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Abstract. Carbon sequestration in the ocean is of great con-
cern with respect to the mitigation of global warming. How
to hold the fixed organic carbon in the presence of tremen-
dous numbers of heterotrophic microorganisms in marine
environments is the central issue. We previously hypothe-
sized that excessive nutrients would ultimately decrease the
storage of organic carbon in marine environments. To test
this, a series of in situ nutrient enrichment incubation exper-
iments were conducted at a site (17.59◦ N, 127.00◦ E) within
the western Pacific oligotrophic gyre. Five treatments were
employed: glucose (Glu), algal exudation organic material
(EOM), nitrate (N) and phosphate (P), N and P in combina-
tion with glucose and a control with no added nutrients. The
results showed that the dissolved organic carbon consump-
tion rates and bacterial community specific growth rates were
enhanced by inorganic nutrient enrichment treatments during
the initial 48 h incubation. At the end of 14 days of incuba-
tion, about one-third (average 3.3 µmol C kg−1) more organic
carbon was respired in the glucose-enriched incubation with
the addition of inorganic nutrients compared to that without.
In contrast, when nutrients were limiting, glucose could not
be efficiently used by the bacteria and thus it remained in
the environment. These results suggest that repletion of in-
organic nutrients could facilitate microbial consumption of
organic carbon and thus has a significant impact on carbon
cycling in the environment.

1 Introduction

Dissolved organic carbon (DOC) in the ocean, as one of
the largest carbon reservoirs on the earth, is comparable

to the entire atmospheric CO2 reservoir (∼ 750 Gt; Hedges,
1992; Ogawa and Tanoue, 2003) and plays an important role
in global carbon cycling and climate change. A great deal
of research effort has been directed to the processes and
mechanisms involved in DOC dynamics, including produc-
tion, consumption, and long-term storage of DOC. Recalci-
trant dissolved organic carbon (RDOC), which comprises the
largest portion of the bulk ocean DOC reservoir, can persist
for thousands of years in the water column (Blitz, 1992), con-
stituting significant carbon sequestration in the ocean. There-
fore, how RDOC is produced and stored is essential for un-
derstanding DOC dynamics and has been one of the hot top-
ics among biogeochemists for more than a decade (Sønder-
gaard et al., 2000; Kragh and Søndergaard, 2004; Eichinger
et al., 2009; Kragh and Søndergaard, 2009). Recently, the
role of microbes in formation of RDOC is proposed as the
microbial carbon pump (MCP) (Jiao et al., 2010a). One of
the MCP rationales lies in the constraints of microbial DOC
consumption (Jiao et al., 2011).

Although great progress has been made in microbial
growth and production under different environmental con-
ditions in the past decades (e.g., Goldman, 1987; Zweifel
et al., 1993; Carlson and Ducklow, 1996; Cherrier et al.,
1996; Cotner et al., 1997; Kirchman and Rich, 1997; Rivkin
and Anderson, 1997; Thingstad et al., 1998; Carlson et al.,
2002; Caron et al., 2000; Sala et al., 2002; Pinhassi et al.,
2006), controversy remains to be addressed regarding re-
maining DOC versus nutrient availability. It is generally con-
sidered that enrichment of inorganic nutrients can result in
the enhancement of primary production (Falkowski et al.,
1998), subsequently leading to enhanced DOC release into
the environment (Carlson et al., 1994; Biddanda and Benner,
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1997; Hansell and Carlson, 1998). However, such DOC is
highly available to heterotrophic consumption, and thus can-
not build up high concentrations (Roson et al., 1999; Chen
et al., 2007). On the other hand, the so-called “malfunction
of the microbial loop” effect could cause degradable DOC
accumulation in productive surface water (Thingstad et al.,
1997). Obviously carbon storage in the environment is not
necessarily the result of nutrient enrichment. In fact, eutroph-
ication waters such as estuaries are often sources rather than
sinks of CO2 (Laruelle et al., 2010; Yuan et al., 2010). There-
fore, we proposed that excessive inorganic nutrients would
play against organic carbon storage in the marine environ-
ment (Jiao et al., 2010b). To test this point, nutrient enrich-
ment experiments should be carried out in oligotrophic wa-
ters rather than coastal waters where sources of nutrients and
DOC were myriad (Coble et al., 1990; Cabaniss and Shuman,
1987). In the present study, we conducted a set of in situ mi-
crocosm experiments in the western Pacific gyre where the
low background concentrations of nutrients (below detection
limit) and DOC (81.5 µmol C kg−1) allowed us to check the
effects of nutrient enrichment on resistance of DOC to mi-
crobial consumption manifestly.

