along with short-chainn-alkanoic acids (< C20) reflect in-
puts from soil microbes, since these compounds are usu-
ally not biosynthesized by higher plants (e.g., Otto et al.,
2005). Aftern-alkanoic acids,ω-hydroxyalkanoic acids from
C16 to C26 and with Cmax at C20 or C22 were the secondar-
ily most abundant type of biomarkers, with a concentration
of 1.85± 1.80 mg g−1OC (DG) to 5.05± 2.07 mg g−1OC
(GG). The α,ω-alkanedioic acids, including C8, C9, C10,
C11 and long-chain even numbered acids from C16 to
C28, varied from 1.68± 0.51 to 2.38± 0.38 mg g−1OC. The
homologues of C16-C28 α-hydroxyalkanoic acids andn-
alkanols (C16–C30) were minor components of bound lipids
(< 2.0 mg g−1OC).

4.3 Lignin degradation products after CuO oxidation

Eight lignin-derived phenols were identified in the CuO ox-
idation extracts of the soil residues after base hydrolysis,
including three vanillyl (V; vanillin, acetovanillone, vanil-
lic acid), three syringyl (S; syringaldehyde, acetosyringone,
syringic acid) and two cinnamyl (C;p-coumaric acid and
ferulic acid) groups (Fig. A2). The concentrations of to-
tal lignin phenols (V+S+C) were 9.5± 2.1 mg g−1OC in
GG, 12.9± 2.7 mg g−1OC in RG, 13.3± 5.1 mg g−1OC in
NG, and 22.2± 7.7 mg g−1OC in DG (Fig. 3). The ratios
of C : V and S : V were calculated to estimate the source
of lignins, since S-unit is absent in gymnosperms, while C-
unit is specific for non-woody tissues (Hedges and Mann,
1979). The C : V and S : V ratios change with the degrada-
tion stages of lignins because the chemical stability of lignin-
phenols is in an order of V > S > C (Hedges et al., 1988;
Otto et al., 2005). Here, we calculated the abundant ratios of
acids over corresponding aldehydes (Ad/Al) of lignin phe-
nols. With the lignin degradation by white-rot and brown-rot
fungi, the aldehydes are oxidized into corresponding acids,
and thus the Ad/Al values are indicative of the degrada-
tion stage of organic matter (e.g. Hedges et al., 1988). Non-
woody tissues such as grasses and leaves have been reported
to have higher Ad/Al values (0.2–1.6) than angiosperm and
conifer wood (0.1–0.5) (Hedges et al., 1988; Otto and Simp-
son, 2006a). In our study, all soils showed similar S / V val-
ues ranging from 0.67 to 0.79 (Table 2), in agreement with
the same vegetation cover in all grasslands. Significant dif-
ferences of (Ad/Al)V (0.35–1.47 in an increasing order of
NG < RG < DG < GG) and (Ad/Al)S (0.58− −2.26 in an in-
creasing order of NG < DG < RG < GG) were observed (Ta-
ble 2), reflecting different degradation degrees of lignin.

Table 2. Source and degradation parameters of lignin phenols in
grassland soils in Inner Mongolia. DG: degraded grassland by
overgrazing; NG: native grassland without apparent anthropogenic
disturbance; GG: groundwater-sustaining grassland; RG: restored
grassland from previous cultivated land. Four soil samples were an-
alyzed for each type grassland.

Fields C / V S / V (Ad/Al)V (Ad/Al)S

DG 0.26± 0.04b 0.75± 0.29a 1.43± 0.55a 0.59± 0.49c
NG 0.24± 0.02b 0.67± 0.05a 0.58± 0.07b 0.35± 0.03c
GG 0.47± 0.16a 0.79± 0.4a 2.26± 0.99a 1.47± 0.32a
RG 0.28± 0.04b 0.71± 0.09a 0.98± 0.13a 0.76± 0.09b

∗ Values are expressed as mean± SD of four determinations. Different letters (a, b, c, d)
indicate significant difference (P < 0.05).

5 Discussion

5.1 Changes in bulk soil organic matter properties
under different land use

Over recent decades, land uses such as cultivation and graz-
ing have caused considerable reduction of vegetation cover,
destruction of topsoil structure and compaction of soil in In-
ner Mongolian grasslands in northern China (Cui et al., 2005;
Wang et al., 2013). Consequently, degradation and even de-
sertification have become a common phenomenon in Inner
Mongolian grasslands (Su et al., 2005). A series of strategies
including grazing exclusion, planting indigenous plants, and
returning farmlands to grasslands have been implemented to
protect the regional environments (Jiang et al., 2006). How-
ever, the effects of these strategies on the quality and quantity
of SOM are not fully understood.

