

SUPPLEMENTARY MATERIAL

Model development

General

5 *Ecosys* is an hourly time-step model with multiple canopy and soil layers that
6 provide a framework for different plant and microbial populations to acquire, transform
7 and exchange resources (energy, water, C, N and P). The model is constructed from
8 algorithms representing basic physical, chemical and biological processes that determine
9 process rates in plant and microbial populations interacting within complex biomes. These
10 algorithms interact to simulate complex ecosystem behaviour across a wide range of
11 spatial and biological scales. The model is designed to represent terrestrial ecosystems
12 under range of natural and anthropogenic disturbances and environmental changes at patch
13 (spatially homogenous one-dimensional) and landscape (spatially variable two- or three-
14 dimensional) scales. A comprehensive description of *ecosys* with a detailed listing of
15 inputs, outputs, governing equations, parameters, results and references can be found in
16 Grant (2001). A more detailed description of model algorithms and parameters most
17 relevant to simulating temperature, water and nutrient effects on net ecosystem
18 productivity (NEP) is given below, with reference to equations and variable definitions in
19 appendices A-H below.

20 Appendix A: Soil C, N and P transformations

21 Decomposition

22 Organic transformations in *ecosys* occur in five organic matter–microbe
23 complexes (coarse woody litter, fine non-woody litter, animal manure, particulate organic

24 matter (POM), and humus) in each soil layer. Each complex consists of five organic
25 states: solid organic matter (S), dissolved organic matter (Q), sorbed organic matter (A),
26 microbial biomass (M), and microbial residues (Z), among which C, N, and P are
27 transformed. Organic matter in litter and manure complexes are partitioned from
28 proximate analysis results into carbohydrate, protein, cellulose, and lignin components of
29 differing vulnerability to hydrolysis. Organic matter in POM, humus, microbial biomass
30 and microbial residues in all complexes are also partitioned into components of differing
31 vulnerability to hydrolysis.

32 The rate at which each component of each organic state in each complex is
33 hydrolyzed during decomposition is a first-order function of the decomposer biomass (M)
34 of all heterotrophic microbial populations [A1]. Decomposer biomasses are redistributed
35 among complexes from active biomasses according to biomass-substrate concentration
36 differences (priming) [A3]. The rate at which each component is hydrolyzed is also a
37 Monod function of substrate concentration [A3, A5], calculated from the fraction of
38 substrate mass colonized by M [A4]. Hydrolysis rates are controlled by soil temperature
39 (T_s) through an Arrhenius function [A6] and by soil water content (θ) through its effect
40 on aqueous microbial concentrations ($[M]$) [A3, A5] in surface litter and in a spatially
41 resolved soil profile. T_s and θ are calculated from surface energy balances and from heat
42 and water transfer schemes through canopy–snow–residue–soil profiles. Release of N and
43 P from hydrolysis of each component in each complex is determined by its N and P
44 concentrations [A7] which are determined from those of the originating litterfall as
45 described in *Autotrophic respiration and Growth and senescence* below. Most non-lignin
46 hydrolysis products are released as dissolved organic C, N and P (DOC, DON, and DOP)

47 which are adsorbed or desorbed according to a power function of their soluble
48 concentrations [A8-A10].

49 **Microbial growth**

50 The DOC decomposition product is the substrate for heterotrophic respiration (R_h)
51 by all M in each substrate-microbe complex [A13]. Total R_h for all soil layers [A11]
52 drives CO₂ emission from the soil surface through volatilization and diffusion. R_h may be
53 constrained by microbial N or P concentrations, T_s , DOC and O₂ [A12 - A14]. O₂ uptake
54 by M is driven by R_h [A16] and constrained by O₂ diffusivity to microbial surfaces [A17],
55 as described for roots in *Autotrophic respiration and Growth and senescence* below.
56 Thus R_h is coupled to O₂ reduction by all aerobic M according to O₂ availability. R_h not
57 coupled with O₂ reduction is coupled with the sequential reduction of NO₃⁻, NO₂⁻, and
58 N₂O by heterotrophic denitrifiers, and with the reduction of organic C by fermenters and
59 acetotrophic methanogens. In addition, autotrophic nitrifiers conduct NH₄⁺ and NO₂⁻
60 oxidation, and NO₂⁻ reduction, and autotrophic methanogens and methanotrophs conduct
61 CH₄ production and oxidation.

62 All microbial populations undergo maintenance respiration (R_m) [A18, A19],
63 depending on microbial N and T_s as described earlier for plants. R_h in excess of R_m is
64 used in growth respiration R_g [A20], the energy yield ΔG of which drives growth in
65 biomass M from DOC uptake according to the energy requirements of biosynthesis [A21-
66 A22]. R_m in excess of R_h causes microbial dieback. M also undergoes first-order
67 decomposition (D_m) [A23]. Internal retention and recycling of microbial N and P during
68 decomposition [A24] is modelled whenever these nutrients constrain R_h [A12]. Changes

69 in M arise from differences between gains from DOC uptake and losses from $R_m + R_g +$
70 D_m [A25].

71 **Microbial nutrient exchange**

72 During these changes, all microbial populations seek to maintain set minimum
73 ratios of C:N or C:P in M by mineralizing or immobilizing NH_4^+ , NO_3^- and H_2PO_4^-
74 [A26], thereby controlling solution $[\text{NH}_4^+]$, $[\text{NO}_3^-]$ and $[\text{H}_2\text{PO}_4^-]$ that determine root and
75 mycorrhizal uptake. If immobilization is inadequate to maintain these minimum ratios,
76 then biomass C:N or C:P may rise, but R_h is constrained by N or P present in the lowest
77 concentration with respect to that at the minimum ratio [A12]. Non-symbiotic
78 heterotrophic diazotrophs can also fix aqueous N_2 [A27] to the extent that immobilization
79 is inadequate to maintain their set minimum C:N, but at an additional respiration cost
80 [A28]. Changes in microbial N and P arise from DON and DOP uptake plus NH_4^+ , NO_3^-
81 and H_2PO_4^- immobilization and N_2 fixation, less NH_4^+ , NO_3^- , and H_2PO_4^- mineralization
82 and microbial N and P decomposition [A29].

83 **Humification**

84 C, N and P decomposition products in each organic matter-microbe complex are
85 gradually stabilized into more recalcitrant organic forms with lower C:N and C:P ratios.
86 Products from lignin hydrolysis [A1, A7] combine with some of the products from
87 protein and carbohydrate hydrolysis in the litterfall and manure complexes and are
88 transferred to the POM complex [A31-A34]. Microbial decomposition products [A23-
89 A24] from all complexes are partitioned between the humus complex and microbial
90 residues in the originating complex according to soil clay content [A35-A36].

91 **Appendix B: Soil-plant water relations**

92 **Canopy transpiration**

93 Canopy energy exchange in *ecosys* is calculated from an hourly two-stage
94 convergence solution for the transfer of water and heat through a multi-layered multi-
95 population soil-root-canopy system. The first stage of this solution requires convergence
96 to a value of canopy temperature (T_c) for each plant population at which the first-order
97 closure of the canopy energy balance (net radiation (R_n), latent heat flux (LE) [B1a,b,c],
98 sensible heat flux (H) [B1d], and change in heat storage (G) is achieved. These fluxes
99 are controlled by aerodynamic (r_a) [B3] and canopy stomatal (r_c) [B2] resistances. Two
100 controlling mechanisms are postulated for r_c which are solved in two successive steps:
101 (1) At the leaf level, leaf resistance (r_l) [C4] controls gaseous CO₂ diffusion through each
102 leaf surface when calculating CO₂ fixation [C1] from concurrent solutions for
103 diffusion (V_g) [C2] and carboxylation (V_c) [C3]. The value of r_l is calculated from a
104 minimum leaf resistance (r_{lmin}) [C5] for each leaf surface that allows a set ratio for
105 intercellular to canopy CO₂ concentration ($C_i:C_b$) to be maintained at V_c under
106 ambient irradiance, air temperature T_a , C_a and zero canopy water potential (ψ_c) (V_c').
107 This ratio will be allowed to vary diurnally as described in *C₃ gross primary*
108 *productivity* when ψ_c is solved in the second stage of the convergence solution.
109 Values of r_{lmin} are aggregated by leaf surface area to a canopy value (r_{cmin}) for use in
110 the energy balance convergence scheme [B2a].
111 (2) At the canopy level, r_c rises from r_{cmin} at zero ψ_c from step (1) above through an
112 exponential function of canopy turgor potential (ψ_t) [B2b] calculated from ψ_c and
113 osmotic water potential (ψ_π) [B4] during convergence for transpiration vs. water
114 uptake.

115 **Root and mycorrhizal water uptake**

116 Root and mycorrhizal water uptake (U) [B5] is calculated from the difference
117 between ψ_c and soil water potential (ψ_s) across soil and root hydraulic resistances (Ω _s
118 [B9] and Ω_r [B10 – B12]) in each rooted soil layer [B6]. Root resistances are calculated
119 from root radial [B10] and from primary [B11] secondary [B12] axial resistivities using
120 root lengths and surface areas from a root system submodel [B13] driven by exchange of
121 nonstructural C, N and P along concentration gradients generated by uptake vs.
122 consumption of C, N and P in shoots and roots (Grant, 1998a).

123 **Canopy water potential**

124 After convergence for T_c is achieved, the difference between canopy transpiration
125 (E_c) from the energy balance [B1] and total root water uptake (U_c) [B5] from all rooted
126 layers in the soil is tested against the difference between canopy water content from the
127 previous hour and that from the current hour [B14]. This difference is minimized in each
128 iteration by adjusting ψ_c which in turn determines each of the three terms in [B14].
129 Because r_c and T_c both drive E_c , the canopy energy balance described in *Canopy*
130 *transpiration* is recalculated for each adjusted value of ψ_c during convergence.

131 **Appendix C: Gross primary productivity and autotrophic respiration**

132 **C_3 gross primary productivity**

133 After successful convergence for T_c and ψ_c as described in *Canopy transpiration*,
134 V_c is recalculated from that under zero ψ_c (V_c') to that under ambient ψ_c . This
135 recalculation is driven by stomatal effects on V_g [C2] from the increase in r_{lmin} at zero ψ_c
136 [C5] to r_c at ambient ψ_c [C4], and by non-stomatal effects(f_ψ) [C9] on CO₂- and light-
137 limited carboxylation (V_b) [C6] and V_j [C7] (Grant and Flanagan, 2007). The

138 recalculation of V_c is accomplished through a convergence solution for C_i and its aqueous
139 counterpart C_c at which V_g [C2] equals V_c [C3] (Grant and Flanagan, 2007). The CO_2
140 fixation rate of each leaf surface at convergence is added to arrive at a value for gross
141 primary productivity (GPP) by each plant population in the model [C1]. The CO_2 fixation
142 product is stored in nonstructural C pools (σ_C) in each branch.

143 GPP is strongly controlled by nutrient uptake (U_{NH_4} , U_{NO_3} and U_{PO_4} [C23]),
144 products of which are added to nonstructural N (σ_N) and P (σ_P) in root and mycorrhizal
145 layers where they are coupled with σ_C to drive growth of branches, roots and
146 mycorrhizae as described in *Growth and senescence*. Low $\sigma_N:\sigma_C$ or $\sigma_P:\sigma_C$ in branches
147 indicate excess CO_2 fixation with respect to N or P uptake for phytomass growth. Such
148 ratios in the model have two effects on GPP:

149 (1) They reduce activities of rubisco [C6a] and chlorophyll [C7a] through product
150 inhibition [C11], thereby simulating the suppression of CO_2 fixation by leaf σ_C
151 accumulation widely reported in the literature.

152 (2) They reduce the structural N:C and P:C ratios at which leaves are formed because σ_C ,
153 σ_N and σ_P are the substrates for leaf growth. Lower structural ratios cause a
154 proportional reduction in areal concentrations of rubisco [C6b] and chlorophyll [C7b],
155 reducing leaf CO_2 fixation.

156 **Autotrophic respiration**

157 The temperature dependent oxidation of these nonstructural pools (R_c) [C14], plus
158 the energy costs of nutrient uptake [C23], drive autotrophic respiration (R_a) [C13] by all
159 branches, roots and mycorrhizae. R_c by roots and mycorrhizae is constrained by O_2
160 uptake (U_{O_2}) [C14b] calculated by solving for aqueous O_2 concentrations at root and

161 mycorrhizal surfaces ($[O_{2r}]$) at which convection + radial diffusion through the soil
162 aqueous phase plus radial diffusion through the root aqueous phase [C14d] equals active
163 uptake driven by O_2 demand from R_c [C14c] (Grant, 2004). These diffusive fluxes are in
164 turn coupled to volatilization -dissolution between aqueous and gaseous phases in soil
165 and root [D14]. The diffusion processes are driven by aqueous O_2 concentrations
166 sustained by transport and dissolution of gaseous O_2 through soil and roots (Grant, 2004),
167 and are governed by lengths and surface areas of roots and mycorrhizae (Grant, 1998a).
168 Thus R_c is coupled to O_2 reduction by all root and mycorrhizal populations according to
169 O_2 availability. R_c is first used to meet maintenance respiration requirements (R_m),
170 calculated independently of R_c from the N content in each organ, and a function of T_c or
171 T_s [C16]. Any excess of R_c over R_m is expended as growth respiration (R_g), constrained
172 by branch, root or mycorrhizal ψ_t [C17]. When R_m exceeds R_c , the shortfall is met by the
173 respiration of remobilizable C (R_s) in leaves and twigs or roots and mycorrhizae [C15].

174 **Growth and senescence**

175 R_g drives the conversion of branch σ_C into foliage, twigs, branches, boles and
176 reproductive material according to organ growth yields (Y_g) and phenology-dependent
177 partitioning coefficients [C20], and the conversion of root and mycorrhizal σ_C into
178 primary and secondary axes according to root and mycorrhizal growth yields. Growth
179 also requires organ-specific ratios of nonstructural N (σ_N) and P (σ_P) from U_{NH_4} , U_{NO_3}
180 and U_{PO_4} [C23] which are coupled with σ_C to drive growth of branches, roots and
181 mycorrhizae.

182 The translocation of σ_C , σ_N and σ_P among branches and root and mycorrhizal
183 layers is driven by concentration gradients generated by production of σ_C from branch

184 GPP and of σ_N and σ_P from root and mycorrhizal uptake vs. consumption of σ_C , σ_N and
185 σ_P from R_c , R_g and phytomass growth (Grant, 1998a). Low $\sigma_N:\sigma_C$ or $\sigma_P:\sigma_C$ in
186 mycorrhizae and roots indicates inadequate N or P uptake with respect to CO_2 fixation.
187 These ratios affect translocation of σ_C , σ_N and σ_P by lowering mycorrhizal-root-branch
188 concentration gradients of σ_N and σ_P while raising branch-root-mycorrhizal concentration
189 gradients of σ_C . These changes slow transfer of σ_N and σ_P from root to branch and hasten
190 transfer of σ_C from branch to root, increasing root and mycorrhizal growth at the expense
191 of branch growth, and thereby raising N and P uptake [C23] with respect to CO_2 fixation.
192 Conversely, high $\sigma_N:\sigma_C$ or $\sigma_P:\sigma_C$ in roots and mycorrhizae indicate excess N or P uptake
193 with respect to CO_2 fixation. Such ratios reduce specific activities of root and
194 mycorrhizal surfaces for N or P uptake through a product inhibition function as has been
195 observed experimentally. These changes hasten transfer of σ_N and σ_P from root to branch
196 and slow transfer of σ_C from branch to root, increasing branch growth at the expense of
197 root and mycorrhizal growth, and thereby slowing N and P uptake. Thus the modelled
198 plant translocates σ_C , σ_N and σ_P among branches, roots and mycorrhizae to maintain a
199 functional equilibrium between acquisition and use of C, N and P by different parts of the
200 plant.

201 R_g is limited by ψ_t [C17], and because branch ψ_t declines relatively more with soil
202 drying than does root ψ_t , branch R_g also declines relatively more with soil drying than
203 does root R_g , slowing oxidation of σ_C in branches and allowing more translocation of σ_C
204 from branches to roots. This change in allocation of σ_C enables more root growth to
205 reduce Ω_s , Ω_r and Ω_a , and hence increase U [B6], thereby offsetting the effects of soil

206 drying on ψ . Thus the modelled plant translocates σ_C , σ_N and σ_P among branches, roots
207 and mycorrhizae to maintain a functional equilibrium between acquisition and use of
208 water.

209 R_s [C15] drives the withdrawal of remobilizable C, N and P (mostly nonstructural
210 protein) from leaves and twigs or roots and mycorrhizae into σ_N and σ_P , and the loss of
211 associated non-remobilizable C, N and P (mostly structural) as litterfall [C18]. Provision
212 is also made to withdraw remobilizable N or P from leaves and twigs or roots and
213 mycorrhizae when ratios of $\sigma_N:\sigma_C$ or $\sigma_P:\sigma_C$ become smaller than those required for
214 growth of new phytomass. This withdrawal drives the withdrawal of associated
215 remobilizable C, and the loss of associated non-remobilizable C, N and P as litterfall.
216 Environmental constraints such as water, heat, nutrient or O_2 stress that reduce σ_C and
217 hence R_c with respect to R_m therefore hasten litterfall.

218 R_a of each branch or root and mycorrhizal layer is the total of R_c and R_s , and net
219 primary productivity (NPP) is the difference between canopy GPP [C1] and total R_a of all
220 branches and root and mycorrhizal layers [C13]. Phytomass net growth is the difference
221 between gains driven by R_g and Y_g , and losses driven by R_s and litterfall [C20]. These
222 gains are allocated to leaves, twigs, wood and reproductive material at successive branch
223 nodes, and to roots and mycorrhizae at successive primary and secondary axes, driving
224 leaf expansion [C21a] and root extension [C21b]. Losses from remobilization and
225 litterfall in shoots start at the lowest node of each branch at which leaves or twigs are
226 present, and proceed upwards when leaves or twigs are lost. Losses in roots and
227 mycorrhizae start with secondary axes and proceeds to primary axes when secondary
228 axes are lost.

229 **Root and mycorrhizal nutrient uptake**

230 Root and mycorrhizal uptake of N and P (U_{NH_4} , U_{NO_3} and U_{PO_4}) is calculated by
231 solving for solution $[\text{NH}_4^+]$, $[\text{NO}_3^-]$ and $[\text{H}_2\text{PO}_4^-]$ at root and mycorrhizal surfaces at
232 which radial transport by mass flow and diffusion from the soil solution to these surfaces
233 [C23a,c,e] equals active uptake by the surfaces [C23b,d,f]. Path lengths and surface areas
234 for U_{NH_4} , U_{NO_3} and U_{PO_4} are calculated from a root and mycorrhizal growth submodel
235 driven by exchange of nonstructural C, N and P along concentration gradients generated
236 by uptake vs. consumption of C, N and P in shoots and roots (Grant, 1998a). A product
237 inhibition function is included to avoid uptake in excess of nutrient requirements [C23g].

238 **C₄ gross primary productivity**

239 **C₄ mesophyll**

240 In C₄ plants, the mesophyll carboxylation rate is the lesser of CO₂- and light-
241 limited reaction rates [C26] (Berry and Farquhar, 1978). The CO₂-limited rate is a
242 Michaelis-Menten function of PEP carboxylase (PEPc) activity and aqueous CO₂
243 concentration in the mesophyll [C29] parameterized from Berry and Farquhar (1978) and
244 from Edwards and Walker (1983). The light-limited rate [C30] is a hyperbolic function of
245 absorbed irradiance and mesophyll chlorophyll activity [C31] with a quantum
246 requirement based on 2 ATP from Berry and Farquhar (1978). PEPc [C32] and
247 chlorophyll [C33] activities are calculated from specific activities multiplied by set
248 fractions of leaf surface N density, and from functions of C₄ product inhibition (Jiao and
249 Chollet, 1988; Lawlor, 1993) [C34], ψ_c [C35] as described in Grant and Flanagan
250 (2007)) and T_c [C36]. Leaf surface N density is controlled by leaf structural N:C and P:C

251 ratios calculated during leaf growth from leaf non-structural N:C and P:C ratios arising
252 from root N and P uptake (Grant, 1998a) vs. CO₂ fixation.

253 **C₄ mesophyll-bundle sheath exchange**

254 Differences in the mesophyll and bundle sheath concentrations of the C₄
255 carboxylation product drive mesophyll-bundle sheath transfer (Leegood, 2000) [C37].
256 The bundle sheath concentration of the C₄ product drives a product-inhibited
257 decarboxylation reaction (Laisk and Edwards, 2000) [C38], the CO₂ product of which
258 generates a concentration gradient that drives leakage of CO₂ from the bundle sheath to
259 the mesophyll [C39]. CO₂ in the bundle sheath is maintained in 1:50 equilibrium with
260 HCO₃⁻ (Laisk and Edwards, 2000). At this stage of model development, the return of a C₃
261 decarboxylation product from the bundle sheath to the mesophyll is not simulated.
262 Parameters used in Eqs. [C37-C39] allowed mesophyll and bundle sheath concentrations
263 of C₄ carboxylation products from [C40-C41] to be maintained at values consistent with
264 those in Leegood (2000), bundle sheath concentrations of CO₂ (from [C42]) to be
265 maintained at values similar to those reported by Furbank and Hatch (1987), and bundle
266 sheath CO₂ leakiness [C39]), expressed as a fraction of PEP carboxylation, to be
267 maintained at values similar to those in Williams et al. (2001), in sorghum as described in
268 Grant et al. (2004).