2 Materials and methods

2.1 Experimental design and sampling

Seawater was collected from a depth of 75 m in the west-
ern Pacific Ocean (17.59◦ N, 127.00◦ E), using a rosette sam-
pler with a conductivity–temperature–depth instrument on 27
November 2012. The experiment was carried out with 10
microcosms (polycarbonate bottles, 20 L) which were pre-
acid-washed and rinsed with sample water. The filter system
was pre-cleaned with copious ultrapure water and seawater
in turn to minimize carbon contamination. Each microcosm
was filled with 20 L seawater pre-filtered through a 3 µm fil-
ter. Treatments were amended with organic carbon sources
and inorganic nutrients as described in Table 1. Each treat-
ment was conducted in replicate. The microcosms were in-
cubated at 28± 0.5◦C in darkness. Cultures were sampled
at hour 0, 3, 6, 12, 24, 36, 48, 96, 168 and 336, and water
samples were stored at−20◦C until analysis.

2.2 Algal culture and dissolved organic
material extraction

Axenic culture ofPhaeodactylum tricornutumwas incubated
in f/2 medium with artificial seawater under a photon flux
of 112 µE m−2 s−1 and a 10 h light/14 h dark cycle, with a
temperature of 20± 0.5◦C. To separate the medium from
any algal cells, the culture was filtered through a 3 µm fil-
ter when the stationary growth phase was reached. The algal
exudation organic material (EOM) was extracted from the
medium using solid-phase extraction cartridges (PPL, 1 g,
Agilent, Bond Elut) following Dittmar et al. (2008). The al-

gal filtrate was acidified with HCl (final pH= 2) prior to
passing through the cartridges. Ultrapure water (also acidi-
fied to pH= 2 with HCl) was then used to remove excess
salt from the cartridges, which secures the identical nutrient
background between the EOM treatment and control. The
EOM was eluted with methanol into pre-combusted glass
vials (40 mL) after the sorbent was dried with nitrogen gas.
The EOM was stored at−20◦C until the evaporation of
methanol by nitrogen gas had been achieved. Before being
transferred to the microcosms, the EOM was re-dissolved in
10 mL ultrapure water. Phytoplankton-derived organic matter
plays a key role in carbon cycling due to its bioavailability.
However the dissolved fraction was relatively low, account-
ing for only about 5 % of the total released organic carbon
of Phaeodactylum tricornutum(Becker et al., 2014). Fur-
thermore, it is noteworthy that solid-phase extraction does
not concentrate all algae exudate molecule equally, and only
about 3.5 % of total algae exudate organic carbon was recov-
ered finally in this study.

2.3 Total DOC (TOC) analysis

Total dissolved organic matter was measured using the high-
temperature combustion method with a Shimadzu TOC-V
CPH TOC analyzer. To avoid potential organic carbon con-
tamination, a filtration procedure was not applied in sam-
pling. Consequently, bacterial biomass carbon was not ruled
out, but it contributes less than 1 % of TOC (Carlson and
Ducklow, 1996). The samples were collected in glass vials
(40 mL) with glass pipettes. All the glass apparatuses em-
ployed in sampling were pre-acid cleaned and combusted
(500◦C, 6 h). Water samples were then acidified to pH= 2
with H3PO4 and stored at−20◦C until analysis. TOC mea-
surement was based on Callahan et al. (2004). Culture sam-
ples were taken at hour 0, 3, 6, 12, 24, 36, 48, 96, 168 and
336.