In this study, a strong correlation was observed between
TOC and TN (r = 0.999,n = 16,p < 0.01), suggesting that
nitrogen is primarily associated with SOM. There are signif-
icant differences in soil organic carbon and nitrogen contents
among four sampling sites. A six-fold increase of soil or-
ganic carbon content in GG compared to NG suggests that
an enhanced water supply can be an effective strategy for
the sequestration of organic carbon in soils. This is not sur-
prising because the Inner Mongolian grasslands are mainly
distributed in semiarid and arid regions where water is one
of the limiting factors for vegetation growth. In addition, in-
creasing water content in soils can reduce oxygen diffusion
rate and thereby decrease the decomposition of SOM. Soil
organic carbon and nitrogen contents in RG is about one-
fold higher than in NG, which is likely attributed to the fact
that (1) continuous potato cultivation for two decades (1990–
2010) resulted in the accumulation of more organic carbon
and nitrogen in soils; and/or (2) banning grazing for 2 years
(2010–2012) benefitted organic carbon inputs and preserva-
tion in grassland soils. Among the four field sites, RG is char-
acterized by the highestδ15N values (4.5± 0.4‰; Table 1),
suggesting an important effect of previous cultivation activi-
ties. In Inner Mongolia, stock manures were commonly used
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as fertilizers, which has remarkably higherδ15N values (10
to 20 ‰) than plants (close to 0‰) (Bateman et al., 2005;
Kohl et al., 1973).

In contrast to GG and RG, about a 50 % reduction of soil
organic carbon and nitrogen contents was observed for DG,
suggesting that overgrazing caused sparse vegetation cover
and thereby decreased organic matter inputs to soils. In ad-
dition, with the lack of vegetation, the strong northwestern
wind during the Asian winter monsoon can accelerate soil
erosion, particularly for fine particles (e.g., Cui et al., 2005;
Su et al., 2005; Zhao et al., 2007). This wind erosion ef-
fect is reflected by a significantly lower clay fraction in DG
(1.7± 0.9 %) than NG (4.6± 1.6 %; Table 1). Since SOM
is enriched in fine particles (Anderson et al., 1981; Nichols,
1984), the loss of clay fractions further reduced SOM levels
in DG.

Theδ13C value is a useful tracer for organic matter sources
(e.g., C3 and C4 plants) degradation stage (Farquhar et al.,
1989; O’Leary, 1981) and water use efficiency (Wang et al.,
2008). In our study, the dominant grass species,Leymus chi-
nensisandStipa grandis, are C3 plants, and thus the effect
of C3/C4 plant shift on theδ13C value was not considered.
The degradation of soil organic matter can causeδ13C values
to positively shift by several per mil due to the preferential
utilization of light carbon isotope by soil microbes (Feng,
2002; Natelhoffer and Fry, 1988), while theδ13C values of
C3 plant leaves decrease with increasing rainfall by a coeffi-
cient of ca. –0.4‰/100 mm (Wang et al., 2008). Among four
sampling sites, GG presented a significant difference inδ13C
values of SOM (–26.2± 0.6‰) compared to the other three
sites (–24.2 to –25.1 ‰; Table 1), reflecting the largest inputs
of fresh, undegraded organic matter due to high primary pro-
ductivity or the change of water use efficiency with ground-
water supply.

5.2 Molecular compositions of SOM in different
grasslands

Compared to NG, DG contained significantly lower con-
centrations of total free lipids, cutin/suberin-monomers and
lignin-phenols (Fig. 3). Such differences can be explained
by two mechanisms. First, aliphatic and lignin biomark-
ers are preferentially degraded constituents of bulk SOM.
This hypothesis is consistent with previous results that the
turnover of lignin is faster than bulk SOM (e.g., Dignac et
al., 2005; Gleixner et al., 2002; Thevenot et al., 2010) as
well as soil fungi and bacteria-synthesized compounds (e.g.,
Amelung et al., 2008). In contrast, carbohydrates such as
glucose, mannose and sucrose, usually thought to be bio-
chemically labile compounds (Lorenz et al., 2007; Schmidt
et al., 2011), were in significantly higher abundance in DG
(304.0± 460.5 µg g−1OC) than NG (56.1± 21.9 µg g−1OC;
Fig. 3). The enrichment of free carbohydrates in DG is in-
dicative of higher proportions of microbial carbon in de-
graded soils, supported by their heaviestδ13C values of SOM

Table 3. Enrichment factors (Ec) of biomarkers in the grassland
soils (Inner Mongolia) under different land use practices. DG: de-
graded grassland by overgrazing; NG: native grassland without
apparent anthropogenic disturbance; GG: groundwater-sustaining
grassland; RG: restored grassland from previous cultivated land.
FA = fatty acids. Four soil samples were analyzed for each type of
grassland.

Field Free lipids ω−FA α−FA Lignin

DG 0.63± 0.29b 0.62± 0.60c 0.31± 0.18b 0.90± 0.03b
NG 1.00± 0.33a 1.00± 1.52b 1.00± 0.53a 1.00± 0.06a
GG 0.34± 0.18c 1.69± 0.69a 1.24± 0.43a 0.64± 0.14c
RG 0.39± 0.21c 1.66± 0.58a 1.18± 0.37a 0.87± 0.18b

∗ Values are expressed as mean± SD of four determinations. Different letters (a, b, c, d)
indicate significant difference (P < 0.05).