269 **C₄ bundle sheath**

270 A C₃ model in which carboxylation is the lesser of CO₂- and light-limited reaction
271 rates (Farquhar et al., 1980) has been parameterized for the bundle sheath of C₄ plants
272 [C43] from Seeman et al. (1984). The CO₂-limited rate [C44] is a Michaelis-Menten
273 function of RuBP carboxylase (RuBPc) activity and bundle sheath CO₂ concentration

274 [C42]. The light-limited rate [C45] is a hyperbolic function of absorbed irradiance and
275 activity of chlorophyll associated with the bundle sheath with a quantum yield based on 3
276 ATP [C46]. The provision of reductant from the mesophyll to the bundle sheath in
277 NADP-ME species is not explicitly simulated. RuBPc [C47] and chlorophyll [C48]
278 activities are the products of specific activities and concentrations multiplied by set
279 fractions of leaf surface N density, and from functions of C₃ product inhibition (Bowes,
280 1991; Stitt, 1991) [C49], ψ_c ([A12] from Grant and Flanagan (2007)) and T_c [C36].

281 Rates of C₃ product removal are controlled by phytomass biosynthesis rates
282 driven by concentrations of nonstructural products from leaf CO₂ fixation and from root
283 N and P uptake. If biosynthesis rates are limited by nutrient uptake, consequent depletion
284 of nonstructural N or P and accumulation of nonstructural C will constrain specific
285 activities of RuBP and chlorophyll [C47-C49], and thereby slow C₃ carboxylation [C43],
286 raise bundle sheath CO₂ concentration [C42], accelerate CO₂ leakage [C39], slow C₄
287 decarboxylation [C38], raise C₄ product concentration in the bundle sheath [C41], slow
288 C₄ product transfer from the mesophyll [C37], raise C₄ product concentration in the
289 mesophyll [C40], and slow mesophyll CO₂ fixation [C32-C35]. This reaction sequence
290 simulates the progressive inhibition of C₃ and C₄ carboxylation hypothesized by Sawada
291 et al. (2002) following partial removal of C sinks in C₄ plants.

292 **Appendix D: Soil water, heat, gas and solute fluxes**

293 **Surface water flux**

294 Surface runoff is modelled using Manning's equation [D1] with surface water
295 velocity (v) [D3] calculated from surface geometry [D5a] and slope [D5b], and with

296 surface water depth (d) [D2] calculated from surface water balance [D4] using kinematic
297 wave theory.

298 **Subsurface water flux**

299 Subsurface water flow [D7] is calculated from Richard's equation using bulk soil
300 water potentials (ψ_s) of both cells if both source and destination cells are unsaturated
301 [D9a], or Green-Ampt equation using ψ_s beyond the wetting front of the unsaturated cell
302 if either source or destination cell is saturated [D9b] (Grant et al., 2004). Subsurface
303 water flow can also occur through macropores using Poiseulle-Hagen theory for laminar
304 flow in tubes (Dimitrov et al., 2010), depending on inputs for macropore volume fraction.

305 **Exchange with water table**

306 If a water table is present in the model, subsurface boundary water fluxes between
307 saturated boundary grid cells and a fixed external water table are calculated from lateral
308 hydraulic conductivities of the grid cells, and from elevation differences and lateral
309 distances between the grid cells and the external water table [D10]. These terms are
310 determined from set values for the external water table depth (WTD_x) of, and lateral
311 distance (L_t) to, an external water table.

312 **Surface heat flux**

313 Surface heat fluxes (G) arising from closure of the energy balance at snowpack,
314 surface litter and soil surfaces [D11] (Grant et al., 1999) drive conductive-convective
315 fluxes among snowpack, surface litter and soil layers [D12]. These fluxes drive freezing-
316 thawing (Q_f) and changes temperatures (T) in snowpack, surface litter and soil layers
317 [D13].

318 **Gas flux**

319 All gases undergo volatilization-dissolution between the gaseous and aqueous
320 phases in the soil [D14a] and root [D14b], and between the atmosphere and the aqueous
321 phase at the soil surface [D15a], driven by gaseous-aqueous concentration differences
322 calculated from solubility coefficients and coupled to diffusive uptake by roots [C14] and
323 microbes [A17]. Gases also undergo convective-conductive transfer among soil layers
324 driven by gaseous concentration gradients and diffusivities [D16a,b,c] calculated from
325 air-filled porosities [D17a,b,c], and from each rooted soil layer directly to the atmosphere
326 through roots driven by gaseous concentration gradients and diffusivities [D16d]
327 calculated from root porosities [D17d]. Gases may also bubble upwards from soil zones
328 in which the total partial pressure of all aqueous gases exceeds atmospheric pressure
329 [D18].

330 **Solute flux**

331 All gaseous and non-gaseous solutes undergo convective-dispersive transfer
332 among soil layers driven by aqueous concentration gradients and dispersivities [D19]
333 calculated from water-filled porosity [D20] and water flow length [D21].

334 **Appendix E: Solute transformations**

335 **Precipitation-dissolution equilibria**

336 Solution $[\text{NH}_4^+]$, $[\text{NO}_3^-]$ and $[\text{H}_2\text{PO}_4^-]$ that drive U_{NH_4} , U_{NO_3} and U_{PO_4} [C23] are
337 controlled by precipitation, adsorption and ion pairing reactions (Grant and Heaney,
338 1997; Grant et al., 2004), including precipitation-dissolution of $\text{Al}(\text{OH})_3$, $\text{Fe}(\text{OH})_3$,
339 CaCO_3 , CaSO_4 , AlPO_4 , FePO_4 , $\text{Ca}(\text{H}_2\text{PO}_4)_2$, CaHPO_4 , and $\text{Ca}_5(\text{PO}_4)_3\text{OH}$ [E1 – E9],
340 cation exchange between Ca^{2+} , NH_4^+ and other cations [E10 – E15], anion exchange

341 between adsorbed and soluble H_2PO_4^- , HPO_4^{2-} and OH^- [E16 – E20], and ion pairing
342 [E22 – E55].

343 Key governing equations for simulating net ecosystem productivity in *ecosys*.
344 Variables input to the model appear in bold with values given in the *Definition of*
345 *Variables* below.

346 **Appendix F: N₂ fixation**

347 **Rhizobial growth**

348 Modelling the activity of symbiotic N₂ fixing bacteria in roots follows a protocol
349 similar to that of non-symbiotic N₂ fixing bacteria in soil. Respiration demand is driven
350 by specific activity, microbial biomass (M_n), and nonstructural C concentration ($[\chi_n]$) in
351 root nodules [F1], and is constrained by temperature [F2] and microbial N or P status
352 [F3]. Nodule respiration (R) is constrained by the extent to which O₂ uptake meets O₂
353 demand [F4] imposed by respiration demand [F5]. O₂ uptake is in turn constrained by
354 rhizosphere [O_{2r}] [F6a] which is controlled by radial diffusion of O₂ through soil water to
355 roots and nodules [F6b]. Soil water [O₂] is maintained by dissolution of O₂ from soil air
356 which is in turn maintained by soil-atmosphere gas exchange and vertical diffusion
357 (Grant, 2004). R_h is first allocated to maintenance respiration R_m [F7-F8] and the
358 remainder if any is allocated to growth respiration R_g [F9]. If R_m exceeds R_h , the shortfall
359 is made up from respiration of microbial protein C, forcing senescence and litterfall of
360 associated non-protein C [F10-F11].

361 **N₂ fixation**

362 N₂ fixation V_{N_2} is driven by R_g [F12], but is constrained by accumulation of
363 nonstructural N (ν_n) with respect to nonstructural C and P also required for microbial

364 growth in the nodule [F13]. v_n is the product of V_{N_2} , so that [F12] simulates the inhibition
365 of N_2 fixation by its product (Postgate, 1998). The value of V_{N_2} is also limited by the
366 additional N needed to maintain bacterial N content [N_n'] of M_n [F12], so that N_2 fixation
367 is constrained by the need of nodule bacteria for N not met from other sources (Postgate,
368 1998). Respiration required for N_2 fixation R_{N_2} [F14] is subtracted from R_g [F15] when
369 calculating microbial growth [F16-F18]. Microbial senescence drives N and P litterfall
370 [F19-F20].

371 **Nodule-root exchange**

372 Exchange of nonstructural C, N and P between roots and nodules is driven by
373 concentration gradients [F21-F23] created by generation, transfer and consumption of
374 nonstructural C, N and P in shoots, roots, mycorrhizae and nodules. Nonstructural C is
375 generated in shoots and transferred along concentration gradients to roots and thence to
376 nodules [F21]. Nonstructural P is generated in roots and transferred along concentration
377 gradients to shoots and nodules [F23]. Nonstructural N is generated in roots through
378 mineral uptake and in nodules through gaseous fixation [F22]. Nonstructural C, N and P
379 in nodules is determined by root-nodule exchange, by nodule respiration and fixation, and
380 by remobilization from nodule litterfall [F24-F26].

381 Root nonstructural N (v_r) may rise if high mineral N concentrations in soil sustain
382 rapid N uptake by roots. Large v_r suppresses or even reverses the transfer of v_n from
383 nodule to root [F22], raising v_n [F25] and hence suppressing V_{N_2} [F12-F13]. Large v_r
384 also accelerates the consumption of χ_r , slowing its transfer to nodules [F21], reducing
385 χ_n [F24] and hence slowing nodule growth [F1]. Conversely, slow root N uptake

386 caused by low soil mineral N concentrations would lower ν_{rt} and raise χ_{rt} , hastening the
387 transfer of ν_n from nodule to root and of χ_{rt} from root to nodule, lowering ν_n , raising χ_n ,
388 and accelerating V_{N_2} . However [F13] also allows V_{N_2} to be constrained by nonstructural C
389 and P concentrations arising from CO_2 fixation and root P uptake.

390 **Appendix G: CH_4 production and consumption**

391 **Anaerobic fermenters and H_2 producing acetogens**

392 The states $S_{i,j,k}$, $B_{i,k}$ and $Z_{i,j,k}$ in *ecosys* are substrates for hydrolysis by all active (j
393 = a) heterotrophic biomass communities ($M_{i,n,a}$) [G1-G7] (Grant et al., 1993a), which
394 include fermenters plus acetogens. Hydrolysis products are transferred to soluble organic
395 matter ($DOC_{i,k}$) which is the substrate for respiration and uptake by microbial biomass
396 ($M_{i,n,j}$) as described for aerobic heterotrophs [G11] (Grant et al., 1993a). Respiration ($R_{i,f}$)
397 of $DOC_{i,c}$ by fermenters plus acetogens ($n = f$) is a Michaelis-Menten function of $[DOC_{i,c}]$
398 inhibited by O_2 [G1]. Respiration products are partitioned among $A_{i,c}$, CO_2 and H_2 according
399 to Brock and Madigan (1991) [G2]. $R_{i,f}$ beyond that used for maintenance respiration drives
400 the uptake of additional $DOC_{i,c}$ [G3] for microbial growth according to the growth yield (Y_f)
401 from fermentation [G4]. The growth yield from fermentation is calculated by dividing the
402 free energy change of fermentation, adjusted for H_2 product concentration [G5], by the
403 energy required to transform soluble organic C into microbial C [G4]. Change in $M_{i,f,j}$ is
404 thus the difference between uptake and respiration of $DOC_{i,c}$, less decomposition [G6]. This
405 change determines $M_{i,f,a}$ used in the following calculation of $R_{i,f}$ [G1]. Ratios of $M_{i,f,j,c}$ to
406 $M_{i,f,j,n}$ determine mineralization-immobilization of N [G23] (Grant et al., 1993a).
407 Decomposition products ($D_{i,f,j,k}$) are partitioned to microbial residues ($Z_{i,j,k}$) and soil

408 organic matter ($S_{i,j,k}$) (where i = passive soil organic matter) [G26-G28] (Grant et al., 1993a)
409 which undergo further hydrolysis.

410 **Acetotrophic methanogens**

411 The fermenter product ($A_{i,c}$) [G2] is the substrate for respiration ($R_{i,m}$) by
412 acetotrophic methanogens ($n = m$) [G7]. Respiration products are partitioned between CH_4
413 and CO_2 according to Brock and Madigan (1991) [G8]. $R_{i,m}$ beyond that used for
414 maintenance respiration drives the uptake of additional $A_{i,c}$ [G9] for microbial growth
415 according to the growth yield (Y_m) of acetotrophic methanogenesis [G10]. This growth yield
416 is calculated by dividing the free energy change of acetotrophic methanogenesis (Brock and
417 Madigan, 1991) by the energy required to transform acetate into microbial C. Acetogenic
418 methanogens in the model use acetate as their sole carbon and energy source (Smith and
419 Mah, 1980). Change in $M_{i,m,j}$ is thus the difference between uptake and respiration of $A_{i,c}$,
420 less decomposition [G11]. This change determines $M_{i,m,a}$ used in the following calculation
421 of $R_{i,m}$ [G7]. Mineralization and decomposition processes are the same as those for other
422 microbial populations.

423 **Hydrogenotrophic methanogens**

424 The fermenter products CO_2 and H_2 [G2] are the substrates for CO_2 reduction by
425 hydrogenotrophic methanogens ($n = h$) which are assumed to be autotrophic [G12].
426 Respiration products are partitioned between CH_4 and H_2O according to Brock and Madigan
427 (1991) [G13]. R_h beyond that used for maintenance respiration drives the uptake of
428 additional CO_2 [G14] for microbial growth according to the growth yield (Y_h) of
429 hydrogenotrophic methanogenesis (Brock and Madigan, 1991) [G15]. This growth yield is
430 calculated by dividing the free energy change of hydrogenotrophic methanogenesis, adjusted

431 for H_2 substrate concentration [G16], by the energy required to transform CO_2 into microbial
432 C. Change in $M_{h,j}$ is thus the difference between uptake and respiration of CO_2 , less
433 decomposition [G17]. This change determines $M_{h,a}$ used in the following calculation of R_h
434 [G12]. Mineralization and decomposition processes are the same as those for other microbial
435 populations.

436 **Autotrophic methanotrophs**

437 Methane generated by acetotrophic and hydrogenotrophic methanogens is the
438 substrate for CH_4 oxidation by autotrophic methanotrophs ($n = t$) [G18]. The stoichiometry
439 and energetics of the methanotrophic reactions [G22-G24] are based on those of CH_4 to CO_2
440 in Brock and Madigan (1991). The oxidation of CH_4 to CO_2 is coupled through an energy
441 yield with the oxidation of CH_4 to organic C used in microbial respiration [G19]. The energy
442 yield from CH_4 oxidation is calculated by dividing the free energy change of CH_4 oxidation
443 by the energy required to transform CH_4 into organic C [G20]. Oxygen requirements to
444 sustain CH_4 oxidation rates are then calculated from the stoichiometries of CH_4 oxidation
445 [G22-G23] and aerobic microbial respiration [G24]. The O_2 concentrations at
446 methanotrophic microsites are then found at which active O_2 uptake driven by requirements
447 for CH_4 oxidation equals spherical O_2 diffusion to the microsites from the soil solution.
448 These microsites are considered to be uniformly distributed on soil surfaces and are separated
449 from the soil atmosphere (if present) by a water film of uniform thickness that depends upon
450 soil water potential. The O_2 uptake by each aerobic microbial population in the model
451 competes with that by all other aerobic microbial populations (e.g. Grant and Rochette, 1994;
452 Grant, 1995], and is constrained by O_2 transfer rates through the gaseous and aqueous phases
453 of the soil profile. The ratio of O_2 uptake to O_2 requirement (f_{O_2t}) is then used to constrain

454 CH₄ oxidation rates [G21] so that CH₄ oxidation is stoichiometrically coupled to O₂ uptake.
455 Growth respiration by methanotrophs is calculated as the difference between total respiration
456 (R_t) from eq. [G21b] and maintenance respiration (R_{mt}) from eqs. [G18-G19] (Grant et al.,
457 1993a). Growth respiration drives the uptake and transformation of additional CH₄ into
458 microbial biomass (M_{t,c}) [G25]) according to the growth yield. This yield is calculated by
459 dividing the free energy change of CH₄ oxidation (Brock and Madigan, 1991) [G18] by the
460 energy required to construct new microbial biomass from CH₄ [G26]. Net growth of the
461 methanotrophic population M_{t,j,c} is calculated as the uptake of CH₄-C minus respiration and
462 decomposition of assimilated C [G27]. This change determines M_{t,a} used in the following
463 calculation of X' _t [G18]). Mineralization and decomposition processes are the same as those
464 for other microbial populations.

465 This submodel of autotrophic methanotrophy has been used to simulate
466 methanotrophic growth yields, specific growth rates, CH₄ concentration profiles and the
467 sensitivity of CH₄ uptake to temperature and water content in soil columns (Grant, 1999).
468 The combined submodels of anaerobic fermentation, acetotrophic methanogenesis,
469 hydrogenotrophic methanogenesis and autotrophic methanotrophy have been used to
470 simulate methanogenic growth yields, specific growth rates, and the time course of CH₄
471 emissions from differently amended soil columns at different temperatures (Grant, 1998b).
472 All input parameter values used in eqs. [G1-G27] were derived from the microbiological
473 literature and remain unchanged from those used in Grant (1998b) and in Grant (1999).

474 **Appendix H: Inorganic N transformations**

475 **Mineralization and immobilization of NH₄⁺ by all microbial populations**

476 Each functional component (j) (j = labile or resistant) of each microbial
477 population (m) (m = obligately aerobic bacteria, obligately aerobic fungi, facultatively
478 anaerobic denitrifiers, anaerobic fermenters plus H₂-producing acetogens, acetotrophic
479 methanogens, hydrogenotrophic methanogens and methanotrophs, NH₄⁺ and NO₂⁻
480 oxidizers, and non-symbiotic diazotrophs) in each substrate-microbe complex (i) (i =
481 animal manure, coarse woody plant residue, fine non-woody plant residue, particulate
482 organic matter, or humus) seeks to maintain a set C:N ratio by mineralizing NH₄⁺ [H1a]
483 or by immobilizing NH₄⁺ [H1b] or NO₃⁻ [H1c]. Provision is made for C:N ratios to rise
484 above set values during immobilization, but at a cost to microbial function. These
485 transformations control the exchange of N between organic and inorganic states.

486 **Oxidation of DOC and reduction of O₂ by heterotrophs**

487 Constraints on heterotrophic oxidation of DOC imposed by O₂ uptake are solved
488 in four steps:
489 1) DOC oxidation under non-limiting O₂ is calculated from active biomass and DOC
490 concentration [H2],
491 2) O₂ reduction under non-limiting O₂ is calculated from 1) using a set respiratory
492 quotient [H3],
493 3) O₂ reduction under ambient O₂ is calculated from radial O₂ diffusion through water
494 films of thickness determined by soil water potential [H4a] coupled with active uptake
495 at heterotroph surfaces driven by 2) [H4b]. O₂ diffusion and active uptake is
496 population-specific, allowing the development of more anaerobic conditions at
497 microbial surfaces associated with more biologically active substrates. O₂ uptake by

498 heterotrophs also accounts for competition with O₂ uptake by nitrifiers, roots and
499 mycorrhizae,

500 4) DOC oxidation under ambient O₂ is calculated from 2) and 3) [H5]. The energy yield
501 of DOC oxidation drives the uptake of additional DOC for construction of microbial
502 biomass ($M_{i,h}$) according to construction energy costs of each heterotrophic population
503 [H7-H13] in Grant and Pattey (2003). Energy costs of denitrifiers are slightly larger
504 than those of obligate heterotrophs, placing denitrifiers at a competitive disadvantage
505 for growth and hence DOC oxidation if electron acceptors other than O₂ are not used.

506 **Oxidation of DOC and reduction of NO₃⁻, NO₂⁻ and N₂O by denitrifiers**

507 Constraints imposed by NO₃⁻ availability on DOC oxidation by denitrifiers are
508 solved in five steps:

509 1) NO₃⁻ reduction under non-limiting NO₃⁻ is calculated from a fraction of electrons
510 demanded by DOC oxidation but not accepted by O₂ because of diffusion limitations
511 [H6],

512 2) NO₃⁻ reduction under ambient NO₃⁻ is calculated from 1) [H7],

513 3) NO₂⁻ reduction under ambient NO₂⁻ is calculated from demand for electrons not met by
514 NO₃⁻ in 2) [H8],

515 4) NO₂⁻ reduction under ambient NO₂⁻ is calculated from demand for electrons not met by
516 NO₂⁻ in 3) [H9],

517 5) additional DOC oxidation enabled by NO_x reduction in 2), 3) and 4) is added to that
518 enabled by O₂ reduction from [H5], the energy yield of which drives additional DOC
519 uptake for construction of $M_{i,n}$. This additional uptake offsets the disadvantage
520 incurred by the larger construction energy costs of denitrifiers.