In this study, bacteria were considered as particulate or-
ganic carbon (POC) in the microcosm culture. POC con-
centration was estimated from bacterial abundance (BA) and
the bacterial carbon conversion factor (CCF), which was as-
sumed to be 20 fg C cell−1 based on the natural planktonic
assemblage (Lee and Fuhrman, 1987). The POC concentra-
tion could then be calculated using the following equation:

POC concentration= BA × CCF. (1)

DOC was defined as the TOC which did not include POC
(the bacterial biomass carbon). Therefore, DOC concentra-
tion was calculated as

DOC concentration= TOC concentration− POC concentration.

(2)

In theory, the organic carbon decrease in the incubation sys-
tem was the overall consequence of bacterial biomass carbon
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Table 1. Initial organic carbon and inorganic nutrient enrichment treatments in the experiments.

Carbon amendment Inorganic nutrient amendment

Treatments Glucose EOM Inorganic nitrogen Inorganic phosphate
(µmol C kg−1) (µmol C kg−1) (µmol N kg−1) (µmol P kg−1)

Glu+ N + P 7.9 non 1.53 0.11
Glu 7.0 non nd nd
EOM non 7.0 nd nd
N + P non non 1.54 0.11
Control non non nd nd

“non” means no organic carbon enrichment, and the background TOC concentration was 81.5 µmol C kg−1.
“nd” means below the detection limit.

(POC) increase and bacterial respiration consumption which
is comparable to the observed net TOC reduction (Carlson et
al., 1999). Therefore, the bacterial respiration rate was esti-
mated as

bacterial respiration rate= 1TOC concentration/1t. (3)

2.4 BA analysis and specific growth rate

The culture was sampled at hour 0, 3, 6, 12, 24, 36, 48, 96,
120, 144, 168 and 336. Samples were fixed with glutaralde-
hyde to a final concentration of 1 % (Vaulot et al., 1989) and
frozen in liquid nitrogen prior to storage at−80◦C. Bacteria
were stained with SYBR Green I (Marie et al., 1997) be-
fore using a flow cytometer (Becton Dickinson), and the au-
totrophs were run separately without being stained (Jiao et
al., 2005).

Specific growth rate was measured from 0 to 48 h and from
120 to 168 h and calculated as follows:

specific growth rate= ln(1BA)/1t, (4)

where1BA represents the observed net change in BA.

2.5 Analysis of dissolved inorganic
nutrient concentration

The concentrations of dissolved inorganic nutrients in the
samples were measured using a Technicon AA3 Auto-
Analyzer (Bran-Lube, GmbH). The copper–cadmium reduc-
tion method was employed to determine the dissolved in-
organic nitrogen (DIN, nitrate and nitrite) concentrations of
each sample. The spectrophotometric method was employed
to determine dissolved inorganic phosphorus (DIP) concen-
tration (Knap et al., 1996). The detection limits for DIN and
DIP were 0.1 µmol kg−1 and 0.08 µmol kg−1.

3 Results and discussion

3.1 Dynamics of BA and growth rate

In general, BA in all treatments showed a similar growth
pattern transitioning through lag, logarithmic and station-

Figure 1. Variations of bacterial abundance during the incubation
time course in various treatments. Error bars indicate the standard
errors.