(Table 1). Our results support the hypothesis that molecular
structure does not control long-term stabilization of organic
matter in mineral soils (Schmidt et al., 2011 and references
therein). The persistence of SOM is actually dependent on
complex interactions between organic matter and its environ-
ment such as compound chemistry, climate, water availabil-
ity, soil pH and soil microbial community (Schmidt et al.,
2011; Thevenot et al., 2010).

Another hypothesis for the low concentration of aliphatic
lipids and lignin in DG is physical removal of fine fractions.
It has been reported that lignin and aliphatic components
in soils are enriched in fine particles (Quenea et al., 2004;
Thevenot et al., 2010). In the arid and semiarid region of
Inner Mongolia, strong wind erosion can disproportionately
remove clay contents of grasslands (e.g., 1.7 % in DG ver-
sus 4.6 % in NG; Table 1), and thereby reduce proportions
of aliphatic and lignin biomarkers in SOM. The investigation
for the different size fractions of soils is greatly needed in
future study in order to ascertain which mechanism is more
important for observed change patterns of different biomark-
ers.

With land use changes such as cultivation activities, plant-
ing indigenous grasses, banning grazing and groundwater
supply, the abundance ofω-OH alkanoic acids andα-OH
alkanoic acids in soils increased in RG and GG compared
to NG, whereas the abundance of lignins and free lipids sig-
nificantly decreased (Fig. 3). In the grassland ecosystems,
long-chainω-OH alkanoic acids are predominantly derived
from suberin of roots (Kolattukudy and Espelie, 1989; Otto
and Simpson, 2006b), whereasα-OH alkanoic acids are char-
acteristic of both cutin of leaf waxes and suberin of roots
(Deleeuw et al., 1995; Otto and Simpson, 2006a). In order
to estimate response of biomarkers to land use changes, we
defined an enrichment factor (EC) which is a ratio of the
biomarker concentration in the disturbed grasslands over the
native grasslands. The mean values ofEC were 1.69 (GG)
and 1.66 (RG) forω-OH alkanoic acids, 1.24 (GG) and
1.18 (RG) forα-OH alkanoic acids, but only 0.64 (GG) and
0.87 (RG) for lignin-phenols (Table 3), suggesting that more
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suberin-derived carbon have been sequestered in soils. In or-
der to better understand this SOM change, the next step will
be the quantification of biomass inputs in Inner Mongolian
grasslands with different degrees of human disturbance.

6 Conclusions

By analyzing bulk and biomarker characteristics of grass-
land soils in Inner Mongolia (China), we confirm that land
use changes alter soil organic carbon not only in quan-
tity but also in molecular compositions. Over 10 years of
overgrazing has caused about a 50 % reduction of soil or-
ganic carbon and nitrogen, whereas the groundwater supply
and potato cultivation-restoration activities have been bene-
ficial for the accumulation of soil organic carbon and nitro-
gen. With land use changes, the root-derived aliphatic car-
bon (e.g., suberin) are preferentially preserved in soils com-
pared to aboveground-derived carbon. This finding is impor-
tant for the prediction of global carbon cycling under cli-
mate and land use changes, since root-derived carbon (par-
ticularly aliphatic suberin) has longer residence time than
aboveground carbon (Rasse et al., 2005) and other type of or-
ganic carbon (e.g., lignin) in soils (Feng and Simpson, 2007;
Lorenz et al., 2007). A future study will be the quantification
of biomass inputs from different vegetation to better under-
stand soil organic matter dynamic under the different land
uses in Inner Mongolia.
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Appendix A

Figure A1. Map of the sampling sites in Inner Mongolia, northern
China.

 

Fig. S2. Gas chromatograms of (A) solvent extractable fraction; (B) base hydrolysable 

fraction and (C) CuO oxidation products of grassland soils in Inner Mongolia, northern 

China. ▲: n-alkanes; ★: n-alkanols; *: n-fatty acids (FA); ⊗: ω-OH-FA; ∅: sterols; •: 

sugars; +: n-diacids (DA); ♦: α-OH-FA. Numbers refer to total carbon numbers in 

individual biomarkers. Pal: p-Hydroxybenzaldehyde; Pon: p-Hydroxyacetophenone; 

Pad: p-Hydroxybenzoic acid; Val: vanillin; Sal: syringaldehyde; Von: acetovanillone; 

Son: acetosyringone; Vad : vanillic acid; Sad: syringic acid; Cad: p-coumaric acid; Fad: 

ferulic acid. 
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Figure A2. Gas chromatograms of(a) solvent extractable fraction;
(b) base hydrolysable fraction and(c) CuO oxidation products of
grassland soils in Inner Mongolia, northern China:n-alkanes;?: n-
alkanols; *:n-fatty acids (FA);⊗: ω-OH-FA; ∅: sterols;•: sugars;
+: n-diacids (DA); �: α-OH-FA. Numbers refer to total carbon
numbers in individual biomarkers. Pal:p-Hydroxybenzaldehyde;
Pon:p-Hydroxyacetophenone; Pad:p-Hydroxybenzoic acid; Val:
vanillin; Sal: syringaldehyde; Von: acetovanillone; Son: acetosy-
ringone; Vad : vanillic acid; Sad: syringic acid; Cad:p-coumaric
acid; Fad: ferulic acid.
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