521 **Oxidation of NH₃ and reduction of O₂ by nitrifiers**

522 Constraints on nitrifier oxidation of NH₃ imposed by O₂ uptake are solved in four
523 steps:

524 1) substrate (NH₃) oxidation under non-limiting O₂ is calculated from active biomass and
525 from NH₃ and CO₂ concentrations [H11],

526 2) O₂ reduction under non-limiting O₂ is calculated from 1) using set respiratory
527 quotients [H12],

528 3) O₂ reduction under ambient O₂ is calculated from radial O₂ diffusion through water
529 films of thickness determined by soil water potential [H13a] coupled with active
530 uptake at nitrifier surfaces driven by 2) [H13b]. O₂ uptake by nitrifiers also accounts
531 for competition with O₂ uptake by heterotrophic DOC oxidizers, roots and
532 mycorrhizae,

533 4) NH₃ oxidation under ambient O₂ is calculated from 2) and 3) [H14]. The energy yield
534 of NH₃ oxidation drives the fixation of CO₂ for construction of $M_{i,n}$ according to
535 construction energy costs of each nitrifier population [H32-H34] in Grant and Pattey
536 (2003).

537 **Oxidation of NO₂⁻ and reduction of O₂ by nitrifiers**

538 Constraints on nitrifier oxidation of NO₂⁻ imposed by O₂ uptake [H15-H18] are
539 solved in the same way as are those of NH₃ [H11-H14]. The energy yield of NO₂⁻
540 oxidation drives the fixation of CO₂ for construction of $M_{i,o}$ according to construction
541 energy costs of each nitrifier population.

542 **Oxidation of NH₃ and reduction of NO₂⁻ by nitrifiers**

543 Constraints on nitrifier oxidation imposed by NO_2^- availability are solved in three
544 steps:

545 1) NO_2^- reduction under non-limiting NO_2^- is calculated from a fraction of electrons
546 demanded by NH_3 oxidation but not accepted by O_2 because of diffusion limitations
547 [H19],

548 2) NO_2^- reduction under ambient NO_2^- and CO_2 is calculated from step (1) [H20],
549 competing for NO_2^- with [H18],

550 3) additional NH_3 oxidation enabled by NO_2^- reduction in 2) [H21] is added to that
551 enabled by O_2 reduction from [H14]. The energy yield from this oxidation drives the
552 fixation of additional CO_2 for construction of $M_{i,n}$.

Equations and definitions of variables

Appendix A: Soil C, N and P transformations

Decomposition

$$D_{Si,j,l,C} = D'_{Si,j,l,C} M_{i,d,l,C} f_{tg,l} (S_{i,l,C} / G_{i,l,C}) \quad \begin{matrix} \text{decomposition of litter, POC,} \\ \text{humus} \end{matrix} \quad [\text{A1a}]$$

$$D_{Zi,j,l,C} = D'_{Zi,j,l,C} M_{i,d,l,C} f_{tg,l} (Z_{i,l,C} / G_{i,l,C}) \quad \begin{matrix} \text{decomposition of microbial} \\ \text{residues} \end{matrix} \quad [\text{A1b}]$$

$$D_{Ai,l,C} = D'_{Ai,l,C} M_{i,d,l,C} f_{tg,l} (A_{i,l,C} / G_{i,l,C}) \quad \text{decomposition of adsorbed SOC} \quad [\text{A1c}]$$

$$S_{i,l,C} = \sum_j S_{i,j,l,C} \quad \begin{matrix} \text{total C in all kinetic components} \\ \text{of litter, POC, humus} \end{matrix} \quad [\text{A2a}]$$

$$Z_{i,l,C} = \sum_j Z_{i,j,l,C} \quad \begin{matrix} \text{total C in all kinetic components} \\ \text{of microbial residues} \end{matrix} \quad [\text{A2b}]$$

$$G_{i,l,C} = S_{i,l,C} + Z_{i,l,C} + A_{i,l,C} \quad \begin{matrix} \text{total C in substrate-microbe} \\ \text{complexes} \end{matrix} \quad [\text{A2c}]$$

$M_{i,d,l,C} = M_{i,a,l,C} + \mathbf{q}_m (M_{i,a,l,C} G_{ix,l,C} - M_{ix,a,l,C} G_{i,l,C}) / (G_{ix,l,C} + G_{i,l,C})$	redistribution of active microbial biomass from each substrate-microbe complex i to other substrate-microbe complexes ix according to concentration differences (priming)	[A3a]
$M_{i,a,l,C} = \sum_n M_{i,n,a,l,C}$		[A3b]
$D'_{Sj,l,C} = \{D_{Sj,C}[S_{i,j,l,C}]\} / \{[S_{i,j,l,C}] + K_{mD}(1.0 + [M_{i,d,l,C}] / K_{iD})\}$	substrate and water constraint on D from colonized litter, POC and humus, microbial residues and adsorbed SOC	[A4a]
$D'_{Zj,l,C} = \{D_{Zj,C}[Z_{i,j,l,C}]\} / \{[Z_{i,j,l,C}] + K_{mD}(1.0 + [M_{i,d,l,C}] / K_{iD})\}$		[A4b]
$D'_{Ai,l,C} = \{D_{A,C}[A_{i,l,C}]\} / \{[A_{i,l,C}] + K_{mD}(1.0 + [M_{i,d,l,C}] / K_{iD})\}$		[A4c]
$\delta S_{i,j,k,l,C} / \delta t = \beta \Sigma_n (U_{i,n,l,C} - R_{hi,n,l}) (S'_{i,j,k,l,C} / S'_{i,j,l,C}) \{(S'_{i,j,l,C} / S_{i,j,l,C}) / (S'_{i,j,l,C} / S_{i,j,l,C} + K_{is})\}$	colonized litter determined by microbial growth into uncolonized litter	[A5]
$f_{lg,l} = T_{sl} \{e^{[B - H_a / (RT_{sl})]}\} / \{1 + e^{[(H_{dl} - ST_{sl}) / (RT_{sl})] + e^{[(ST_{sl} - H_{dh}) / (RT_{sl})]}}\}$	Arrhenius function for D and R_h	[A6]

$$D_{Si,j,l,N,P} = D_{Si,j,l,C}(S_{i,j,l,N,P}/S_{i,j,l,C})$$

N and P coupled with C during D [A7a]

$$D_{Zi,j,l,N,P} = D_{Zi,j,l,C}(Z_{i,j,l,N,P}/Z_{i,j,l,C})$$

[A7b]

$$D_{Ai,l,N,P} = D_{Ai,l,C}(A_{i,l,N,P}/A_{i,l,C})$$

[A7c]

$$Y_{i,l,C} = k_{ts}(G_{i,l,C} F_s [Q_{i,l,C}]^b - X_{i,l,C})$$

Freundlich sorption of DOC [A8]

$$Y_{i,l,N,P} = Y_{i,l,C}(Q_{i,l,N,P}/Q_{i,l,C})$$

$(Y_{i,l,C} > 0)$ adsorption of [A9]

DON, DOP

$$Y_{i,l,N,P} = Y_{i,l,C}(X_{i,l,N,P}/X_{i,l,C})$$

$(Y_{i,l,C} < 0)$ desorption of [A10]

DON, DOP

Microbial growth

$$R_h = \sum_l \sum_n \sum_l R_{hi,n,l} \quad [A11]$$

$$R_{hi,n,l} = R'_{hn} \min\{C_{Ni,n,l,a}/C_{Nj}, C_{Pi,n,l,a}/C_{Pj}\} \quad R_h \text{ constrained by microbial N, P} \quad [A12]$$

$$R'_{i,n,l} = M_{i,n,a,l,C} \{R_{hi,n,l} [Q_{i,l,C}]\} / \{(K_{mQC} + [Q_{i,l,C}])\} f_{lg} f_{pg} \quad R_h \text{ constrained by substrate DOC} \quad [A13]$$

$$R_{hi,n,l} = R'_{i,n,l} (U_{O2i,n,l}/U'_{O2i,n,l}) \quad R_h \text{ constrained by O}_2 \quad [A14]$$

$$f_{pg} = 1.0 - 6.67(1.0 - e^{(M\psi_s/(RT_{sl}))}) \quad \psi_s \text{ constraints on microbial growth} \quad [A15]$$

$$U'_{\text{O}2i,n,l} = 2.67 R'_{\text{h},i,n,l}$$

O₂ demand driven by potential R_{h} [A16]

$$U_{\text{O}2i,n,l} = U'_{\text{O}2i,n,l} ([\text{O}_{2\text{mi},n,l}] / ([\text{O}_{2\text{mi},n,l}] + K_{\text{O}_2})$$

active uptake coupled with radial diffusion of O₂ [A17a]

$$= 4\pi n M_{i,n,a,l,\text{C}} D_{\text{sO}2} [\mathbf{r}_{\text{m}} \mathbf{r}_{\text{wl}} / (r_{\text{wl}} - r_{\text{m}})] ([\text{O}_{2s}] - [\text{O}_{2\text{mi},n,l}])$$

[A17b]

$$R_{\text{mi},n,j,l} = \mathbf{R}_{\text{m}} M_{i,n,j,l,\text{N}} f_{\text{tm}l}$$

[A18]

$$f_{\text{tm}l} = e^{[\text{y}(T_{\text{S}l} - 298.16)]}$$

[A19]

$$R_{\text{gi},n,l} = R_{\text{hi},n,l} - \sum_j R_{\text{mi},n,j,l}$$

[A20]

$$U_{i,n,l,\text{C}} = \min(R_{\text{hi},n,l}, \sum_j R_{\text{mi},n,j,l}) + R_{\text{gi},n,l} (1 + \Delta G_{\text{x}} / E_{\text{m}})$$

DOC uptake driven by R_{g} [A21]

$$U_{i,n,l,\text{N,P}} = U_{i,n,l} Q_{i,l,\text{N,P}} / Q_{i,l,\text{C}}$$

DON,DOP uptake driven by $U_{i,n,l,\text{C}}$ [A22]

$$D_{Mi,n,j,l,\text{C}} = \mathbf{D}_{Mi,j} M_{i,n,j,l,\text{C}} f_{\text{tg}}$$

first-order decay of microbial C, [A23]

$$D_{Mi,n,j,\text{N,P}} = \mathbf{D}_{Mi,j} M_{i,n,j,l,\text{N,P}} f_{\text{tg}} / f_{\text{di},n,l,\text{N,P}}$$

partial release of microbial N, P [A24]

$$\delta M_{i,n,j,l,\text{C}} / \delta t = F_j U_{i,n,l,\text{C}} - F R_{\text{hi},n,l} - D_{Mi,n,j,l,\text{C}}$$

$[R_{\text{hi},n,l} > R_{\text{mi},n,j,l}]$ growth [A25a]

$$\delta M_{i,n,j,l,\text{C}} / \delta t = F_j U_{i,n,l,\text{C}} - R_{\text{mi},n,j,l} - D_{Mi,n,j,l,\text{C}}$$

$[R_{\text{hi},n,l} < R_{\text{mi},n,j,l}]$ senescence [A25b]

Microbial nutrient exchange

$$U_{\text{NH}_4i,n,j,l} = (M_{i,n,j,l,C} \mathbf{C}_{\text{Nj}} - M_{i,n,j,l,N}) \quad U_{\text{NH}_4} < 0 \quad \text{mineralization} \quad [\text{A26a}]$$

$$U_{\text{NH}_4i,n,j,l} = \min\{(M_{i,n,j,l,C} \mathbf{C}_{\text{Nj}} - M_{i,n,j,l,N}), \\ U'_{\text{NH}_4} a_{i,n,j,l} ([\text{NH}_4^+]_{i,n,j,l} - [\text{NH}_4^+]_{\text{mn}})/([\text{NH}_4^+]_{i,n,j,l} - [\text{NH}_4^+]_{\text{mn}} + K_{\text{NH}_4})\} \quad U_{\text{NH}_4} > 0 \quad \text{immobilization} \quad [\text{A26b}]$$

$$U_{\text{NO}_3i,n,j,l} = \min\{(M_{i,n,j,l,C} \mathbf{C}_{\text{Nj}} - (M_{i,n,j,l,N} + U_{\text{NH}_4i,n,j,l})), \\ U'_{\text{NO}_3} a_{i,n,j,l} ([\text{NO}_3^-]_{i,n,j,l} - [\text{NO}_3^-]_{\text{mn}})/([\text{NO}_3^-]_{i,n,j,l} - [\text{NO}_3^-]_{\text{mn}} + K_{\text{NO}_3})\} \quad U_{\text{NO}_3} > 0 \quad \text{immobilization} \quad [\text{A26c}]$$

$$U_{\text{PO}_4i,n,j,l} = (M_{i,n,j,l,C} \mathbf{C}_{\text{Pj}} - M_{i,n,j,l,P}) \quad U_{\text{PO}_4} < 0 \quad \text{mineralization} \quad [\text{A26d}]$$

$$U_{\text{PO}_4i,n,j,l} = \min\{(M_{i,n,j,l,C} \mathbf{C}_{\text{Pj}} - M_{i,n,j,l,P}), \\ U'_{\text{PO}_4} A_{i,n,j,l} ([\text{H}_2\text{PO}_4^-]_{i,n,j,l} - [\text{H}_2\text{PO}_4^-]_{\text{mn}})/([\text{H}_2\text{PO}_4^-]_{i,n,j,l} - [\text{H}_2\text{PO}_4^-]_{\text{mn}} + K_{\text{PO}_4})\} \quad U_{\text{PO}_4} > 0 \quad \text{immobilization} \quad [\text{A26e}]$$

$$\Phi_{i,n=f,j,l} = \max\{0, M_{i,n=f,j,l,C} \mathbf{C}_{\text{Nj}} - M_{i,n=f,j,l,N} - \max\{0, U_{i,n=f,j,l,N}\}\} \quad \text{N}_2 \text{ fixation driven by N deficit of} \\ \text{diazotrophic population} \quad [\text{A27}]$$

$$R_{\Phi_{i,n=f,j,l}} = E_{\Phi} \Phi_{i,n=f,j,l} \quad [\text{A28}]$$

$$\delta M_{i,n,j,l,N}/\delta t = F_j U_{i,n,l,N} + U_{\text{NH}_4i,n,j,l} + U_{\text{NO}_3i,n,j,l} + \Phi_{i,n=f,j,l} - D_{Mi,n,j,l,N}$$

growth vs. losses of microbial N, P [A29a]

$$\delta M_{i,n,j,l,P}/\delta t = F_j U_{i,n,l,P} + U_{\text{PO}_4i,n,j,l} - D_{Mi,n,j,l,P}$$

[A29b]

$$M_{i,n,a,l,C} = M_{i,n,j=labile,l,C} + M_{i,n,j=resistant,l,C} F_r/F_1$$

[A30a]

Humification

$$H_{Si,j=\text{lignin},l,C} = D_{Si,j=\text{lignin},l,C}$$

decomposition products of litter [A31]

$$H_{Si,j=\text{lignin},l,N,P} = D_{Si,j=\text{lignin},l,N,P}$$

added to POC depending on lignin [A32]

$$H_{Si,j\neq\text{lignin},l,C} = H_{Si,j=\text{lignin},l,C} \mathbf{L}_h$$

[A33]

$$H_{Si,j\neq\text{lignin},l,N,P} = H_{Si,j\neq\text{lignin},l,C} S_{i,l,N,P}/S_{i,l,C}$$

[A34]

$$H_{Mi,n,j,l,C} = D_{Mi,n,j,l,C} \mathbf{F}_h$$

decomposition products of [A35]

$$H_{Mi,n,j,l,N,P} = H_{Mi,n,j,l,C} M_{i,n,j,l,N,P}/M_{i,n,j,l,C}$$

microbes added to humus [A36]

depending on clay

Definition of variables in appendix A

Variable	Definition	Unit	Equation	Value	Reference
<i>Subscripts</i>					

- i* substrate-microbe complex: coarse woody litter, fine non-woody litter, POC, humus
- j* kinetic component: labile *l*, resistant *r*, active *a*
- l* soil or litter layer
- n* microbial functional type: heterotrophic (bacteria, fungi), autotrophic (nitrifiers, methanotrophs), diazotrophic, obligate aerobe, facultative anaerobes (denitrifiers), obligate anaerobes (methanogens)

Variables

$A_{i,l,C}$	mass of adsorbed SOC	g C m^{-2}	[A1c,A2c]
$[A_{i,l,C}]$	concentration of adsorbed SOC in soil	g C Mg^{-1}	[A4c]
<i>a</i>	microbial surface area	$\text{m}^2 \text{ m}^{-2}$	[A26]
<i>B</i>	parameter such that $f_{\text{lg}} = 1.0$ at $T_l = 298.15 \text{ K}$	[A6]	26.230
<i>b</i>	Freundlich exponent for sorption isotherm	[A8]	0.85
			Grant et al. (1993a, b)
β	specific colonization rate of uncolonized substrate	-	[A5] 2.5 Grant et al. [2010]
$C_{\text{N,P},i,n,a,l}$	ratio of $M_{i,n,a,\text{N,P}}$ to $M_{i,n,a,\text{C}}$	g N or P g C^{-1}	[A12]

C_{N,P_j}	maximum ratio of $M_{i,n,j,N,P}$ to $M_{i,n,j,C}$ maintained by $M_{i,n,j,C}$	g N or P g C ⁻¹	[A12,A26,A27]	0.22 and 0.13 (N), 0.022 and 0.013 (P) for $j =$	Grant et al. (1993a, b)
				labile and resistant, respectively	
$D_{Mi,j}$	specific decomposition rate of $M_{i,n,j}$ at 30°C	g C g C ⁻¹ h ⁻¹	[A23,A24]	0.0125 and 0.00035 for $j =$	Grant et al. (1993a, b)
				labile and resistant, respectively	
$D_{Mi,n,j,l,C}$	decomposition rate of $M_{i,n,j,l,C}$	g C m ⁻² h ⁻¹	[A23,A25,A35]		
$D_{Mi,n,j,l,N,P}$	decomposition rate of $M_{i,n,j,l,N,P}$	g N or P m ⁻² h ⁻¹	[A24,A29]		
D_{SO2l}	aqueous dispersivity–diffusivity of O ₂ during microbial uptake in soil	m ² h ⁻¹	[A17]		
$D_{Ai,l,C}$	decomposition rate of $A_{i,l,C}$ by $M_{i,d,l,C}$ producing Q in [A13]	g C m ⁻² h ⁻¹	[A1c,A7c,A31c]		
$D_{A,j,C}$	specific decomposition rate of $A_{i,l,C}$ by $M_{i,d,l,C}$ at 25°C and saturating[A _{i,l,C}]	g C g C ⁻¹ h ⁻¹	[A4c]	0.025	Grant et al. (1993a, b)

$D_{A,i,j,l,N,P}$	decomposition rate of $A_{i,l,N,P}$ by $M_{i,d,l,C}$	$\text{g N or P m}^{-2} \text{ h}^{-1}$	[A7c]	
$D'_{A,i,j,l,C}$	specific decomposition rate of $S_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ at 25°C	$\text{g C g C}^{-1} \text{ h}^{-1}$	[A1a,A4c]	
$D_{S,i,j,l,C}$	decomposition rate of $S_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ producing Q in [A13]	$\text{g C m}^{-2} \text{ h}^{-1}$	[A1a,A7a,A31a]	
$D_{S,j,C}$	specific decomposition rate of $S_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ at 25°C and saturating $[S_{i,l,C}]$	$\text{g C g C}^{-1} \text{ h}^{-1}$	[A4a]	1.0, 1.0, 0.15, and Grant et al. 0.025 for $j =$ (1993a, b)
				protein,
				carbohydrate,
				cellulose, and
				lignin
$D_{S,i,j,l,N,P}$	decomposition rate of $S_{i,j,l,N,P}$ by $\Sigma_n M_{i,n,a,l}$	$\text{g N or P m}^{-2} \text{ h}^{-1}$	[A7a, A32]	
$D'_{S,i,j,l,C}$	specific decomposition rate of $S_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ at 25°C	$\text{g C g C}^{-1} \text{ h}^{-1}$	[A1a,A4a]	
$D_{Z,i,j,l,C}$	decomposition rate of $Z_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ producing Q in [A13]	$\text{g C m}^{-2} \text{ h}^{-1}$	[A1b,A7b]	
$D_{Z,i,j,N,P}$	decomposition rate of $Z_{i,j,l,N,P}$ by $\Sigma_n M_{i,n,a,l}$	$\text{g N or P m}^{-2} \text{ h}^{-1}$	[A7b]	
$D_{Z,j,C}$	specific decomposition rate of $Z_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ at 25°C and saturating $[Z_{i,l,C}]$	$\text{g C g C}^{-1} \text{ h}^{-1}$	[A4b]	0.25 and 0.05 for $j =$ labile and (1993a, b)
				resistant biomass
$D'_{Z,i,j,l,C}$	specific decomposition rate of $Z_{i,j,l,C}$ by $\Sigma_n M_{i,n,a,l}$ at 25°C	$\text{g C g C}^{-1} \text{ h}^{-1}$	[A1b,A4b]	

ΔG_x	energy yield of C oxidation with different reductants x	kJ g C ⁻¹	[A21]	37.5 ($x = O_2$); 4.43 ($x = DOC$)
E_m	energy requirement for growth of $M_{i,n,a,l}$	kJ g C ⁻¹	[A21]	25
E_ϕ	energy requirement for non-symbiotic N ₂ fixation by heterotrophic diazotrophs ($n = f$)	g C g N ⁻¹	[A28]	5 Waring and Running (1998)
F_h	fraction of products from microbial decomposition that are humified (function of clay content)		[A35]	0.167 + 0.167*clay
F_l	fraction of microbial growth allocated to labile component $M_{i,n,l}$		[A25,A29,A30]	0.55 (1993a, b)
F_r	fraction of microbial growth allocated to resistant component $M_{i,n,r}$		[A25,A29,A30]	0.45 (1993a, b)
F_s	equilibrium ratio between $Q_{i,l,C}$ and $H_{i,l,C}$		[A8]	
$f_{di,n,N,P}$	fraction of N or P released with $D_{Mi,n,j,l,C}$ during decomposition	dimensionless	[A24]	0.33 $U_{NH4} > 0$ 1.00 $U_{NH4} < 0$ 0.33 $U_{PO4} > 0$ 1.00 $U_{PO4} < 0$