ary phases but with different levels of maximum abundance
(Fig. 1). Compared to the control, the most pronounced dif-
ferences were observed in the Glu+ N + P treatment, fol-
lowed by the EOM and N+ P treatments. In contrast, the
glucose (Glu) treatment did not show much difference from
the control. The specific growth rates during 0–48 h of all
the treatments, except for the Glu treatment, were signifi-
cantly higher than that of the control (analysis of variance
(ANOVA) test, p < 0.05) (Table 2). In the Glu treatment the
no/slight bacterial response to enrichment with Glu, a la-
bile DOC source, seemed to be unreasonable, but such sit-
uations do exist in oligotrophic oceans as reported in the Sar-
gasso Sea (Carlson et al., 1996). These results actually sug-
gest a case of nutrient limiting rather than carbon limiting
for the microbial community. In our study, the bacterial spe-
cific growth rate in N+ P treatments was significantly higher
than that in the control (ANOVA test,p < 0.05) (Table 2),
and the same result was obtained for BA at 48 h (Fig. 1), in-
dicating that inorganic nutrient addition could stimulate bac-
terial growth in the logarithmic phase. This was consistent
with the results of Carlson et al. (2002) from the Sargasso
Sea (2 days, 0.08 cell L−1 d−1 and 0.06 cell L−1 d−1). When
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Table 2.The DOC consumption rate, bacterial community specific growth rate, bacterial abundance (BA) and bacterial respiration rate (BR)
in the incubation experiments.

DOC BA (336 h) BR
Treatments consumption Specific growth rate (h−1) (105 cell (µmol C

rate (0–48 h) 0–48 h 120–168 h mL−1) kg−1 d−1)

Glu+ N + P 0.232± 0.038 0.022± 0.0008 0.005± 0.0005 12.82± 0.51 5.46± 0.19
Glu 0.141± 0.021 0.009± 0.0002 – 6.30± 0.06 3.45± 0.58
EOM 0.163± 0.028 0.015± 0.0003 0.006± 0.0008 8.94± 0.26 3.50± 0.88
N + P 0.170± 0.022 0.012± 0.0005 – 7.43± 0.17 4.03± 0.27
Control 0.134± 0.024 0.008± 0.0003 – 5.88± 0.37 3.46± 0.46

The DOC consumption rate was estimated from the absolute value of the slope of the linear regression on all collected data of
DOC concentration during 0–48 h. The BR was estimated from the observed net TOC concentration reduction in the
corresponding incubation time (0–48 h).
– Non-measurement during 120–168 h due to no obvious bacterial abundance enhancement.
Data were mean± SE (standard error).

Glu was with N+ P, it made the most robust difference, and
the BA reached 1.25× 106 cells mL−1 at 48 h, which was the
highest value among all the treatments, with specific growth
rates of 1.8- to 2.5-fold that of the N+ P treatments dur-
ing the 0–48 h incubation (Fig. 1 and Table 2). These re-
sults demonstrated that even labile DOC such as Glu could
not be used by microbes and would be left over in the envi-
ronment if no essential nutrients were available. On the one
hand, this meant that bacterial growth not only required or-
ganic carbon but also required inorganic nutrients; it may be
possible for a labile DOC molecule to become semi-labile
or instantly refractory to bacteria if nutrients are not avail-
able. The argument could be raised here as to whether in-
organic nutrients are essential for bacteria. The results of
EOM treatment (without supplementary inorganic nutrients)
showed that the BA and specific growth rate were signifi-
cantly higher than in the control and even other treatments
(except for the Glu+ N + P treatment) during the 0–48 hour
period. Since EOM must contain organic nitrogen, phospho-
rus and other elements, it is possible to say that elemental
balance is a key for bacterial growth and abundance. In the
case where the labile organic matter (which contains diverse
elements) is not enough, inorganic nutrients could be substi-
tuted to meet the bacterial demand for growth elements in the
oligotrophic ocean.

3.2 Dynamics of the inorganic nutrients

Dissolved inorganic nutrient (N and P) concentrations in
non-nutrient enrichment treatments (Glu, EOM and con-
trol treatments) were all below the detection limits (Fig. 2a
and b). For the nutrient (N and P)-enriched treatments,
the variation of nutrient concentrations during the incuba-
tion time course was different between the Glu+ N + P
and N+ P treatments. In the Glu+ N + P treatment, af-
ter a lag phase (0–12 h), the DIN decreased rapidly from
1.45 to 0.77 µmol N kg−1 during the 12–48 h period, and
then maintained a low level (around 0.66 µmol N kg−1) dur-