$f_{tg,l}$	temperature function for microbial growth respiration	dimensionless	[A1,A6,A13, A23,A24]	
f_{tml}	temperature function for maintenance respiration	dimensionless	[A18,A19]	
$f_{\psi gl}$	soil water potential function for microbial, root or mycorrhizal growth respiration	dimensionless	[A13,A15]	Pirt (1975)
$\Phi_{i,n=f,j,l}$	non-symbiotic N ₂ fixation by heterotrophic diazotrophs ($n =$	g N m ⁻² h ⁻¹	[A27,A28,A29]	
f				
$G_{i,l,C}$	total C in substrate-microbe complex	g C Mg ⁻¹	[A1,A2c,A3a,A8]	
[H ₂ PO ₄ ⁻]	concentration of H ₂ PO ₄ ⁻ in soil solution	g P m ⁻³	[A26]	
H_a	energy of activation	J mol ⁻¹	[A6,C10]	65 x 10 ³
H_{dh}	energy of high temperature deactivation	J mol ⁻¹	[A6,C10]	225 x 10 ³
H_{dl}	energy of low temperature deactivation	J mol ⁻¹	[A6,C10]	198 x 10 ³
$H_{Mi,n,j,l,C}$	transfer of microbial C decomposition products to humus	g C m m ⁻² h ⁻¹	[A35,A36]	
$H_{Mi,n,j,l,N,P}$	transfer of microbial N or P decomposition products to humus	g N or P m ⁻² h ⁻¹	[A36]	
$H_{Si,j,l,C}$	transfer of C hydrolysis products to particulate OM	g C m ⁻² h ⁻¹	[A31,A32,A33, A34]	
$H_{Si,j,l,N,P}$	transfer of N or P hydrolysis products to particulate OM	g N or P m ⁻² h ⁻¹	[A32,A34]	
K_{is}	inhibition constant for microbial colonization of substrate	-	[A5]	0.5
				Grant et al. (2010)

K_{NH_4}	M-M constant for NH_4^+ uptake at microbial surfaces	g N m^{-3}	[A26]	0.40	
K_{NO_3}	M-M constant for NO_3^- uptake at microbial surfaces	g N m^{-3}	[A26]	0.35	
K_{PO_4}	M-M constant for H_2PO_4^- uptake at microbial surfaces	g P m^{-3}	[A26]	0.125	
K_{iD}	inhibition constant for $[M_{i,n,a}]$ on $S_{i,C}$, $Z_{i,C}$	g C m^{-3}	[A4]	25	Lizama and
K_{mD}	Michaelis–Menten constant for $D_{Si,j,C}$	g C Mg^{-1}	[A4]	75	Suzuki (1990),
K_{mQ_C}	Michaelis–Menten constant for $R'_{h,n}$ on $[Q_{i,C}]$	g C m^{-3}	[A13]	36	Grant et al.
					(1993a, b)
K_{O_2}	Michaelis–Menten constant for reduction of O_{2s} by microbes, roots and mycorrhizae	$\text{g O}_2 \text{ m}^{-3}$	[A17]	0.064	Griffin (1972)
k_{ts}	equilibrium rate constant for sorption	h^{-1}	[A8]	0.01	Grant et al.
					(1993a, b)
L_{hj}	ratio of nonlignin to lignin components in humified hydrolysis products		[A33]	0.10, 0.05, and 0.05 for $j =$	Shulten and Schnitzer (1997)
				protein, carbohydrate, and cellulose, respectively	

M	molecular mass of water	g mol^{-1}	[A15]	18
$M_{i,d,l,C}$	heterotrophic microbial C used for decomposition	g C m^{-2}	[A1,A3a,A4]	
$M_{i,n,j,l,C}$	microbial C	g C m^{-2}	[A13,A17A23,A25,A26, A30,A36]	
$M_{i,n,j,l,N}$	microbial N	g N m^{-2}	[A18,A27,A29]	
$M_{i,n,j,l,P}$	microbial P	g P m^{-2}	[A24,A29,A26, A36]	
$M_{i,n,a,l,C}$	active microbial C from heterotrophic population n associated with $G_{i,l,C}$	g C m^{-2}	[A3,A13,A17, A30]	
$[M_{i,n,a,l,C}]$	concentration of $M_{i,n,a}$ in soil water = $M_{i,n,a,l,C} / \theta_l$	g C m^{-3}	[A3, A5]	
$[\text{NH}_4^+_{i,n,j,l}]$	concentration of NH_4^+ at microbial surfaces	g N m^{-3}	[A26]	
$[\text{NH}_4^+_{mn}]$	concentration of NH_4^+ at microbial surfaces below which $U_{\text{NH}_4} = 0$	g N m^{-3}	[A26]	0.0125
$[\text{NO}_3^-_{i,n,j,l}]$	concentration of NH_4^+ at microbial surfaces	g N m^{-3}	[A26]	
$[\text{NO}_3^-_{mn}]$	concentration of NO_3^- at microbial surfaces below which $U_{\text{NO}_3} = 0$	g N m^{-3}	[A26]	0.03
$[\text{H}_2\text{PO}_4^-_{i,n,j,l}]$	concentration of H_2PO_4^- at microbial surfaces	g N m^{-3}	[A26]	

$[H_2PO_4^-]_{mn}$	concentration of $H_2PO_4^-$ at microbial surfaces below which $U_{PO_4} = 0$	$g N m^{-3}$	[A26]	0.002
$[O_{2mi,n,l}]$	O_2 concentration at heterotrophic microsites	$g O_2 m^{-3}$	[A17]	
$[O_{2s}]$	O_2 concentration in soil solution	$g O_2 m^{-3}$	[A17]	
$Q_{i,l,C}$	DOC from products of $D_{Si,j,l,C}$ [A3] and $D_{Zi,j,l,C}$ [A5]	$g C m^{-2}$	[A8,A13,A22]	
$[Q_{i,l,C}]$	solution concentration of $Q_{i,l,C}$	$g C Mg^{-1}$	[A8,A13]	
$Q_{i,l,N,P}$	DON and DOP from products of $(D_{Si,j,l,N,P} + D_{Zi,j,l,N,P})$	$g N$ or $P m^{-2}$	[A9,A22]	
q_m	constant for reallocating $M_{i,a,l,C}$ to $M_{i,d,l,C}$	-	[A3a]	0.5
R	gas constant	$J mol^{-1} K^{-1}$	[A6,A15,C10]	8.3143
$R_{\phi_{i,n=f,j,l}}$	respiration for non-symbiotic N_2 fixation by heterotrophic diazotrophs ($n = f$)	$g C m^{-2} h^{-1}$	[A28]	
$R_{gi,n,l}$	growth respiration of $M_{i,n,a,l}$ on $Q_{i,l,C}$ under nonlimiting O_2 and nutrients	$g C g C^{-1} h^{-1}$	[A20]	
R_h	total heterotrophic respiration of all $M_{i,n,a,l}$ under ambient DOC , O_2 , nutrients, θ and temperature	$g C m^{-2} h^{-1}$	[A11]	
$R_{hi,n,l}$	heterotrophic respiration of $M_{i,n,a,l}$ under ambient DOC , O_2 , nutrients, θ and temperature	$g C m^{-2} h^{-1}$	[A5,A11,A14,A20]	0, A21,A25]

$R_{hi,n,l}$	specific heterotrophic respiration of $M_{i,n,a,l}$ under nonlimiting O_2 , DOC, θ and 25°C	g C g C ⁻¹ h ⁻¹	[A12,A13]		
$R_{h'n}$	specific heterotrophic respiration of $M_{i,n,a,l}$ under nonlimiting DOC, O_2 , nutrients, θ and 25°C	g C g C ⁻¹ h ⁻¹	[A12]	0.125	Shields et al. (1973)
$R_{hi,n,l}'$	heterotrophic respiration of $M_{i,n,a,l}$ under nonlimiting O_2 and ambient DOC, nutrients, θ and temperature	g C m ⁻² h ⁻¹	[A13,A14,A16]		
R_m	specific maintenance respiration at 25°C	g C g N ⁻¹ h ⁻¹	[A18]	0.0115	Barnes et al. (1998)
$R_{mi,n,j,l}$	maintenance respiration by $M_{i,n,j,l}$	g C m ⁻² h ⁻¹	[A18,A20,A21,A25]		
r_{wl}	radius of r_m + water film at current water content	m	[A17]		
r_m	radius of heterotrophic microsite	m	[A17]	2.5×10^{-6}	
r_{wl}	thickness of water films	m	[A17]		
S	change in entropy	J mol ⁻¹ K ⁻¹	[A6,C10]	710	Sharpe and DeMichelle (1977)
$[S_{i,j,l,C}]$	concentration of $S_{i,j,l,C}$ in soil	g C Mg ⁻¹	[A4a]		

$S_{i,j,l,C}$	mass of colonized litter, POC or humus C	g C m^{-2}	[A2a,A5,A7a,A3 3]
$S'_{i,j,l,C}$	mass of uncolonized litter, POC or humus C	g C m^{-2}	[A5]
$S_{i,j,l,N,P}$	mass of litter, POC or humus N or P	g N or P m^{-2}	[A7a,A33]
T_{sl}	soil temperature	K	[A6,A15,A19]
$U_{i,n,lC}$	uptake of $Q_{i,l,C}$ by $\Sigma_n M_{i,n,a,l}$ under limiting nutrient availability	$\text{g C m}^{-2} \text{ h}^{-1}$	[A5,A21,A22,A2 5]
$U_{i,n,N,P}$	uptake of $Q_{i,l,N,P}$ by $\Sigma_n M_{i,n,a,l}$ under limiting nutrient availability	$\text{g N or P m}^{-2} \text{ h}^{-1}$	[A22,A29]
$U_{\text{NH4}i,n,j,l}$	NH_4^+ uptake by microbes	$\text{g N m}^{-2} \text{ h}^{-1}$	[A26, A27,A29]
U'_{NH_4}	maximum U_{NH_4} at 25 °C and non-limiting NH_4^+	$\text{g N m}^{-2} \text{ h}^{-1}$	[A26] 5.0 x 10 ⁻³
$U_{\text{NO3}i,n,j,l}$	NO_3^- uptake by microbes	$\text{g N m}^{-2} \text{ h}^{-1}$	[A26,A27,A29]
U'_{NO_3}	maximum U_{NO_3} at 25 °C and non-limiting NO_3^-	$\text{g N m}^{-2} \text{ h}^{-1}$	[A26] 5.0 x 10 ⁻³
$U_{\text{O2}i,n}$	O_2 uptake by $M_{i,n,a,l}$ under ambient O_2	$\text{g m}^{-2} \text{ h}^{-1}$	[A14,A17]
$U'_{\text{O2}i,n}$	O_2 uptake by $M_{i,n,a,l}$ under nonlimiting O_2	$\text{g m}^{-2} \text{ h}^{-1}$	[A14,A16,A17]
$U_{\text{PO4}i,n,j,l}$	H_2PO_4^- uptake by microbes	$\text{g N m}^{-2} \text{ h}^{-1}$	[A26,A27,A29]
U'_{PO_4}	maximum U_{PO_4} at 25 °C and non-limiting H_2PO_4^-	$\text{g N m}^{-2} \text{ h}^{-1}$	[A26] 5.0 x 10 ⁻³

$X_{i,l,C}$	adsorbed C hydrolysis products	g C Mg^{-1}	[A8,A10]
$X_{i,l,N,P}$	adsorbed N or P hydrolysis products	g P Mg^{-1}	[A10]
y	selected to give a Q_{10} for f_{im} of 2.25		[A19] 0.081
ψ_s	soil or residue water potential	MPa	[A15]
$Y_{i,l,C}$	sorption of C hydrolysis products	$\text{g C m}^{-2} \text{ h}^{-1}$	[A8,A9,A10]
$Y_{i,l,N,P}$	sorption of N or P hydrolysis products	$\text{g P m}^{-2} \text{ h}^{-1}$	[A9,A10]
$[Z_{i,j,l,C}]$	concentration of $Z_{i,j,l,C}$ in soil	g C Mg^{-1}	[A4b]
$Z_{i,j,l,C}$	mass of microbial residue C in soil	g C m^{-2}	[A2b,A7b]
$Z_{i,j,l,N,P}$	mass of microbial residue N or P in soil	g P m^{-2}	[A7b]

Appendix B: Soil-plant water relations

Canopy transpiration

$Rn_{ci} + LE_{ci} + H_{ci} + G_{ci} = 0$	canopy energy balance	[B1a]
$LE_{ci} = L(e_a - e_{ci(T_{ci}, \psi_{ci})})/r_{ai}$	LE from canopy evaporation	[B1b]
$LE_{ci} = L(e_a - e_{ci(T_{ci}, \psi_{ci})})/(r_{ai} + r_{ci}) - LE_{ci}$ from [B1b]	LE from canopy transpiration	[B1c]
$H_{ci} = \rho C_p (T_a - T_{ci})/r_{ai}$	H from canopy energy balance	[B1d]

$$r_{\text{cmini}} = 0.64 (C_b - C_i') / V_c'$$

r_c driven by rates of carboxylation [B2a]

$$r_{ci} = r_{\text{cmini}} + (r_{\text{cmaxi}} - r_{\text{cmini}}) e^{(-\beta \psi_i)}$$

r_c vs. diffusion [B2b]

$$r_{ai} = \{(\ln((z_u - z_{di})/z_{ri})^2 / (K^2 u_a)\} / (1 - 10 Ri)$$

r_a driven by windspeed, surface [B3a]

$$Ri = \{g (z_u - z_{ri}) / (u_a^2 T_a)\} (T_a - T_c)$$

r_a adjusted for stability vs. [B3b]

$$\psi_i = \psi_{ci} - \psi_{\pi i}$$

buoyancy [B4]

Root and mycorrhizal water uptake

$$U_{wi} = \sum_l \sum_r U_{wi,r,l}$$

[B5]

$$U_{wi,r,l} = (\psi_{ci}' - \psi_{sl}') / (\Omega_{si,r,l} + \Omega_{ri,r,l} + \sum_x \Omega_{ai,r,l,x})$$

U_w along hydraulic gradient [B6]

$$\psi_{ci}' = \psi_{ci} + 0.01 z_{bi}$$

[B7]

$$\psi_{sl}' = \psi_{sl} - 0.01 z_l$$

[B8]

$$\Omega_{si,r,l} = \ln\{(d_{i,r,l}/r_{i,r,l}) / (2\pi L_{i,r,l} K_{ri,r,l})\} \theta_{wl}/\theta_{pl}$$

[B9]

$$\Omega_{ri,r,l} = \Omega_{ri,r}/L_{i,r,l}$$

[B10]

$$\Omega_{ai,r,l,x=1} = \Omega_{ai,r} z_l / \{n_{i,r,l,1} (r_{i,r,l,1} / r_{i,r,l}')^4\} + \gamma \Omega_{ai,r} z_{bi} / \{n_{i,r,l,1} (r_{bi} / r_{b,i}')^4\} \sum_{i,r,l} (M_{i,r,l}) / M_{i,r,l}$$

[B11]

$$\Omega_{ai,r,l,x=2} = \Omega_{ai,r} (L_{i,r,l,2} / n_{i,r,l,2}) / \{n_{i,r,l,2} (r_{i,r,l,2} / r_{i,r,l}')^4\}$$

[B12]

$$\delta L_{i,r,l,1} / \delta \alpha = \delta M_{i,r,l,1} / \delta v_r / \{\rho_r (1 - \theta_{p,r}) (\pi r_{i,r,l,1}^2)\}$$

[B13]

Canopy water potential

$$(e_a - e_{i(T_{ci})}) / (r_{ai} + r_{ci}) [B1] = \sum_l \sum_r (\psi'_{ci} - \psi'_{si}) / (\Omega_{si,r,l} + \Omega_{ri,r,l} + \sum_x \Omega_{ai,r,l,x}) + X_{ci} \delta \psi_{ci} / \delta t$$

[B14]

ψ_{ci} solved when transpiration from [B1-B4] (LHS) equals uptake from [B5-B13] + change in storage (RHS)

Definition of variables in appendix B

Variable	Definition	Unit	Equation	Value	Reference
<i>Subscripts</i>					
<i>I</i>	plant species or functional type: coniferous, deciduous, annual, perennial, C ₃ , C ₄ , monocot, dicot etc.				
<i>J</i>	branch or tiller				
<i>K</i>	Node				
<i>L</i>	soil or canopy layer				
<i>M</i>	leaf azimuth				
<i>n</i>	leaf inclination				
<i>o</i>	leaf exposure (sunlit <i>vs.</i> shaded)				
<i>r</i>	root or mycorrhizae				

Variables					
β	stomatal resistance shape parameter	MPa ⁻¹	[B2b,C4,C9]	-5.0	Grant and Flanagan (2007)
C_b	[CO ₂] in canopy air	μmol mol ⁻¹	[B2,C2,C5]		
C_{ci}	[CO ₂] in canopy leaves at $\psi_{ci} = 0$ MPa	μmol mol ⁻¹	[B2]	0.70 C_b	Larcher (2001)
$d_{i,r,l}$	half distance between adjacent roots	m	[B9]		
E_{ci}	canopy transpiration	m ³ m ⁻² h ⁻¹	[B1,B14]		
e_a	atmospheric vapor density at T_a and ambient humidity	g m ⁻³	[B1]		
$e_{ci(T_{ci}, \psi_{ci})}$	canopy vapor density at T_{ci} and ψ_{ci}	g m ⁻³	[B1]		
G_{ci}	canopy storage heat flux	W m ⁻²	[B1]		
H_{ci}	canopy sensible heat flux	W m ⁻²	[B1]		
K	von Karman's constant		[B3a]	0.41	
$K_{ri,r,l}$	hydraulic conductivity between soil and root surface	m ² MPa ⁻¹ h ⁻¹	[B9]		
γ	scaling factor for bole axial resistance from primary root axial resistance	-	[B11]	1.6 x 10 ⁴	Grant et al. (2007)
L	latent heat of evaporation	J g ⁻¹	[B1]	2460	
LE_{ci}	latent heat flux between canopy and atmosphere	W m ⁻²	[B1]		

$L_{i,r,l}$	length of roots or mycorrhizae	m m^{-2}	[B9,B10,B12,B13]		
]		
$M_{i,r,l}$	mass of roots or mycorrhizae	g m^{-2}	[B11,B13]		
$n_{i,r,l,x}$	number of primary ($x = 1$) or secondary ($x = 2$) axes	m^{-2}	[B11,B12]		
$\mathcal{Q}_{ai,r}$	axial resistivity to water transport along root or mycorrhizal axes	MPa h m^{-4}	[B11,B12]	4.0×10^9	Larcher (2001)
				deciduous	
				1.0×10^{10}	
				coniferous	
$\mathcal{Q}_{ai,r,l,x}$	axial resistance to water transport along axes of primary ($x = 1$) or secondary ($x = 2$) roots or mycorrhizae	MPa h m^{-1}	[B6,B11,B12]		
$\mathcal{Q}_{ri,r}$	radial resistivity to water transport from surface to axis of roots or mycorrhizae	MPa h m^{-2}	[B10]	1.0×10^4	Doussan et al. (1998)
$\mathcal{Q}_{ri,r,l}$	radial resistance to water transport from surface to axis of roots or mycorrhizae	MPa h m^{-1}	[B6,B10]		
$\mathcal{Q}_{si,r,l}$	radial resistance to water transport from soil to surface of roots or mycorrhizae	MPa h m^{-1}	[B6,B9]		
θ_{wl}	soil water content	$\text{m}^3 \text{ m}^{-3}$	[B9]		
θ_{pl}	soil porosity	$\text{m}^3 \text{ m}^{-3}$	[B9]		

$\theta_{p_{i,r}}$	root porosity	$m^3 m^{-3}$	[B13]	
Ri	Richardson number		[B3a,B3b]	van Bavel and Hillel (1976)
Rn_{ci}	canopy net radiation	$W m^{-2}$	[B1]	
r_{ai}	aerodynamic resistance to vapor flux from canopy	$s m^{-1}$	[B1,B3a]	
r_{bi}	radius of bole at ambient ψ_{ci}	m	[B11]	
r_{b_i}'	radius of bole at $\psi_{ci} = 0$ MPa	m	[B11]	
r_{ci}	canopy stomatal resistance to vapor flux	$s m^{-1}$	[B1,B2b]	
r_{cmaxi}	canopy cuticular resistance to vapor flux	$s m^{-1}$	[B2b]	5.0×10^3 Larcher (2001)
r_{cmini}	minimum r_{ci} at $\psi_{ci} = 0$ MPa	$s m^{-1}$	[B2,B2b]	
$r_{i,r,l,x}$	radius of primary ($x=1$) or secondary ($x=2$) roots or mycorrhizae at ambient $\psi_{f_i l,z}$	m	[B9,B11,B12,B13]	
$r'_{i,r}$	radius of secondary roots or mycorrhizae at $\psi_{f_i l,z} = 0$ MPa	m	[B11,B12]	2.0×10^{-4} tree 1.0×10^{-4} bush 0.05×10^{-4} mycorrhizae
ρ_r	root specific density	$g C g FW^{-1}$	[B13]	0.05 Grant (1998a)

T_a	air temperature	K	[B3b]	
T_c	canopy temperature	K	[B3b]	
U_{wi}	total water uptake from all rooted soil layers	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[B5,B14]	
$U_{wi,r,l}$	water uptake by root and mycorrhizal surfaces in each soil layer	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[B5,B6]	
u_a	wind speed measured at z_u	m s^{-1}	[B3a,B3b]	
$V_c'_{ci}$	potential canopy CO_2 fixation rate at $\psi_{ci} = 0$ MPa	$\mu\text{mol m}^{-2} \text{ s}^{-1}$	[B2]	
v_r	root specific volume	$\text{m}^3 \text{ g FW}^{-1}$	[B13]	10^{-6}
X_{ci}	canopy capacitance	$\text{m}^3 \text{ m}^{-2} \text{ MPa}^{-1}$	[B14]	
ψ_{ci}	canopy water potential	MPa	[B4,B7,B14]	
$\psi_c'_{ci}$	ψ_{ci} + canopy gravitational potential	MPa	[B6,B7]	
$\psi_{\pi i}$	canopy osmotic potential	MPa	[B4]	
ψ_{sl}	soil water potential	MPa	[B8]	
$\psi_{s,l}'$	ψ_{sl} + soil gravitational potential	MPa	[B6,B8]	
ψ_t	canopy turgor potential	MPa	[B2b,B4]	1.25 at $\psi_c = 0$
z_{bi}	length of bole from soil surface to top of canopy	m	[B7,B11]	
z_{di}	canopy zero-plane displacement height	m	[B3a]	Perrier (1982)
z_l	depth of soil layer below surface	m	[B8,B11]	

z_r	canopy surface roughness	m	[B3a,B3b]	Perrier (1982)
z_u	height of wind speed measurement	m	[B3a,B3b]	

Appendix C: Gross primary productivity and autotrophic respiration

C₃ gross primary productivity

$$GPP = \sum_{i,j,k,l,m,n,o} (V_{ci,j,k,l,m,n,o} = V_{gi,j,k,l,m,n,o}) A_{i,j,k,l,m,n,o} \quad \text{solve for } C_{ii,j,k,l,m,n,o} \text{ at which} \quad [C1]$$

$$V_{gi,j,k,l,m,n,o} = (C_b - C_{ii,j,k,l,m,n,o}) / r_{li,j,k,l,m,n,o} \quad \text{diffusion} \quad [C2]$$

$$V_{ci,j,k,l,m,n,o} = \min\{V_{bi,j,k,l,m,n,o}, V_{ji,j,k,l,m,n,o}\} \quad \text{carboxylation} \quad [C3]$$

$$r_{li,j,k,l,m,n,o} = r_{lmini,j,k,l,m,n,o} + (r_{lmaxi} - r_{lmini,j,k,l,m,n,o}) e^{(-\beta \psi_i)} \quad r_l \text{ is leaf-level equivalent of } r_c \quad [C4]$$

$$r_{lmini,j,k,l,m,n,o} = (C_b - C_i' i) / V_{ci,j,k,l,m,n,o} \quad \text{minimum } r_l \text{ is driven by} \\ \text{carboxylation} \quad [C5]$$

$$V_{bi,j,k,l,m,n,o} = V_{bmax,i,j,k}(C_{ci,j,k,l,m,n,o} - \Gamma_{i,j,k})/(C_{ci,j,k,l,m,n,o} + K_{ci}) f_{\psi i,j,k,l,m,n,o} f_{ici} \quad \text{CO}_2, \text{ water, temperature and nutrient constraints on } V_b \quad [\text{C6a}]$$

$$V_{bmax,i,j,k} = \mathbf{V_b}'_i \mathbf{F_{rubisco}}_i M_{i,j,k,prot} / A_{i,j,k} f_{tbi} \quad [\text{C6b}]$$

$$\Gamma_{i,j,k} = 0.5 O_c V_{omax,i,j,k} \mathbf{K_{ci}} / (V_{bmax,i,j,k} \mathbf{K_{oi}}) \quad [\text{C6c}]$$

$$V_{omax,i,j,k} = \mathbf{V_o}'_i \mathbf{F_{rubisco}}_i M_{i,j,k,prot} / A_{i,j,k} f_{toi} \quad [\text{C6d}]$$

$$K_{ci} = \mathbf{K_{ci}} f_{tkci} (1 + O_c / (\mathbf{K_{oi}} f_{tkoi})) \quad [\text{C6e}]$$

$$V_{ji,j,k,l,m,n,o} = J_{i,j,k,l,m,n,o} Y_{i,j,k,l,m,n,o} f_{\psi i,j,k,l,m,n,o} f_{ici} \quad [\text{C7}]$$

$$J_{i,j,k,l,m,n,o} = (\boldsymbol{\epsilon} I_{i,l,m,n,o} + J_{maxi,j,k} - ((\boldsymbol{\epsilon} I_{i,l,m,n,o} + J_{maxi,j,k})^2 - 4\alpha\epsilon I_{i,l,m,n,o} J_{maxi,j,k})^{0.5}) / (2\alpha) \quad \text{water, temperature and nutrient constraints on } V_j \quad [\text{C8a}]$$

$$J_{maxi,j,k} = \mathbf{V_j}'_i \mathbf{F_{chlorophyll}}_i M_{i,j,k,prot} / A_{i,j,k} f_{tji} \quad [\text{C8b}]$$

$$f_{\psi i,j,k,l,m,n,o} = (r_{lmin,i,j,k,l,m,n,o} / r_{l_{i,j,k,l,m,n,o}})^{0.5} \quad \text{non-stomatal effect related to stomatal effect} \quad [\text{C9}]$$

$f_{\text{tbi}} = \exp[\mathbf{B}_{\text{v}} - \mathbf{H}_{\text{av}}/(\mathbf{R}T_{ci})]/\{1 + \exp[(\mathbf{H}_{\text{dl}} - ST_{ci})/(\mathbf{R}T_{ci})] + \exp[(ST_{ci} - \mathbf{H}_{\text{dh}})/(\mathbf{R}T_{ci})]\}$	Arrhenius functions for carboxylation, oxygenation and electron transport	[C10a]
$f_{\text{toi}} = \exp[\mathbf{B}_{\text{o}} - \mathbf{H}_{\text{ao}}/(\mathbf{R}T_{ci})]/\{1 + \exp[(\mathbf{H}_{\text{dl}} - ST_{ci})/(\mathbf{R}T_{ci})] + \exp[(ST_{ci} - \mathbf{H}_{\text{dh}})/(\mathbf{R}T_{ci})]\}$		[C10b]
$f_{\text{tji}} = \exp[\mathbf{B}_{\text{j}} - \mathbf{H}_{\text{aj}}/(\mathbf{R}T_{ci})]/\{1 + \exp[(\mathbf{H}_{\text{dl}} - ST_{ci})/(\mathbf{R}T_{ci})] + \exp[(ST_{ci} - \mathbf{H}_{\text{dh}})/(\mathbf{R}T_{ci})]\}$		[C10c]
$f_{\text{tkci}} = \exp[\mathbf{B}_{\text{kc}} - \mathbf{H}_{\text{akc}}/(\mathbf{R}T_{ci})]$		[C10d]
$f_{\text{tkoi}} = \exp[\mathbf{B}_{\text{ko}} - \mathbf{H}_{\text{ako}}/(\mathbf{R}T_{ci})]$		[C10e]
$f_{\text{iCl}} = \min\{\sigma_{\text{Ni},j}/(\sigma_{\text{Ni},j} + \sigma_{\text{Ci},j}/K_{\text{iC}_N}), \sigma_{\text{Pi},j}/(\sigma_{\text{Pi},j} + \sigma_{\text{Ci},j}/K_{\text{iC}_P})\}$	product inhibition of V_b , V_j from σ_N and σ_P vs. σ_C in shoots	[C11]
$\delta M_{L_{Ri,j,k}}/\delta t = \delta M_{L_{i,j,k}}/\delta t \min\{[N'_{\text{leaf}} + (N_{\text{leaf}} - N'_{\text{leaf}})f_{\text{iCl}}]/N_{\text{prot}}, [P'_{\text{leaf}} + (P_{\text{leaf}} - P'_{\text{leaf}})f_{\text{iCl}}]/P_{\text{prot}}\}$	leaf structural protein growth	[C12]

Autotrophic respiration

$$R_a = \sum_i \sum_j (R_{ci,j} + R_{si,j}) + \sum_i \sum_z (R_{ci,r,l} + R_{si,r,l}) + \mathbf{E}_{\mathbf{N},\mathbf{P}} (U_{\text{NH}_4i,r,l} + U_{\text{NO}_3i,r,l} + U_{\text{PO}_4i,r,l}) \quad \text{total autotrophic respiration} \quad [\text{C13}]$$

$$R_{ci,j} = \mathbf{R}_c' \boldsymbol{\sigma}_{Ci,j} f_{ta}$$

O₂ constraint on root respiration [C14a]

$$R_{ci,r,l} = \mathbf{R}_c' \boldsymbol{\sigma}_{Ci,r,l} f_{ta,i,l} (U_{O2i,r,l} / U'_{O2i,r,l})$$

from active uptake coupled with diffusion of O₂ from soil as for [C14b]

$$U_{O2i,r,l} = U'_{O2i,r,l} [O_{2ri,r,l}] / ([O_{2ri,r,l}] + K_{O2})$$

heterotrophic respiration in [A17], and from active uptake coupled with diffusion of O₂ from roots [C14c]

$$= U_{w_{i,r,l}} [O_{2sl}] + 2\pi L_{i,r,l} D_{sO2} ([O_{2sl}] - [O_{2ri,r,l}]) \ln((r_{sl} + r_{ri,r,l}) / r_{ri,r,l}) \\ + 2\pi L_{i,r,l} D_{tO2} ([O_{2qi,r,l}] - [O_{2ri,r,l}]) \ln(r_{qi,r,l} / r_{ri,r,l})$$

[C14d]

$$U'_{O2i,r,l} = 2.67 R'_{a,i,r,l}$$

[C14e]

$$R_{si,j} = -\min\{0.0, R_{ci,j} - R_{mi,j}\}$$

remobilization when $R_m > R_c$ [C15]

$$R_{mi,j} = \sum_z (N_{i,j,z} \mathbf{R}_m' f_{tmi})$$

maintenance respiration [C16]

$$R_{gi,j} = \max\{0.0, \min\{R_{ci,j} - R_{mi,j}\} \min\{1.0, \max\{0.0, \psi_i - \psi'_i\}\}\}$$

growth when $R_m < R_c$ [C17]

Growth and senescence

$$l_{i,j,z,C} = R_{si,j} M_{L_N i,j} / M_{L_R i,j}$$

senescence drives litterfall of non-remobilizable material [C18]

$$l_{i,j,z,\text{N}} = l_{i,j,z,\text{C}} \mathbf{N}_{\text{prot}} (1.0 - \mathbf{X}_{\text{mx}} f_{\text{xN}i,j})$$

litterfall of N and P is driven by [C19a]

$$l_{i,j,z,\text{P}} = l_{i,j,z,\text{C}} \mathbf{P}_{\text{prot}} (1.0 - \mathbf{X}_{\text{mx}} f_{\text{xP}i,j})$$

that of C but reduced by

$$f_{\text{xN}i,j} = \sigma_{\text{C}i,j} / (\sigma_{\text{C}i,j} + \sigma_{\text{N}i,j} / K_{\text{xN}})$$

translocation to to σ_{N} and σ_{P} [C19b]

$$f_{\text{xP}i,j} = \sigma_{\text{C}i,j} / (\sigma_{\text{C}i,j} + \sigma_{\text{P}i,j} / K_{\text{xP}})$$

according to ratios of σ_{N} and σ_{P}

with σ_{C} [C19c]

[C19d]

$$\delta M_{\text{Bi},j} / \delta t = \sum_z [R_{\text{gi},j} (1 - Y_{\text{gi},z}) / Y_{\text{gi},z}] - R_{\text{si},j} - l_{i,j,\text{C}}$$

branch growth driven by R_g [C20a]

$$\delta M_{\text{Ri},r,l} / \delta t = [R_{\text{gi},r,l} (1 - Y_{\text{gi},r}) / Y_{\text{gi},r}] - R_{\text{si},r,l} - l_{i,r,l,\text{C}}$$

root growth driven by R_g [C20b]

$$\delta A_{\text{Li},j,k,l} / \delta t = \chi (M_{\text{Li},j,k,l} / y_i)^{-0.33} \delta M_{\text{Li},j,k,l} / \delta t \min\{1, \max\{0, \psi_i - \psi'_i\}\}$$

leaf expansion driven by leaf mass [C21a]

$$\delta L_{i,r,l,1} / \delta t = (\delta M_{\text{Ri},r,l,1} / \delta t) / y_i v_r / \{\rho_r (1 - \theta_{\text{P}i,r}) (\pi r_{i,r,l,1}^2)\}$$

growth

root extension of primary and

secondary axes driven by root

$$\delta L_{i,r,l,2} / \delta t = (\delta M_{\text{Ri},r,l,2} / \delta t) v_r / \{\rho_r (1 - \theta_{\text{P}i,r}) (\pi r_{i,r,l,2}^2)\}$$

mass growth [C21c]

$$f_{\text{tai}} = T_{ci} \{ \exp[\mathbf{B}_v - \mathbf{H}_{av}/(\mathbf{R}T_{ci})] \} / \{ 1 + \exp[(\mathbf{H}_{dl} - ST_{ci})/(\mathbf{R}T_{ci})] + \exp[(ST_{ci} - \mathbf{H}_{dh})/(\mathbf{R}T_{ci})] \}$$

Arrhenius function for R_a [C22a]

$$f_{\text{tmi}} = e^{(0.0811 * (T_{ci} - 298.15))}$$

temperature function for R_m [C22b]

Root and mycorrhizal nutrient uptake

$$U_{\text{NH4},r,l} = \{ U_{wi,r,l} [\text{NH}_4^+]_l + 2\pi L_{i,r,l} D_{e\text{NH}_4l} ([\text{NH}_4^+]_l - [\text{NH}_4^+]_{i,r,l}) / \ln(d_{i,r,l} / r_{i,r,l}) \}$$

root N and P uptake from mass [C23a]

$$= U'_{\text{NH}_4} (U_{O2i,r,l} / U'_{O2i,r,l}) A_{i,r,l} ([\text{NH}_4^+]_{i,r,l} - [\text{NH}_4^+]_{mn}) / ([\text{NH}_4^+]_{i,r,l} - [\text{NH}_4^+]_{mn} + K_{\text{NH}_4}) f_{il} f_{iNi,r,l}$$

flow + diffusion coupled with [C23b]

$$U_{\text{NO3},r,l} = \{ U_{wi,r,l} [\text{NO}_3^-]_l + 2\pi L_{i,r,l} D_{e\text{NO3}l} ([\text{NO}_3^-]_l - [\text{NO}_3^-]_{i,r,l}) / \ln(d_{i,r,l} / r_{i,r,l}) \}$$

active uptake of NH_4^+ , NO_3^- and [C23c]

$$= U'_{\text{NO}_3} (U_{O2i,r,l} / U'_{O2i,r,l}) A_{i,r,l} ([\text{NO}_3^-]_{i,r,l} - [\text{NO}_3^-]_{mn}) / ([\text{NO}_3^-]_{i,r,l} - [\text{NO}_3^-]_{mn} + K_{\text{NO}_3}) f_{il} f_{iNi,r,l}$$

[C23d]

$$U_{\text{PO4},r,l} = \{ U_{wi,r,l} [\text{H}_2\text{PO}_4^-]_l + 2\pi L_{i,r,l} D_{e\text{PO}_4l} ([\text{H}_2\text{PO}_4^-]_l - [\text{H}_2\text{PO}_4^-]_{i,r,l}) / \ln(d_{i,r,l} / r_{i,r,l}) \}$$

[A26] [C23e]

$$= U'_{\text{PO}_4} (U_{O2i,r,l} / U'_{O2i,r,l}) A_{i,r,l} ([\text{H}_2\text{PO}_4^-]_{i,r,l} - [\text{H}_2\text{PO}_4^-]_{mn}) / ([\text{H}_2\text{PO}_4^-]_{i,r,l} - [\text{H}_2\text{PO}_4^-]_{mn} + K_{\text{PO}_4}) f_{gl} f_{iPi,r,l}$$

[C23f]

$$f_{iNi,r,l} = \sigma_{Ci,r,l} / (\sigma_{Ci,r,l} + \sigma_{Ni,r,l} / K_{iN_C})$$

product inhibition of U_{NH_4} , U_{NO_3} [C23g]

$$f_{iPi,r,l} = \sigma_{Ci,r,l} / (\sigma_{Ci,r,l} + \sigma_{Pi,r,l} / K_{iP_C})$$

and U_{PO_4} determined by σ_N and σ_P [C23h]

vs. σ_C in roots

C₄ gross primary productivity

C₄ mesophyll

$$GPP = \sum_{i,j,k,l,m,n,o} (V_{g(m4)i,j,k,l,m,n,o} = V_{c(m4)i,j,k,l,m,n,o}) \quad [C24]$$

$$V_{g(m4)i,j,k,l,m,n,o} = (C_b - C_{i(m4)i,j,k,l,m,n,o})/r_{lfi,j,k,l,m,n,o} \quad \text{gaseous diffusion} \quad [C25]$$

$$V_{c(m4)i,j,k,l,m,n,o} = \min\{V_{b(m4)i,j,k,l,m,n,o}, V_{j(m4)i,j,k,l,m,n,o}\} \quad \text{mesophyll carboxylation} \quad [C26]$$

$$r_{lfi,j,k,l,m,n,o} = r_{lfini,j,k,l,m,n,o} + (r_{lfini,j,k,l,m,n,o} - r_{lfini,j,k,l,m,n,o}) e^{(-\beta \psi_i)} \quad [C27]$$

$$r_{lfini,j,k,l,m,n,o} = (C_b - C_{i(m4)i})/V_{c0(m4)i,j,k,l,m,n,o} \quad [C28]$$

$$V_{b(m4)i,j,k,l,m,n,o} = V_{bmax(m4)i,j,k} (C_{c(m4)i,j,k,l,m,n,o} - \Gamma_{(m4)i,j,k})/(C_{c(m4)i,j,k,l,m,n,o} + K_{c(m4)i}) \quad \text{CO}_2\text{-limited carboxylation} \quad [C29]$$

$$V_{j(m4)i,j,k,l,m,n,o} = J_{(m4)i,j,k,l,m,n,o} Y_{(m4)i,j,k,l,m,n,o} \quad \text{light-limited carboxylation} \quad [C30]$$

$$J_{(m4)i,j,k,l,m,n,o} = (\epsilon I_{i,l,m,n,o} + J_{max(m4)i,j,k} - ((\epsilon I_{i,l,m,n,o} + J_{max(m4)i,j,k})^2 - 4\alpha\epsilon I_{i,l,m,n,o} J_{max(m4)i,j,k})^{0.5})/(2\alpha) \quad \text{irradiance response function} \quad [C31]$$

$$V_{bmax(m4)i,j,k} = V_{bmax(m4)}' [N_{pep(m4)i,j,k}]' N_{lfi,j,k} A_{lfi,j,k} f_{C(m4)i,j,k} f_{\psi i} f_{vvi} \quad \text{PEPc activity} \quad [C32]$$

$$J_{max(m4)i,j,k} = J_{max}' [N_{chl(m4)i,j,k}]' N_{lfi,j,k} A_{lfi,j,k} f_{C(m4)i,j,k} f_{\psi i} f_{vvi} \quad \text{chlorophyll activity} \quad [C33]$$

$$f_{C(m4)i,j,k} = 1.0/(1.0 + [\chi_{C4(m4)i,j,k}]/K_{\chi_{C4(m4)}}) \quad \text{C}_4 \text{ product inhibition} \quad [C34]$$

$$f_{\psi i,j,k,l,m,n,o} = (r_{lfini,j,k,l,m,n,o} / r_{lfi,j,k,l,m,n,o})^{0.5} \quad \text{non-stomatal water limitation} \quad [C35]$$

$$f_{vvi} = T_{ci}\{\exp[B - H_a/(RT_{ci})]\}/\{1 + \exp[(H_{dl} - ST_{ci})/(RT_{ci})] + \exp[(ST_{ci} - H_{dh})/(RT_{ci})]\} \quad \text{temperature limitation} \quad [C36]$$

C₄ mesophyll-bundle sheath exchange

$$V_{\chi_{C4(m4)i,j,k}} = \kappa_{\chi_{C4(m4)}} (\chi_{C4(m4)i,j,k} W_{lfi(b4)i,j,k} - \chi_{C4(b4)i,j,k} W_{lfi(m4)i,j,k}) / (W_{lfi(b4)i,j,k} + W_{lfi(m4)i,j,k}) \quad \text{mesophyll-bundle sheath transfer} \quad [C37]$$

$$V_{\chi_{C4(b4)i,j,k}} = \kappa_{\chi_{C4(b4)}} \chi_{C4(b4)i,j,k} / (1.0 + C_{c(b4)i,j,k} / K_{\chi_{C4(b4)}}) \quad \text{bundle sheath decarboxylation} \quad [C38]$$

$$V_{\phi(b4)i,j,k} = \kappa_{Cc(b4)} (C_{c(b4)i,j,k} - C_{c(m4)i,j,k}) (12 \times 10^{-9}) W_{lfi(b4)i,j,k} \quad \text{bundle sheath-mesophyll leakage} \quad [C39]$$