ing the 48–336 h period (Fig. 2a). In contrast, the DIN in
the N+P treatment showed a prolonged gradual reduction
over the 0–336 h incubation time course, decreasing from
1.54 to 1.13 µmol N kg−1 in total (Fig. 2a). Moreover, in the
Glu+ N + P treatment, the DIP was rapidly consumed dur-
ing the first 6 h (0.11 to 0.09 µmol P kg−1) and reduced to be-
low the detection limit within 12 h (Fig. 2b). In the N+ P
treatment, however, DIP decreased slowly from 0.11 to
0.09 µmol P kg−1, during 0–72 h, and then suddenly dropped
to below the detection limit after 96 h (Fig. 2b). The differ-
ence in dynamics of the nutrients between the Glu+ N + P
and N+ P treatments suggested that inorganic nutrient up-
take could be significantly enhanced by labile organic carbon
(e.g., Glu) enrichment.

3.3 Dynamics of TOC and DOC concentrations

TOC concentrations in all treatments, including the control,
were monitored during the entire incubation time course
(336 h) to check the differences in consumption of organic
carbon between the treatments. Generally, TOC concentra-
tions decreased rapidly in the initial 48 h and then became
relatively stable during the later hours (48–336 h) at differ-
ent levels in different treatments (Fig. 3). The fraction of
DOC consumed in the first 48 h accounted for 8 to 13 %
of the initial bulk DOC varying with different treatments
(Table 2). The Glu+ N + P treatment showed the highest
DOC consumption rate (0.232 µmol C kg−1 h−1) among all
the treatments, most likely due to the combined effects of
nutrient and organic carbon enrichment. DOC consump-
tion rates in the N+ P treatment ranked second highest
(0.170 µmol C kg−1 h−1), indicating that nutrient enrichment
did stimulate the uptake of organic carbon as previously hy-
pothesized (Jiao et al., 2010b). The DOC consumption rate
in the EOM treatment (0.163 µmol C kg−1 h−1) was simi-
lar to the N+ P treatment. However, the mechanism be-
hind DOC utilization could be quite different. EOM pro-
vided not only carbon but also the other elements including
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Figure 2. Variations of dissolved inorganic nitrogen and phosphate concentrations during the incubation time course of the nutrient-enriched
treatments. (Non-inorganic-nutrient-enrichment treatments are not shown since they were below the detection limits.) Value “0” in(b) means
below the detection limit. Error bars indicate standard errors.

Figure 3. Variations of TOC concentrations during the incubation
time course of various treatments. The non-linear regression lines
were obtained from the corresponding TOC concentration observa-
tions during the entire incubation. Symbols shown in the figure are
the mean values of TOC concentrations at each sampling point.

N and P necessary for the bacterial demand. In contrast
if only organic carbon had been supplied, like the case
of Glu treatment, bacteria may not have been able to use
much carbon (0.141 µmol C kg−1 h−1, similar to the control,
0.134 µmol C kg−1 h−1) due to the elemental limitation of N
and P (Table 2). A number of studies have shown that algal
excretions are a complex mixture of organic material, com-
prised largely of polysaccharides, small nitrogenous com-
pounds, lipids, vitamins, etc. (Goldman et al., 1992; Myk-
lestad et al., 1989; Mague et al., 1980). Therefore EOM could
have been more efficient than Glu alone for bacterial growth
in oligotrophic waters. It is noteworthy that while the DOC
consumption rates in the EOM and N+ P treatments were
similar, the bacterial respiration rates in the two treatments
were quite different (higher in the latter; Table 2), which was
likely due to the fact that more energy is needed for the syn-

thesis of biomass (protein etc.) in the case of N+ P treatment.
Among all the treatments, the highest bacterial respiration
rates were observed in the Glu+ N + P treatment, contrast-
ing to the lowest in the Glu treatment, which was actually the
same as the control. Taking together the DOC consumption
and bacterial respiration, it was clear that inorganic nutrients
stimulated bacterial respiration and led to more carbon con-
sumption in the same organic carbon availability scenario.