$\delta \chi_{C4(m4)i,j,k} / \delta t = \sum_{l,m,n,o} V_{c(m4)i,j,k,l,m,n,o} - V_{\chi C4(m4)i,j,k}$	mesophyll carboxylation products	[C40]
$\delta \chi_{C4(b4)i,j,k} / \delta t = V_{\chi C4(m4)i,j,k} - V_{\chi C4(b4)i,j,k}$	bundle sheath carboxylation products	[C41]
$\delta C_{c(b4)i,j,k} / \delta t = V_{\chi C4(b4)i,j,k} - V_{\phi(b4)i,j,k} - \sum_{l,m,n,o} V_{c(b4)i,j,k,l,m,n,o}$	bundle sheath CO ₂ concentration	[C42]
$V_{c(b4)i,j,k,l,m,n,o} = \min\{V_{b(b4)i,j,k}, V_{j(b4)i,j,k,l,m,n,o}\}$	bundle sheath carboxylation	[C43]
$V_{b(b4)i,j,k} = V_{b\max(b4)i,j,k} (C_{c(b4)i,j,k} - I_{(b4)i,j,k}) / (C_{c(b4)i,j,k} + K_{c(b4)i,j,k})$	CO ₂ -limited carboxylation	[C44]
$V_{j(b4)i,j,k,l,m,n,o} = J_{(b4)i,j,k,l,m,n,o} Y_{(b4)i,j,k}$	light- limited carboxylation	[C45]
$J_{(b4)i,j,k,l,m,n,o} = (\mathcal{E} I_{i,l,m,n,o} + J_{\max(b4)i,j,k} - ((\mathcal{E} I_{i,l,m,n,o} + J_{\max(b4)i,j,k})^2 - 4\alpha\mathcal{E} I_{i,l,m,n,o} J_{\max(b4)i,j,k})^{0.5}) / (2\alpha)$	irradiance response function	[C46]
$V_{b\max(b4)i,j,k} = V_{b\max(b4)}' [N_{\text{rub}(b4)i,j,k}]' N_{\text{lf}(i,j,k}} A_{\text{lf}(i,j,k}} f_{C(c3)i,j,k} f_{\psi i} f_{\text{vi}}$	RuBPc activity	[C47]
$J_{\max(b4)i,j,k} = J_{\max}' [N_{\text{chl}(b4)i,j,k}]' N_{\text{lf}(i,j,k}} A_{\text{lf}(i,j,k}} f_{C(c3)i,j,k} f_{\psi i} f_{\text{vi}}$	chlorophyll activity	[C48]
$f_{C(c3)i,j,k} = \min\{[V_{\text{lf}(i,j)}] / ([V_{\text{lf}(i,j)}] + [\chi_{c3(b4)i,j}] / K_{V_{\text{lf}}}), [\pi_{\text{lf}(i,j)}] / ([\pi_{\text{lf}(i,j)}] + [\chi_{c3(b4)i,j}] / K_{\pi_{\text{lf}}})\}$	C ₃ product inhibition	[C49]

Definition of variables in appendix C

Variable	Definition	Unit	Equation	Value	Reference
<i>Subscripts</i>					

- i* species or functional type: evergreen,
coniferous, deciduous, annual, perennial,
 C_3 , C_4 , monocot, dicot, legume etc.
- j* branch or tiller
- k* Node
- l* soil or canopy layer
- m* leaf azimuth
- n* leaf inclination
- o* leaf exposure (sunlit *vs.* shaded)
- z* organ including leaf, stem, root,
mycorrhizae

Variables

<i>A</i>	leaf, root or mycorrhizal surface area	$m^2 m^{-2}$	[C1,C6b,C6d,C8b, C21,C23,C32,C33 ,C47]	
β	shape parameter for stomatal effects on CO_2 diffusion and non-stomatal effects on carboxylation	MPa^{-1}	[C4 C27,C35,]	-5.0 Grant and Flanagan (2007)

B	parameter such that $f_t = 1.0$ at $T_c = 298.15$ K	[C36]	17.533	
B_j	parameter such that $f_{ijf} = 1.0$ at $T_c = 298.15$ K	[C10c]	17.363	
B_{kc}	parameter such that $f_{tkci} = 1.0$ at $T_c = 298.15$ K	[C10d]	22.187	
B_{ko}	parameter such that $f_{tkoi} = 1.0$ at $T_c = 298.15$ K	[C10e]	8.067	
B_o	parameter such that $f_{toi} = 1.0$ at $T_c = 298.15$ K	[C10b]	24.221	
B_v	parameter such that $f_{tvi} = 1.0$ at $T_c = 298.15$ K	[C10a, C22]	26.238	
C_b	[CO ₂] in canopy air	μmol mol ⁻¹	[C2,C5 C25,C28]	
$C_{c(b4)}$	[CO ₂] in C ₄ bundle sheath	μM	[C38,C39,C42,C4 4]	
$C_{c(m4)}$	[CO ₂] in C ₄ mesophyll in equilibrium with $C_{i,j,k,l,m,n,o}$	μM	[C29,C39]	
C_c	[CO ₂] in canopy chloroplasts in equilibrium with $C_{i,j,k,l,m,n,o}$	μM	[C6]	
$C_{i(m4)}'$	[CO ₂] in C ₄ mesophyll air when $\psi_{ci} = 0$	μmol mol ⁻¹	[C28] 0.45 x C_b	
$C_{i(m4)}$	[CO ₂] in C ₄ mesophyll air	μmol mol ⁻¹	[C25]	
$C_{i,j,z=l}$	C content of leaf ($z = l$)	g C m ⁻²	[C18]	
C'_i	[CO ₂] in canopy leaves when $\psi_{ci} = 0$	μmol mol ⁻¹	[C5] 0.70 x C_b	Larcher (2001)
C_i	[CO ₂] in canopy leaves	μmol mol ⁻¹	[C2]	

$D_{e\ NH_4l}$	effective dispersivity-diffusivity of NH_4^+ during root uptake	$\text{m}^2 \text{ h}^{-1}$	[C23]	
$D_{e\ NO_3l}$	effective dispersivity-diffusivity of NO_3^- during root uptake	$\text{m}^2 \text{ h}^{-1}$	[C23]	
$D_{e\ PO_4l}$	effective dispersivity-diffusivity of H_2PO_4^- during root uptake	$\text{m}^2 \text{ h}^{-1}$	[C23]	
D_{rO_2}	aqueous diffusivity of O_2 from root aerenchyma to root or mycorrhizal surfaces	$\text{m}^2 \text{ h}^{-1}$	[C14d]	
D_{sO_2}	aqueous diffusivity of O_2 from soil to root or mycorrhizal surfaces	$\text{m}^2 \text{ h}^{-1}$	[C14d]	
$d_{i,r,l}$	half distance between adjacent roots assumed equal to uptake path length	m	[C23]	$(\pi L_{s,z} / \Delta z)^{-1/2}$ Grant (1998a)
$E_{N,P}$	energy cost of nutrient uptake	g C g N^{-1} or P^{-1}	[C13]	2.15 Veen (1981)
$f_{C(c3)}$	C_3 product inhibition of RuBP carboxylation activity in C_4 bundle sheath or C_3 mesophyll	–	[C47,C48,C49]	
$f_{C(m4)}$	C_4 product inhibition of PEP carboxylation activity in C_4 mesophyll	–	[C32,C33,C34]	
F_{chl}	fraction of leaf protein in chlorophyll	–	[C8b]	0.025
f_{iC}	N,P inhibition on carboxylation, leaf structural N,P growth	–	[C6a,C7,C11,C12]	

f_{iN}	N inhibition on root N uptake	–	[C23g]	
f_{iP}	P inhibition on root P uptake	–	[C23h]	
F_{rubisco}	fraction of leaf protein in rubisco	–	[C6b,d]	0.125
f_{ta}	temperature effect on $R_{ai,j}$	–	[C14, C22]	
f_{tb}	temperature effect on carboxylation	–	[C6b,C10a]	
f_{tg}	temperature function for root or mycorrhizal growth respiration	dimensionless	[C23]	
f_{tj}	temperature effect on electron transport		[C8b,C10c]	
f_{tkc}	temperature effect on K_{c_i}		[C6e,C10d]	Bernacchi et al. (2001, 2003)
f_{tko}	temperature effect on K_{o_i}		[C6e,C10e]	Bernacchi et al. (2001, 2003)
f_{tm}	temperature effect on $R_{mi,j}$	–	[C16, C22b]	$Q_{10} = 2.25$
f_{to}	temperature effect on oxygenation		[C6d,C10b]	
f_{tv}	temperature effect on carboxylation	–	[C32,C33,C36,C4 7,C48]	

f_{xN}	fraction of X_{mx} N translocated out of leaf or root during senescence	–	[C19a,c]	
f_{xP}	fraction of X_{mx} P translocated out of leaf or root during senescence	–	[C19b,d]	
$f_{\psi i}$	non-stomatal water effect on carboxylation	–	[C6a,C7,C9]	Medrano et al. (2002)
$f_{\psi i}$	non-stomatal water effect on carboxylation	–	[C32,C33,C35C47 ,C48]	
H_a	energy of activation	J mol^{-1}	[C36]	57.5×10^3
H_{aj}	energy of activation for electron transport	J mol^{-1}	[C10c]	43×10^3 Bernacchi et al. (2001, 2003)
H_{akc}	parameter for temperature sensitivity of K_{c_i}	J mol^{-1}	[C10d]	55×10^3 Bernacchi et al. (2001, 2003)
H_{ako}	parameter for temperature sensitivity of K_{o_i}	J mol^{-1}	[C10e]	20×10^3 Bernacchi et al. (2001, 2003)
H_{ao}	energy of activation for oxygenation	J mol^{-1}	[C10b, C22]	60×10^3 Bernacchi et al. (2001, 2003)

H_{av}	energy of activation for carboxylation	J mol^{-1}	[C10a, C22]	65×10^3	Bernacchi et al. (2001, 2003)
H_{dh}	energy of high temperature deactivation	J mol^{-1}	[C10, C22]	222.5×10^3	
H_{dh}	energy of high temperature deactivation	J mol^{-1}	[C36]	220×10^3	
H_{dl}	energy of low temperature deactivation	J mol^{-1}	[C10, C22]	198.0×10^3	
H_{dl}	energy of low temperature deactivation	J mol^{-1}	[C36]	190×10^3	
I	Irradiance	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C8a,]		
$J_{(b4)}$	electron transport rate in C ₄ bundle sheath	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C45,C46]		
$J_{(m4)}$	electron transport rate in C ₄ mesophyll	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C30,C31]		
J	electron transport rate in C ₃ mesophyll	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C7,C8a]		
J_{\max}'	specific electron transport rate at non-limiting I and 25°C when $\psi_{ci} = 0$ and nutrients are nonlimiting	$\mu\text{mol g}^{-1} \text{s}^{-1}$	[C33,C48]	400	
$J_{\max(b4)}$	electron transport rate in C ₄ bundle sheath at non-limiting I	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C46,C48]		
$J_{\max(m4)}$	electron transport rate in C ₄ mesophyll at non-limiting I	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C31,C33]		
J_{\max}	electron transport rate at non-limiting I , ψ_{ci} , temperature and N,P	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C8a,C8b]		

$K_{c(b4)}$	Michaelis-Menten constant for carboxylation in C ₄ bundle sheath	μM	[C44]	30.0 at 25°C and zero O ₂	Lawlor (1993)
$K_{c(m4)}$	Michaelis-Menten constant for carboxylation in C ₄ mesophyll	μM	[C29]	3.0 at 25°C	Lawlor (1993)
K_c	Michaelis-Menten constant for carboxylation at zero O ₂	μM	[C6c,C6e]	12.5 at 25 °C	Farquhar et al. (1980)
K_c	Michaelis-Menten constant for carboxylation at ambient O ₂	μM	[C6e]		
K_{iC_N}	inhibition constant for growth in shoots from σ_C vs. σ_N	g C g N ⁻¹	[C11]	100	Grant (1998a)
K_{iC_P}	inhibition constant for growth in shoots from σ_C vs. σ_P	g C g P ⁻¹	[C11]	1000	Grant (1998a)
$K_{I_{C4(b4)}}$	constant for CO ₂ product inhibition of C ₄ decarboxylation in C ₄ bundle sheath	μM	[C38]	1000.0	
$K_{I_{C4(m4)}}$	constant for C ₄ product inhibition of PEP carboxylation activity in C ₄ mesophyll	μM	[C34]	5×10^6	

$K_{Iv_{lf}}$	constant for C ₃ product inhibition of RuBP carboxylation activity in C ₄ bundle sheath or C ₃ mesophyll caused by $[\nu_{lf_{i,j}}]$	g C g N ⁻¹	[C49]	100	
$K_{In_{lf}}$	constant for C ₃ product inhibition of RuBP carboxylation activity in C ₄ bundle sheath or C ₃ mesophyll caused by $[\pi_{lf_{i,j}}]$	g C g P ⁻¹	[C49]	1000	
K_{iN_C}	inhibition constant for N uptake in roots from $\sigma_{C_{i,j}}$ vs. σ_{N_j}	g N g C ⁻¹	[C23]	0.1	Grant (1998a)
K_{iP_C}	inhibition constant for P uptake in roots from $\sigma_{C_{i,j}}$ vs. $\sigma_{P_{i,j}}$ roots	g P g C ⁻¹	[C23]	0.01	Grant (1998a)
K_{NH_4}	M-M constant for NH ₄ ⁺ uptake at root or mycorrhizal surfaces	g N m ⁻³	[C23]	0.40	Barber and Silberbush (1984)
K_{NO_3}	M-M constant for NO ₃ ⁻ uptake at root or mycorrhizal surfaces	g N m ⁻³	[C23]	0.35	Barber and Silberbush (1984)
K_{PO_4}	M-M constant for H ₂ PO ₄ ⁻ uptake root or mycorrhizal surfaces	g P m ⁻³	[C23]	0.125	Barber and Silberbush (1984)
K_{O_2}	Michaelis-Menten constant for root or mycorrhizal O ₂ uptake	g m ⁻³	[C14c]	0.064	Griffin (1972)

K_o	inhibition constant for O ₂ in carboxylation	μM	[C6c,C6e]	500 at 25 °C	Farquhar et al. (1980)
K_{xN}	inhibition constant for remobilization of leaf or root N during senescence	g N g C ⁻¹	[C19c]	0.1	
K_{xP}	inhibition constant for remobilization of leaf or root P during senescence	g P g C ⁻¹	[C19d]	0.01	
L	root length	m m ⁻²	[C14d,C21b,C23]		
l_C	C litterfall from leaf or root	g C m ⁻² h ⁻¹	[C18,C19a,b,C20]		
$l_{N,P}$	N or P litterfall from leaf or root	g C m ⁻² h ⁻¹	[C19a,b]		
M_B	branch C phytomass	g C m ⁻²	[C20]		
M_L	leaf C phytomass	g C m ⁻²	[C12,C21]		
M_{L_N}, M_{L_R}	non-remobilizable, remobilizable leaf C phytomass	g C m ⁻²	[C12,C18]		
M_R	root C phytomass	g C m ⁻²	[C20,C21]		
M_{iprot}	leaf protein phytomass calculated from leaf N, P contents	g N m ⁻²	[C6b,C6d,C8b,C1 2]		
N,P	N or P content of organ z	g N m ⁻²	[C16, C19]		
N_{prot}	N content of protein remobilized from leaf or root	g N C ⁻¹	[C12,C19a]	0.4	

$[\text{NH}_4^+_{i,r,l}]$	concentration of NH_4^+ at root or mycorrhizal surfaces	g N m^{-3}	[C23]		
$[\text{NH}_4^+_{mn}]$	concentration of NH_4^+ at root or mycorrhizal surfaces below which $U_{\text{NH}_4} = 0$	g N m^{-3}	[C23]	0.0125	Barber and Silberbush (1984)
$[\text{NO}_3^-_{i,r,l}]$	concentration of NH_4^+ at root or mycorrhizal surfaces	g N m^{-3}	[C23]		
$[\text{NO}_3^-_{mn}]$	concentration of NO_3^- at root or mycorrhizal surfaces below which $U_{\text{NO}_3} = 0$	g N m^{-3}	[C23]	0.03	Barber and Silberbush (1984)
$[\text{H}_2\text{PO}_4^-_{i,r,l}]$	concentration of H_2PO_4^- at root or mycorrhizal surfaces	g N m^{-3}	[C23]		
$[\text{H}_2\text{PO}_4^-_{mn}]$	concentration of H_2PO_4^- at root or mycorrhizal surfaces below which $U_{\text{PO}_4} = 0$	g N m^{-3}	[C23]	0.002	Barber and Silberbush (1984)
N_{leaf}	maximum leaf structural N content	g N g C^{-1}	[C12]	0.10	
N'_{leaf}	minimum leaf structural N content	g N g C^{-1}	[C12]	$0.33 \times N_{\text{leaf}}$	
N_{lf}	total leaf N	$\text{g N m}^{-2} \text{leaf}$	[C32,C33,C47,C48]		
			8]		
$[N_{\text{chl(b4)}}']$	ratio of chlorophyll N in C_4 bundle sheath to total leaf N	g N g N^{-1}	[C48]	0.05	
$[N_{\text{chl(m4)}}']$	ratio of chlorophyll N in C_4 mesophyll to total leaf N	g N g N^{-1}	[C33]	0.05	
$[N_{\text{pep(m4)}}']$	ratio of PEP carboxylase N in C_4 mesophyll to total leaf N	g N g N^{-1}	[C32]	0.025	

$[N_{\text{rub(b4)}}]'$	ratio of RuBP carboxylase N in C ₄ bundle sheath to total leaf N	g N g N ⁻¹	[C47]	0.025
O_{2q}	aqueous O ₂ concentration in root or mycorrhizal aerenchyma	g m ⁻³	[C14c,d]	
O_{2r}	aqueous O ₂ concentration at root or mycorrhizal surfaces	g m ⁻³	[C14c,d]	
O_{2s}	aqueous O ₂ concentration in soil solution	g m ⁻³	[C14c,d]	
O_c	[O ₂] in canopy chloroplasts in equilibrium with O ₂ in atm.	μM	[C6c,C6e]	
P_{leaf}	maximum leaf structural P content	g P g C ⁻¹	[C12]	0.10
P'_{leaf}	minimum leaf structural P content	g P g C ⁻¹	[C12]	0.33 x P_{leaf}
P_{prot}	P content of protein remobilized from leaf or root	g P C ⁻¹	[C12,C19b]	0.04
$[\pi_{\text{lf}}]$	concentration of nonstructural root P uptake product in leaf	g P g C ⁻¹	[C49]	
θ_P	root or mycorrhizal porosity	m ³ m ⁻³	[C21b]	0.1 – 0.5
R	gas constant	J mol ⁻¹ K ⁻¹	[C10, C22]	8.3143
R	gas constant	J mol ⁻¹ K ⁻¹	[C36]	8.3143
R_a	total autotrophic respiration	g C m ⁻² h ⁻¹	[C13]	
R'_a	R_a under nonlimiting O ₂	g C m ⁻² h ⁻¹	[C14]	

R_c'	specific autotrophic respiration of $\sigma_{Ci,j}$ at $T_{ci} = 25$ °C	$\text{g C g C}^{-1} \text{ h}^{-1}$	[C14]	0.015
R_c	autotrophic respiration of $\sigma_{Ci,j}$ or $\sigma_{Ci,r,l}$	$\text{g C m}^{-2} \text{ h}^{-1}$	[C13,C14,C17, C15]	
R_g	growth respiration	$\text{g C m}^{-2} \text{ h}^{-1}$	[C17,C20]	
r_{lf}	leaf stomatal resistance	s m^{-1}	[C25,C27,C39]	
r_{lfmaxi}	leaf cuticular resistance	s m^{-1}	[C27]	
$r_{lfmini,j,k,l,m,n,o}$	leaf stomatal resistance when $\psi_{ci} = 0$	s m^{-1}	[C27,C28,C35]	
$r_{li,j,k,l,m,n,o}$	leaf stomatal resistance	s m^{-1}	[C2,C4,C9]	
r_{lmaxi}	leaf cuticular resistance	s m^{-1}	[C4]	
$r_{lmini,j,k,l,m,n,o}$	leaf stomatal resistance when $\psi_{ci} = 0$	s m^{-1}	[C4,C5,C9]	
R_m'	specific maintenance respiration of $\sigma_{Ci,j}$ at $T_{ci} = 25$ °C	$\text{g C g N}^{-1} \text{ h}^{-1}$	[C16]	0.0115
				Barnes et al. (1998)
$R_{mi,j}$	above-ground maintenance respiration	$\text{g C m}^{-2} \text{ h}^{-1}$	[C16,C17,C15]	
$r_{qi,r,l}$	radius of root aerenchyma	m	[C14d]	
$r_{ri,r,l}$	root or mycorrhizal radius	m	[C14d,C21b,c,C23 a,c,e]	1.0×10^{-4} or 5.0×10^{-6}

$R_{si,j}$	respiration from remobilization of leaf C	$\text{g C m}^{-2} \text{ h}^{-1}$	[C13,C15,C18, C20]	
r_{sl}	thickness of soil water films	m	[C14d]	
ρ_r	dry matter content of root biomass	g g^{-1}	[C21b]	0.125
S	change in entropy	$\text{J mol}^{-1} \text{ K}^{-1}$	[C10, C22]	710
				Sharpe and DeMichelle (1977)
S	change in entropy	$\text{J mol}^{-1} \text{ K}^{-1}$	[C36]	710
σ_C	nonstructural C product of CO_2 fixation	g C g C^{-1}	[C11, C19c,d, C23g,h]	
σ_N	nonstructural N product of root uptake	g N g C^{-1}	[C11, C19c, C23g,h]	
σ_P	nonstructural P product of root uptake	g P g C^{-1}	[C11, C19d, C23g,h]	
T_c	canopy temperature	K	[C10, C22]	
T_c	canopy temperature	$^{\circ}\text{C}$	[C36]	
$U_{\text{NH4},r,l}$	NH_4^+ uptake by roots or mycorrhizae	$\text{g N m}^{-2} \text{ h}^{-1}$	[C23]	

U'_{NH_4}	maximum U_{NH_4} at 25 °C and non-limiting NH_4^+	$\text{g N m}^{-2} \text{ h}^{-1}$	[C23]	5.0×10^{-3}	Barber and Silberbush (1984)
$U_{\text{NO}_3i,r,l}$	NO_3^- uptake by roots or mycorrhizae	$\text{g N m}^{-2} \text{ h}^{-1}$	[C23]		
U'_{NO_3}	maximum U_{NO_3} at 25 °C and non-limiting NO_3^-	$\text{g N m}^{-2} \text{ h}^{-1}$	[C23]	5.0×10^{-3}	Barber and Silberbush (1984)
$U_{\text{PO}_4i,r,l}$	H_2PO_4^- uptake by roots or mycorrhizae	$\text{g N m}^{-2} \text{ h}^{-1}$	[C23]		
U'_{PO_4}	maximum U_{PO_4} at 25 °C and non-limiting H_2PO_4^-	$\text{g N m}^{-2} \text{ h}^{-1}$	[C23]	5.0×10^{-3}	Barber and Silberbush (1984)
$U_{\text{O}_2i,r,l}$	O_2 uptake by roots and mycorrhizae under ambient O_2	$\text{g O m}^{-2} \text{ h}^{-1}$	[C14b,c,C23b,d,f]		
$U'_{\text{O}_2i,l,r}$	O_2 uptake by roots and mycorrhizae under nonlimiting O_2	$\text{g O m}^{-2} \text{ h}^{-1}$	[C14b,c,C23b,d,f]		
$U_{w_{i,r,l}}$	root water uptake	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[C14d,C23]		
$V_{\phi(b4)i,j,k}$	CO_2 leakage from C_4 bundle sheath to C_4 mesophyll	$\text{g C m}^{-2} \text{ h}^{-1}$	[C39,C42]		
V_b'	specific rubisco carboxylation at 25 °C	$\mu\text{mol g}^{-1} \text{ rubisco}$	[C6b]	45	Farquhar et al. (1980)
		s^{-1}			
$V_{b(b4)i,j,k}$	CO_2 -limited carboxylation rate in C_4 bundle sheath	$\mu\text{mol m}^{-2} \text{ s}^{-1}$	[C43,C44]		
$V_{b(m4)i,j,k,l,m,n,o}$	CO_2 -limited carboxylation rate in C_4 mesophyll	$\mu\text{mol m}^{-2} \text{ s}^{-1}$	[C26]		
$V_{bi,j,k,l,m,n,o}$	CO_2 -limited leaf carboxylation rate	$\mu\text{mol m}^{-2} \text{ s}^{-1}$	[C3,C6]		

$V_{b\max(b4)'}^{'}$	RuBP carboxylase specific activity in C ₄ bundle sheath at 25°C when $\psi_{ci} = 0$ and nutrients are nonlimiting	$\mu\text{mol g}^{-1} \text{s}^{-1}$	[C47]	75
$V_{b\max(b4)i,j,k}$	CO ₂ -nonlimited carboxylation rate in C ₄ bundle sheath	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C44,C47]	
$V_{b\max(m4)'}^{'}$	PEP carboxylase specific activity in C ₄ mesophyll at 25°C when $\psi_{ci} = 0$ and nutrients are nonlimiting	$\mu\text{mol g}^{-1} \text{s}^{-1}$	[C32]	150
$V_{b\max(m4)i,j,k}$	CO ₂ -nonlimited carboxylation rate in C ₄ mesophyll	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C29,C32]	
$V_{bmaxi,j,k}$	leaf carboxylation rate at non-limiting CO ₂ , ψ_{ci} , T_c and N,P	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C6a,C6b,C6c]	
$V_{c(b4)i,j,k,l,m,n,o}$	CO ₂ fixation rate in C ₄ bundle sheath	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C43]	
$V_{c(m4)i,j,k,l,m,n,o}$	CO ₂ fixation rate in C ₄ mesophyll	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C24,C26,C40,C41]	
$V_{c0(m4)i,j,k,l,m,n,o}$	CO ₂ fixation rate in C ₄ mesophyll when $\psi_{ci} = 0$ MPa	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C28]	
$V_{ci,j,k,l,m,n,o}$	leaf CO ₂ fixation rate	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C1,C3]	
$V_{c'}_{i,j,k,l,m,n,o}$	leaf CO ₂ fixation rate when $\psi_{ci} = 0$	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C5]	
$V_{g(m4)i,j,k,l,m,n,o}$	CO ₂ diffusion rate into C ₄ mesophyll	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C24,C25]	
$V_{gi,j,k,l,m,n,o}$	leaf CO ₂ diffusion rate	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C1,C2]	

V_j'	specific chlorophyll e ⁻ transfer at 25 °C	$\mu\text{mol g}^{-1}$	[C8b]	450	Farquhar et al. (1980)
		chlorophyll s^{-1}			
$V_{j(b4)i,j,k,l,m,n,o}$	irradiance-limited carboxylation rate in C ₄ bundle sheath	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C43,C45]		
$V_{j(m4)i,j,k,l,m,n,o}$	irradiance-limited carboxylation rate in C ₄ mesophyll	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C26,C30]		
$V_{j,i,j,k,l,m,n,o}$	irradiance-limited leaf carboxylation rate	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C3,C7]		
V_o'	specific rubisco oxygenation at 25 °C	$\mu\text{mol g}^{-1} \text{ rubisco}$	[C6d]	9.5	Farquhar et al. (1980)
		s^{-1}			
$V_{\text{omax}i,j,k}$	leaf oxygenation rate at non-limiting O ₂ , ψ_{ci} , T_c and N,P	$\mu\text{mol m}^{-2} \text{s}^{-1}$	[C6c,d]		
$V_{\chi C4(b4)i,j,k}$	decarboxylation of C ₄ fixation product in C ₄ bundle sheath	$\text{g C m}^{-2} \text{ h}^{-1}$	[C38,C41,C42]		
$V_{\chi C4(m4)}$	transfer of C ₄ fixation product between C ₄ mesophyll and bundle sheath	$\text{g C m}^{-2} \text{ h}^{-1}$	[C37]		
$[V_{\text{lf}}]$	concentration of nonstructural root N uptake product in leaf	g N g C^{-1}	[C49]		
v_r	specific volume of root biomass	$\text{m}^3 \text{ g}^{-1}$	[C21b]		
$W_{\text{lf}(b4)}$	C ₄ bundle sheath water content	g m^{-2}	[C37,C39]		
$W_{\text{lf}(m4)}$	C ₄ mesophyll water content	g m^{-2}	[C37]		

X_{mx}	maximum fraction of remobilizable N or P translocated out of leaf or root during senescence	-	[C19a,b]	0.6	Kimmins (2004)
$Y_{(b4)}$	carboxylation yield from electron transport in C ₄ bundle sheath	$\mu\text{mol CO}_2 \mu\text{mol e}^{-}$	[C45]	$^{-1}$	
$Y_{(m4)}$	carboxylation yield from electron transport in C ₄ mesophyll	$\mu\text{mol CO}_2 \mu\text{mol e}^{-}$	[C30]	$^{-1}$	
Y_g	fraction of σ_{Cij} used for growth expended as $R_{gij,z}$ by organ z	g C g C^{-1}	[C20]	0.28 ($z = \text{leaf}$), 0.24 ($z = \text{root and}$ other non-foliar), 0.20 ($z = \text{wood}$)	Waring and Running (1998)
y	plant population	m^{-2}	[C21]		
Y	carboxylation yield	$\mu\text{mol CO}_2 \mu\text{mol e}^{-}$	[C7]	$^{-1}$	
I	CO ₂ compensation point	μM	[C6a,C6c]		
$I_{(b4)}$	CO ₂ compensation point in C ₄ bundle sheath	μM	[C44]		
$I_{(m4)}$	CO ₂ compensation point in C ₄ mesophyll	μM	[C29]		

α	shape parameter for response of J to I	-	[C8a]	0.7	
α	shape parameter for response of J to I	-	[C31,C46]	0.75	
χ	area:mass ratio of leaf growth	m g^{-3}	[C21]	0.0125	Grant and Hesketh (1992)
$\chi_{\text{C4(b4)}}$	non-structural C ₄ fixation product in C ₄ bundle sheath	g C m^{-2}	[C37,C38,C41]		
$\chi_{\text{C4(m4)}}$	non-structural C ₄ fixation product in C ₄ mesophyll	g C m^{-2}	[C37,C40]		
$[\chi_{\text{C3(b4)}}]$	concentration of non-structural C ₃ fixation product in C ₄ bundle sheath	g g^{-1}	[C49]		
$[\chi_{\text{C4(m4)}}]$	concentration of non-structural C ₄ fixation product in C ₄ mesophyll	μM	[C34]		
ϵ	quantum yield	$\mu\text{mol e}^{-} \mu\text{mol}$ quanta ⁻¹	[C8a]	0.45	Farquhar et al. (1980)
ϵ	quantum yield	$\mu\text{mol e}^{-} \mu\text{mol}$ quanta ⁻¹	[C31,C46]	0.45	Farquhar et al. (1980)
$\kappa_{\text{Cc(b4)}}$	conductance to CO ₂ leakage from C ₄ bundle sheath	h^{-1}	[C39]	20	
ψ_t	canopy turgor potential	MPa	[C4]	1.25 at $\psi_c = 0$	

Appendix D: Soil water, heat, gas and solute fluxes

Surface water flux

$$Q_{rx(x,y)} = v_{x(x,y)} d_{mx,y} L_{y(x,y)}$$

2D Manning equation in x (EW) [D1]

$$Q_{ry(x,y)} = v_{y(x,y)} d_{mx,y} L_{x(x,y)}$$

and y (NS) directions

$$d_{x,y} = \max(0, d_{w(x,y)} + d_{i(x,y)} - d_{s(x,y)}) d_{w(x,y)} / (d_{w(x,y)} + d_{i(x,y)})$$

surface water depth [D2]

$$v_{x(x,y)} = R^{0.67} s_{x(x,y)}^{0.5} / z_{r(x,y)}$$

runoff velocity over E slope [D3]

$$v_{y(x,y)} = R^{0.67} s_{y(x,y)}^{0.5} / z_{r(x,y)}$$

runoff velocity over S slope

$$v_{x(x,y)} = -R^{0.67} s_{x(x,y)}^{0.5} / z_{r(x,y)}$$

runoff velocity over W slope

$$v_{y(x,y)} = -R^{0.67} s_{y(x,y)}^{0.5} / z_{r(x,y)}$$

runoff velocity over N slope

$$\Delta(d_{w(x,y)} A_{x,y}) / \Delta t = Q_{r,x(x,y)} - Q_{r,x+1(x,y)} + Q_{r,y(x,y)} - Q_{r,y+1(x,y)} + P - E_{x,y} - Q_{wz(x,y,I)}$$

2D kinematic wave theory for overland flow [D4]

$$R = s_r d_m / [2(s_r^2 + 1)0.5]$$

wetted perimeter [D5a]

$$s_{x(x,y)} = 2abs[(Z + d_s + d_m)_{x,y} - (Z + d_s + d_m)_{x+1,y}] / (L_{x(x,y)} + L_{x(x+1,y)})$$

2D slope from topography and pooled surface water in x (EW) [D5b]

$$s_{y(x,y)} = 2abs[(Z + d_s + d_m)_{x,y} - (Z + d_s + d_m)_{x,y+1}] / (L_{y(x,y)} + L_{y(x,y+1)})$$

and y (NS) directions

$$LE_l = L (e_a - e_{l(T_l, \psi_l)})/r_{al}$$

evaporation from surface litter

[D6a]

$$LE_s = L (e_a - e_{s(T_s, \psi_s)})/r_{as}$$

evaporation from soil surface

[D6b]

Subsurface water flux

$$Q_{wx(x,y,z)} = K'_x (\psi_{sx,y,z} - \psi_{sx+I,y,z})$$

3D Richard's or Green-Ampt

[D7]

$$Q_{wy(x,y,z)} = K'_y (\psi_{sx,y,z} - \psi_{sx,y+I,z})$$

equation depending on saturation
of source or target cell in x (EW),
 y (NS) and z (vertical) directions

$$Q_{wz(x,y,z)} = K'_z (\psi_{sx,y,z} - \psi_{sx,y,z+I})$$

3D water transfer plus freeze-thaw

[D8]

$$\Delta \theta_{w,x,y,z}/\Delta t = (Q_{wx(x,y)} - Q_{wx+I(x,y)} + Q_{wy(x,y)} - Q_{wy+I(x,y)} + Q_{wz(x,y)} - Q_{wz+I(x,y)} + Q_{f(x,y,z)})/L_{z(x,y,z)}$$

$$K'_x = 2K_{x,y,z}K_{x+I,y,z}/(K_{x,y,z}L_{x,(x+I,y,z)} + K_{x+I,y,z}L_{x,(x,y,z)})$$

in direction x if source and

[D9a]

$$= 2K_{x,y,z}/(L_{x(x+I,y,z)} + L_{x(x,y,z)})$$

destination cells are unsaturated
in direction x if source cell is

[D9b]

$$= 2K_{x+I,y,z}/(L_{x(x+I,y,z)} + L_{x(x,y,z)})$$

saturated
in direction x if destination cell is

[D9b]

$$K'_y = 2K_{x,y,z}K_{x,y+I,z}/(K_{x,y,z}L_{y(x,y+I,z)} + K_{x,y+I,z}L_{y(x,y,z)})$$

saturated
in direction y if source and

[D9a]

destination cells are unsaturated

$= 2K_{x,y,z}/(L_{y(x,y+1,z)} + L_{y(x,y,z)})$	in direction y if source cell is saturated	[D9b]
$= 2K_{x,y+1,z}/(L_{y(x,y+1,z)} + L_{y(x,y,z)})$	in direction y if destination cell is saturated	
$K'_z = 2K_{x,y,z}K_{x,y,z+1}/(K_{x,y,z}L_{z(x,y,z+1)} + K_{x,y,z+1}L_{z(x,y,z)})$	in direction z if source and destination cells are unsaturated	[D9a]
$= 2K_{x,y,z}/(L_{z(x,y,z+1)} + L_{z(x,y,z)})$	in direction z if source cell is saturated	[D9b]
$= 2K_{x,y,z+1}/(L_{z(x,y,z+1)} + L_{z(x,y,z)})$	in direction z if destination cell is saturated	

Exchange with water table

$Q_{mat_{tx(x,y,z)}} = K_{mat_{x,y,z}} [\psi' - \psi_{sx,y,z} + 0.01(d_{zx,y,z} - WTD_x)]/(L_{tx} + 0.5 L_{x,(x,y,z)})$	if $d_{zx,y,z} < WTD_x$ then $\psi_{sx,y,z} > \psi' + 0.01(d_{zx,y,z} - WTD_x)$ for all depths	[D10]
$Q_{mat_{tx(x,y,z)}} = K_{mat_{x,y,z}} [\psi' - \psi_{sx,y,z} + 0.01(d_{zx,y,z} - WTD_x)]/(L_{tx} + 0.5 L_{x,(x,y,z)})$	z from $d_{zx,y,z}$ to WTD_x or if $d_{zx,y,z} > WTD_x$ then $\psi_{sx,y,z} > 0.01(WTD_x - d_{zx,y,z}) - \psi'$ for all depths z from WTD_x to $d_{zx,y,z}$	

$$Q_{mac_{tx(x,y,z)}} = K_{mac_{x,y,z}} [0.01 * \min(0, d_{zx,y,z} - L_{z(x,y,z)} * (\min(1, \max(0, \theta_{mac})) - 0.5) - WTD_x)] / (L_{tx} + 0.5 L_{x,(x,y,z)}) \quad \text{if } d_{zx,y,z} < WTD_x \text{ then } \psi_{sx,y,z} > \psi' + 0.01(d_{zx,y,z} - WTD_x) \text{ for all depths} \quad [D10a]$$

z from $d_{zx,y,z}$ to WTD_x

$$Q_{mac_{tx(x,y,z)}} = K_{mac_{x,y,z}} [0.01 * \max(0, d_{zx,y,z} - L_{z(x,y,z)} * (\min(1, \max(0, \theta_{mac})) - 0.5) - WTD_x)] / (L_{tx} + 0.5 L_{x,(x,y,z)}) \quad \text{or if } d_{zx,y,z} > WTD_x \text{ then } \psi_{sx,y,z} > 0.01(WTD_x - d_{zx,y,z}) - \psi' \text{ for all depths } z \text{ from } WTD_x \text{ to } d_{zx,y,z}$$

Heat flux

$$R_n + LE + H + G = 0 \quad \text{for each canopy, snow, residue and soil surface, depending on exposure} \quad [D11]$$

$$G_{x(x,y,z)} = 2 \kappa_{(x,y,z),(x+I,y,z)} (T_{(x,y,z)} - T_{(x+I,y,z)}) / (L_{x(x,y,z)} + L_{x(x+I,y,z)}) + c_w T_{(x,y,z)} Q_{wx(x,y,z)} \quad 3D \text{ conductive - convective heat flux among snowpack, surface} \quad [D12]$$

$$G_{y(x,y,z)} = 2 \kappa_{(x,y,z),(x,y+I,z)} (T_{(x,y,z)} - T_{(x,y+I,z)}) / (L_{y(x,y,z)} + L_{y(x,y+I,z)}) + c_w T_{(x,y,z)} Q_{wy(x,y,z)} \quad \text{residue and soil layers in } x \text{ (EW), } y \text{ (NS) and } z \text{ (vertical) directions}$$

$$G_{z(x,y,z)} = 2 \kappa_{(x,y,z),(x,y,z+I)} (T_{(x,y,z)} - T_{(x,y,z+I)}) / (L_{z(x,y,z)} + L_{z(x,y,z+I)}) + c_w T_{(x,y,z)} Q_{wz(x,y,z)}$$

$$G_{x(x-I,y,z)} - G_{x(x,y,z)} + G_{y(x,y-I,z)} - G_{y(x,y,z)} + G_{z(x,y,z-I)} - G_{z(x,y,z)} + LQ_{f(x,y,z)} + c_{(x,y,z)} (T_{(x,y,z)} - T'_{(x,y,z)})/\Delta t = 0$$