As the less organic carbon used by microbes, the more or-
ganic carbon would be left in the environment. Compared
to the Glu treatment, more than 3.3 µmol C kg−1 TOC on
average was consumed in the Glu+ N + P treatment after
336 h incubation. This suggested that inorganic nutrient en-
richment was not beneficial for organic carbon persistence,
and that the bio-availability and lability of an organic carbon
compound could be situation-specific. Therefore, the term
RDOC could be refined as the deep ocean RDOC (which
has generally been used by chemists), and situational RDOC
(Jiao et al., 2014), which means that it can hold recalcitrance
under certain conditions but may become bioavailable when
conditions change (such as nutrient enrichment). Such situ-
ations actually exist in the oceans. For example, the highest
DOC concentration among the oceanic waters of the world
is located in the Southern Ocean gyre (Hansell et al., 2009),
where nutrients are limiting, and stratification is strong.

Before the present study, there were many studies on the
limiting factors of bacterial growth and/or bacterial produc-
tion (Supplement Table S1), and the results differ among dif-
ferent experiments. In some cases enrichment of inorganic
nutrient (N and/or P) stimulated bacterial growth and/or bac-
terial production (Rivkin and Anderson, 1997; Cotner et al.,
1997; Thingstad et al., 1998; Caron et al., 2000; Sala et al.,
2002; Pinhassi et al., 2006), while in other cases bacterial
growth and/or production were proven to be limited by or-
ganic carbon (Kirchman and Rich, 1997; Rivkin and Ander-
son, 1997; Pinhassi et al., 2006). Meanwhile co-limitation
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by organic carbon and inorganic nutrients was also reported
(Pomeroy et al., 1995; Donachie et al., 2001; Hoikkala et al.,
2009). These studies mainly focused on the microbial abun-
dance/production/respiration rather than organic carbon left
over in the environment, although some of them have dis-
cussed DOC dynamics. There were a few studies that fol-
lowed DOC dynamics during the incubations, and found that
organic carbon rather than nutrients is the limiting factor for
bacterial activities (Cherrier et al., 1996; Carlson et al., 1996;
Carlson et al., 2002).

In contrast, the direct coupling between DOC dynamics
and bacterial activities in the present study showed that inor-
ganic nutrients rather than organic carbon were the limiting
factor in the Pacific oligotrophic gyre. Meanwhile our study
showed the negative effects of nutrient enrichment on DOC
persistence in the environment.

4 Conclusions and prospects

It is generally known that enrichment of inorganic nutrients
would increase carbon fixation, but this is not necessarily
true for carbon preservation in the environment. Our in situ
incubation experiments in the western Pacific gyre showed
that nitrate and phosphate addition stimulated organic carbon
consumption and bacterial respiration and ultimately resulted
in reduction of organic carbon remained in the environment.
In contrast, if nitrogen and phosphorus are limiting (olig-
otrophic case), even if provided with labile carbon molecules
such as glucose, bacteria may not take it up efficiently. On
the other hand, natural labile organic matter such as EOM,
containing multiple elements, would fuel bacteria efficiently.
Taken together, these recognitions are useful for interpret-
ing some paradoxes such as why eutrophic estuarine waters
are often sources rather than sinks of CO2. That is, although
nutrients are rich in estuarine waters, autotrophs are limited
by light availability, whereas heterotrophic microbes could
be simulated by both labile DOC such as EOM and deplete
nutrients. As a result, consumption of environmental organic
carbon (including some of the river discharged) could exceed
primary production resulting in outgassing rather than up-
take of CO2 in the system. These recognitions can be referred
to for coastal water management regarding ecological health
and carbon sequestration. Further studies are desired to ex-
plore the concentration ranges, optimum elemental ratios of
nutrients which are most favorable for shifting the carbon cy-
cle equilibrium towards organic carbon storage in a variety of
marine environments.

The Supplement related to this article is available online
at doi:10.5194/bg-11-5115-2014-supplement.
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