3D general heat flux equation in
snowpack, surface residue and soil
layers

Gas flux

$$Q_{ds\gamma x,y,z} = a_{gsx,y,z} D_{d\gamma} (S'_{\gamma} f_{d\gamma x,y,z} [\gamma_{gs}]_{x,y,z} - [\gamma_{ss}]_{x,y,z})$$

volatilization – dissolution [D14a]

$$Q_{dr\gamma x,y,z} = a_{grx,y,z} D_{d\gamma} (S'_{\gamma} f_{d\gamma x,y,z} [\gamma_{gr}]_{x,y,z} - [\gamma_{sr}]_{x,y,z})$$

between aqueous and gaseous
phases in soil and root [D14b]

$$Q_{gs\gamma z x,y,I} = g_{ax,y} \{ [\gamma_a] - \{2[\gamma_{gs}]_{x,y,I} D_{gs\gamma z(x,y,I)} / L_{z(x,y,I)} + g_{ax,y} [\gamma_a]\} / \{2 D_{gs\gamma z(x,y,I)} / L_{z(x,y,I)} + g_{ax,y}\} \}$$

volatilization – dissolution [D15a]
between gaseous and aqueous

$$Q_{ds\gamma x,y,I} = a_{gsx,y,I} D_{d\gamma} (S'_{\gamma} f_{d\gamma x,y,I} [\gamma_a] - [\gamma_{ss}]_{x,y,I})$$

phases at the soil surface ($z = I$) [D15b]
and the atmosphere

$Q_{gs\gamma x}(x,y,z) = - Q_{wx}(x,y,z) [\gamma_{gs}]_{x,y,z} + 2 D_{gs\gamma x}(x,y,z) ([\gamma_{gs}]_{x,y,z} - [\gamma_{gs}]_{x+I,y,z}) / (L_x(x,y,z) + L_x(x+I,y,z))$	3D convective - conductive gas flux among soil layers in x (EW), y (NS) and z (vertical) directions,	[D16a]
$Q_{gs\gamma y}(x,y,z) = - Q_{wy}(x,y,z) [\gamma_{gs}]_{x,y,z} + 2 D_{gs\gamma y}(x,y,z) ([\gamma_{gs}]_{x,y,z} - [\gamma_{gs}]_{x,y+I,z}) / (L_y(x,y,z) + L_y(x,y+I,z))$		[D16b]
$Q_{gs\gamma z}(x,y,z) = - Q_{wz}(x,y,z) [\gamma_{gs}]_{x,y,z} + 2 D_{gs\gamma z}(x,y,z) ([\gamma_{gs}]_{x,y,z} - [\gamma_{gs}]_{x,y,z+I}) / (L_z(x,y,z) + L_z(x,y,z+I))$		[D16c]
$Q_{gr\gamma z}(x,y,z) = D_{gr\gamma z}(x,y,z) ([\gamma_{gr}]_{x,y,z} - [\gamma_a]) / \Sigma_{1,z} L_z(x,y,z)$	convective - conductive gas flux between roots and the atmosphere	[D16d]
$D_{gs\gamma x}(x,y,z) = D'_{g\gamma} f_{t_{gsx,y,z}} [0.5(\theta_{gx,y,z} + \theta_{gx+I,y,z})]^2 / \theta_{psx,y,z}^{0.67}$	gasous diffusivity as a function of air-filled porosity in soil	[D17a]
$D_{gs\gamma y}(x,y,z) = D'_{g\gamma} f_{t_{gsy,y,z}} [0.5(\theta_{gy,y,z} + \theta_{gy+I,z})]^2 / \theta_{psx,y,z}^{0.67}$		[D17b]
$D_{gs\gamma z}(x,y,z) = D'_{g\gamma} f_{t_{gsz,y,z}} [0.5(\theta_{gz,y,z} + \theta_{gz,z+I})]^2 / \theta_{psx,y,z}^{0.67}$	gasous diffusivity as a function of air-filled porosity in roots	[D17c]
$Q_{b\gamma} = \min[0.0, \{(44.64 \theta_{wx,y,z} 273.16 / T_{(x,y,z)}) - \Sigma_{\gamma} ([\gamma]_{x,y,z} / (S'_{\gamma} f_{t_{d\gamma x,y,z}} M_{\gamma}))\}]$	bubbling (-ve flux) when total of all partial gas pressures exceeds atmospheric pressure	[D17d]
$([\gamma]_{x,y,z} / (S'_{\gamma} f_{t_{d\gamma x,y,z}} M_{\gamma})) / \Sigma_{\gamma} ([\gamma]_{x,y,z} / (S'_{\gamma} f_{t_{d\gamma x,y,z}} M_{\gamma})) S'_{\gamma} f_{t_{d\gamma x,y,z}} M_{\gamma} V_{x,y,z}$		[D18]

Solute flux

$$Q_{s\gamma x(x,y,z)} = - Q_{wx(x,y,z)} [\gamma]_{x,y,z} + 2 D_{s\gamma x(x,y,z)} ([\gamma]_{x,y,z} - [\gamma]_{x+I,y,z}) / (L_x(x,y,z) + L_x(x+I,y,z))$$

3D convective - dispersive solute flux among soil layers in x (EW), y (NS) and z (vertical) directions [D19]

$$Q_{s\gamma y(x,y,z)} = - Q_{wy(x,y,z)} [\gamma]_{x,y,z} + 2 D_{s\gamma y(x,y,z)} ([\gamma]_{x,y,z} - [\gamma]_{x,y+I,z}) / (L_y(x,y,z) + L_y(x,y+I,z))$$

$$Q_{s\gamma z(x,y,z)} = - Q_{wz(x,y,z)} [\gamma]_{x,y,z} + 2 D_{s\gamma z(x,y,z)} ([\gamma]_{x,y,z} - [\gamma]_{x,y,z+I}) / (L_z(x,y,z) + L_z(x,y,z+I))$$

$$D_{s\gamma x(x,y,z)} = D_{qx(x,y,z)} |Q_{wx(x,y,z)}| + D'_{s\gamma} f_{sx,y,z} [0.5(\theta_{wx,y,z} + \theta_{wx+I,y,z})] \tau$$

aqueous dispersivity as functions of water flux and water-filled porosity [D20]

$$D_{s\gamma y(x,y,z)} = D_{qy(x,y,z)} |Q_{wy(x,y,z)}| + D'_{s\gamma} f_{sy,y,z} [0.5(\theta_{wx,y,z} + \theta_{wx+I,y,z})] \tau$$

$$D_{s\gamma z(x,y,z)} = D_{qz(x,y,z)} |Q_{wz(x,y,z)}| + D'_{s\gamma} f_{sz,y,z} [0.5(\theta_{wx,y,z} + \theta_{wx+I,y,z})] \tau$$

$$D_{qx(x,y,z)} = 0.5 \alpha (L_x(x,y,z) + L_x(x+I,y,z))^\beta$$

dispersivity as a function of water flow length [D21]

$$D_{qy(x,y,z)} = 0.5 \alpha (L_y(x,y,z) + L_y(x,y+I,z))^\beta$$

$$D_{qz(x,y,z)} = 0.5 \alpha (L_z(x,y,z) + L_z(x,y,z+I))^\beta$$

Definition of variables in appendix D

Variable	Definition	Unit	Equation	Value	Reference
<i>Subscripts</i>					
x	grid cell position in west to east direction				
y	grid cell position in north to south direction				
z	grid cell position in vertical direction			$z = 0$: surface residue, $z = 1$ to n : soil layers	
<i>Variables</i>					
A	area of landscape position	m^2	[D17c]		
A_r	root cross-sectional area of landscape position	m^2	[D17c]		
a_{gr}	air-water interfacial area in roots	$\text{m}^2 \text{ m}^{-2}$	[D14b]		
a_{gs}	air-water interfacial area in soil	$\text{m}^2 \text{ m}^{-2}$	[D14a,D15b]		Skopp (1985)
α	dependence of D_q on L	-	[D21]		
β	dependence of D_q on L	-	[D21]		
c	heat capacity of soil	$\text{MJ m}^{-2} \text{ }^{\circ}\text{C}^{-1}$	[D13]		
c_w	heat capacity of water	$\text{MJ m}^{-3} \text{ }^{\circ}\text{C}^{-1}$	[D12]	4.19	
$D_{d\gamma}$	volatilization - dissolution transfer coefficient for gas γ	$\text{m}^2 \text{ h}^{-1}$	[D14,D15a]		

$D_{g\gamma}$	gaseous diffusivity of gas γ in roots	$\text{m}^2 \text{ h}^{-1}$	[D16d,D17d]	Luxmoore et al. (1970a, b)
$D_{g\gamma}$	gaseous diffusivity of gas γ in soil	$\text{m}^2 \text{ h}^{-1}$	[D15a,D16a,b,c,D 17a,b,c]	Millington and Quirk (1960)
$D'_{g\gamma}$	diffusivity of gas γ in air at 0 °C	$\text{m}^2 \text{ h}^{-1}$	[D17]	6.43×10^{-2} for $\gamma = \text{O}_2$ Campbell (1985)
D_q	dispersivity	m	[D20,D21]	
$D_{s\gamma}$	aqueous diffusivity of gas or solute γ	$\text{m}^2 \text{ h}^{-1}$	[D19,D20]	
$D'_{s\gamma}$	diffusivity of gas γ in water at 0 °C	$\text{m}^2 \text{ h}^{-1}$	[D20]	8.57×10^{-6} for $\gamma = \text{O}_2$ Campbell (1985)
d_m	depth of mobile surface water	m	[D1,D2,D5a,D6]	
d_i	depth of surface ice	m	[D2]	
d_s	maximum depth of surface water storage	m	[D2,D5b]	
WTD_x	external water table depth	m	[D10]	
d_w	depth of surface water	m	[D1,D2]	
d_z	depth to mid-point of soil layer	m	[D10]	
E	evaporation or transpiration flux	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D4,D11]	
e_a	atmospheric vapor density	$\text{m}^3 \text{ m}^{-3}$	[D6]	

$e_{l(T_l, \psi_l)}$	surface litter vapor density at current T_l and ψ_l	g m^{-3}	[D6a]	
$e_{s(T_s, \psi_s)}$	soil surface vapor density at current T_s and ψ_s	g m^{-3}	[D6b]	
$f_{t_{d\gamma}}$	temperature dependence of S'_γ	-	[D14,D15b,D18]	Wilhelm et al. (1977)
f_{t_g}	temperature dependence of $D'_{g\gamma}$	-	[D17]	Campbell (1985)
f_{t_s}	temperature dependence of $D'_{s\gamma}$	-	[D20]	Campbell (1985)
G	soil surface heat flux	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D11]	
G_x, G_y, G_z	soil heat flux in x, y or z directions	$\text{MJ m}^{-2} \text{ h}^{-1}$	[D12,D13]	
g_a	boundary layer conductance	m h^{-1}	[D15a]	
γ	gas ($\text{H}_2\text{O}, \text{CO}_2, \text{O}_2, \text{CH}_4, \text{NH}_3, \text{N}_2\text{O}, \text{N}_2, \text{H}_2$) or solute (from appendix E)		[D14,D15]	
$[\gamma_a]$	atmospheric concentration of gas γ	g m^{-3}	[D15,D16d]	
$[\gamma_{gr}]$	gasous concentration of gas γ in roots	g m^{-3}	[D14b,D16d]	
$[\gamma_{gs}]$	gasous concentration of gas γ in soil	g m^{-3}	[D14a,D15a,D16a ,D16b,D16c]	
$[\gamma_{sr}]$	aqueous concentration of gas γ in roots	g m^{-3}	[D14b]	
$[\gamma_{ss}]$	aqueous concentration of gas γ in soil	g m^{-3}	[D14a,D15b,D18, D19]	

H	sensible heat flux	$\text{MJ m}^{-2} \text{ h}^{-1}$	[D11]	
K	hydraulic conductivity	$\text{m}^2 \text{ MPa}^{-1} \text{ h}^{-1}$	[D9]	Green and Corey (1971)
K_{mat}	soil matrix hydraulic conductivity	$\text{m}^2 \text{ MPa}^{-1} \text{ h}^{-1}$	[D10]	
K_{mac}	macropore hydraulic conductivity	$\text{m}^2 \text{ MPa}^{-1} \text{ h}^{-1}$	[D10a]	
K'_x, K'_y, K'_z	hydraulic conductance in x, y or z directions	$\text{m MPa}^{-1} \text{ h}^{-1}$	[D7,D9]	
κ	thermal conductivity	$\text{MJ m}^{-1} \text{ h}^{-1} \text{ }^{\circ}\text{C}^{-1}$	[D12]	de Vries (1963)
L_t	distance from boundary to external water table in x or y directions	m	[D10]	
L_x, L_y, L_z	length of landscape element in x, y or z directions	m	[D1,D5b,D8,D9,D10,D12,D15a,D16,D19]	
LE_l	latent heat flux from surface litter	[D6a]	$\text{MJ m}^{-2} \text{ h}^{-1}$	
LE_s	latent heat flux from soil surface	[D6b]	$\text{MJ m}^{-2} \text{ h}^{-1}$	
L	latent heat of evaporation	MJ m^{-3}	[D6,D11,D13]	2460
M_γ	atomic mass of gas γ	g mol^{-1}	[D18]	

P	precipitation flux	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D4]
$Q_{b\gamma}$	bubbling flux	$\text{g m}^{-2} \text{ h}^{-1}$	[D18]
Q_{dry}	volatilization – dissolution of gas γ between aqueous and gaseous phases in roots	$\text{g m}^{-2} \text{ h}^{-1}$	[D14b]
$Q_{\text{ds}\gamma}$	volatilization – dissolution of gas γ between aqueous and gaseous phases in soil	$\text{g m}^{-2} \text{ h}^{-1}$	[D14a,D15b]
Q_f	freeze-thaw flux (thaw +ve)	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D8,D13]
$Q_{\text{gr}\gamma}$	gaseous flux of gas γ between roots and the atmosphere	$\text{g m}^{-2} \text{ h}^{-1}$	[D16d]
$Q_{\text{gs}\gamma}$	gaseous flux of gas γ in soil	$\text{g m}^{-2} \text{ h}^{-1}$	[D15a,D16a,b,c]
$Q_{\text{rx}}, Q_{\text{ry}}$	surface water flow in x or y directions	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D1,D4]
$Q_{s\gamma}$	aqueous flux of gas or solute γ	$\text{g m}^{-2} \text{ h}^{-1}$	[D19]
Q_{mat}	water flux between boundary grid cell and external water table through soil matrix in x or y directions	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D10]
Q_{mac_t}	water flux between boundary grid cell and external water table through macropores in x or y directions	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D10a]

Q_{wx}, Q_{wy}, Q_{wz}	subsurface water flow in x, y or z directions	$\text{m}^3 \text{ m}^{-2} \text{ h}^{-1}$	[D4,D7,D8,D12,D16,D19,D20]	
θ_g	air-filled porosity	$\text{m}^3 \text{ m}^{-3}$	[D17a,b,c]	
θ_{mac}	macropore water content	$\text{m}^3 \text{ m}^{-3}$	[D10a]	
θ_{pr}	root porosity	$\text{m}^3 \text{ m}^{-3}$	[D17d]	dryland spp. 0.10 wetland spp. 0.20
				Luxmoore et al. (1970a, b)
θ_{ps}	soil porosity	$\text{m}^3 \text{ m}^{-3}$	[D17a,b,c]	
θ_w	water-filled porosity	$\text{m}^3 \text{ m}^{-3}$	[D8,D18,D20]	
R	ratio of cross-sectional area to perimeter of surface flow	m	[D3,D5a]	
R_n	net radiation	$\text{MJ m}^{-2} \text{ h}^{-1}$	[D11]	
r_{al}	surface litter boundary layer resistance	m h^{-1}	[D6a]	
r_{as}	Soil surface boundary layer resistance	m h^{-1}	[D6b]	
S'_{γ}	Ostwald solubility coefficient of gas γ at 30 °C	-	[D14,D15b,D18]	0.0293 for $\gamma = \text{O}_2$
				Wilhelm et al. (1977)
s_r	slope of channel sides during surface flow	m m^{-1}	[D5a]	
s_x, s_y	slope in x or y directions	m m^{-1}	[D3,D5b]	

T	soil temperature	°C	[D12,D18]
τ	Tortuosity	-	[D20]
v_x, v_y	velocity of surface flow in x or y directions	m h^{-1}	[D1,D3]
ψ'	soil water potential at saturation	MPa	[D10] -2.0×10^{-2}
ψ_s	soil water potential	MPa	[D7,D10]
Z	surface elevation	m	[D5b]
z_r	Manning's roughness coefficient	$\text{m}^{-1/3} \text{ h}$	[D3] 0.01

Appendix E: Solute transformations

Precipitation-dissolution equilibria

$\text{Al(OH)}_{3(s)} \rightleftharpoons (\text{Al}^{3+}) + 3(\text{OH}^-)$	(amorphous Al(OH)_3)	-33.0	[E.1] ¹
$\text{Fe(OH)}_{3(s)} \rightleftharpoons (\text{Fe}^{3+}) + 3(\text{OH}^-)$	(soil Fe)	-39.3	[E.2]
$\text{CaCO}_{3(s)} \rightleftharpoons (\text{Ca}^{2+}) + (\text{CO}_3^{2-})$	(calcite)	-9.28	[E.3]
$\text{CaSO}_{4(s)} \rightleftharpoons (\text{Ca}^{2+}) + (\text{SO}_4^{2-})$	(gypsum)	-4.64	[E.4]
$\text{AlPO}_{4(s)} \rightleftharpoons (\text{Al}^{3+}) + (\text{PO}_4^{3-})$	(variscite)	-22.1	[E.5] ²

¹ Round brackets denote solute activity. Numbers in italics denote $\log K$ (precipitation-dissolution, ion pairs), Gapon coefficient (cation exchange) or $\log c$ (anion exchange).

² All equilibrium reactions involving N and P are calculated for both band and non-band volumes if a banded fertilizer application has been made. These volumes are calculated dynamically from diffusive transport of soluble N and P.

$\text{FePO}_{4(s)} \rightleftharpoons (\text{Fe}^{3+}) + (\text{PO}_4^{3-})$	(strengeite)	-26.4	[E.6]
$\text{Ca}(\text{H}_2\text{PO}_4)_{2(s)} \rightleftharpoons (\text{Ca}^{2+}) + 2(\text{H}_2\text{PO}_4^-)$	(monocalcium phosphate)	-1.15	[E.7] ³
$\text{CaHPO}_{4(s)} \rightleftharpoons (\text{Ca}^{2+}) + (\text{HPO}_4^{2-})$	(monetite)	-6.92	[E.8]
$\text{Ca}_5(\text{PO}_4)_3\text{OH}_{(s)} \rightleftharpoons 5(\text{Ca}^{2+}) + 3(\text{PO}_4^{3-}) + (\text{OH}^-)$	(hydroxyapatite)	-58.2	[E.9]

Cation exchange equilibria ⁴

$\text{X-Ca} + 2(\text{NH}_4^+) \rightleftharpoons 2\text{X-NH}_4 + (\text{Ca}^{2+})$	1.00	[E.10]
$3\text{X-Ca} + 2(\text{Al}^{3+}) \rightleftharpoons 2\text{X-Al} + 3(\text{Ca}^{2+})$	1.00	[E.11]
$\text{X-Ca} + (\text{Mg}^{2+}) \rightleftharpoons \text{X-Mg} + (\text{Ca}^{2+})$	0.60	[E.12]
$\text{X-Ca} + 2(\text{Na}^+) \rightleftharpoons 2\text{X-Na} + (\text{Ca}^{2+})$	0.16	[E.13]
$\text{X-Ca} + 2(\text{K}^+) \rightleftharpoons 2\text{X-K} + (\text{Ca}^{2+})$	3.00	[E.14]
$\text{X-Ca} + 2(\text{H}^+) \rightleftharpoons 2\text{X-H} + (\text{Ca}^{2+})$	1.00	[E.15]

Anion adsorption equilibria

$\text{X-OH}_2^+ \rightleftharpoons \text{X-OH} + (\text{H}^+)$	-7.35	[E.16]
$\text{X-OH} \rightleftharpoons \text{X-O}^- + (\text{H}^+)$	-8.95	[E.17]

³ May only be entered as fertilizer, not considered to be naturally present in soils.

⁴ X- denotes surface exchange site for cation or anion adsorption.

Organic acid equilibria

Ion pair equilibria

$(FeOH^{2+}) \leftrightarrow (Fe^{3+}) + (OH^-)$	-12.1	[E.31]
$(Fe(OH)_2^+) \leftrightarrow (FeOH^{2+}) + (OH^-)$	-10.8	[E.32]
$(Fe(OH)_3^0) \leftrightarrow (Fe(OH)_2^+) + (OH^-)$	-6.94	[E.33]
$(Fe(OH)_4^-) \leftrightarrow (Fe(OH)_3^0) + (OH^-)$	-5.84	[E.34]
$(FeSO_4^+) \leftrightarrow (Fe^{3+}) + (SO_4^{2-})$	-4.15	[E.35]
$(CaOH^+) \leftrightarrow (Ca^{2+}) + (OH^-)$	-1.90	[E.36]
$(CaCO_3^0) \leftrightarrow (Ca^{2+}) + (CO_3^{2-})$	-4.38	[E.37]
$(CaHCO_3^+) \leftrightarrow (Ca^{2+}) + (HCO_3^-)$	-1.87	[E.38]
$(CaSO_4^0) \leftrightarrow (Ca^{2+}) + (SO_4^{2-})$	-2.92	[E.39]
$(MgOH^+) \leftrightarrow (Mg^{2+}) + (OH^-)$	-3.15	[E.40]
$(MgCO_3^0) \leftrightarrow (Mg^{2+}) + (CO_3^{2-})$	-3.52	[E.41]
$(MgHCO_3^+) \leftrightarrow (Mg^{2+}) + (HCO_3^-)$	-1.17	[E.42]
$(MgSO_4^0) \leftrightarrow (Mg^{2+}) + (SO_4^{2-})$	-2.68	[E.43]
$(NaCO_3^-) \leftrightarrow (Na^+) + (CO_3^{2-})$	-3.35	[E.44]
$(NaSO_4^-) \leftrightarrow (Na^+) + (SO_4^{2-})$	-0.48	[E.45]

$(KSO_4^-) \Leftrightarrow (K^+) + (SO_4^{2-})$	-1.30	[E.46]
$(H_3PO_4) \Leftrightarrow (H^+) + (H_2PO_4^-)$	-2.15	[E.47]
$(H_2PO_4^-) \Leftrightarrow (H^+) + (HPO_4^{2-})$	-7.20	[E.48]
$(HPO_4^{2-}) \Leftrightarrow (H^+) + (PO_4^{3-})$	-12.4	[E.49]
$(FeH_2PO_4^{2+}) \Leftrightarrow (Fe^{3+}) + (H_2PO_4^-)$	-5.43	[E.50]
$(FeHPO_4^+) \Leftrightarrow (Fe^{3+}) + (HPO_4^{2-})$	-10.9	[E.51]
$(CaH_2PO_4^+) \Leftrightarrow (Ca^{2+}) + (H_2PO_4^-)$	-1.40	[E.52]
$(CaHPO_4^0) \Leftrightarrow (Ca^{2+}) + (HPO_4^{2-})$	-2.74	[E.53]
$(CaPO_4^-) \Leftrightarrow (Ca^{2+}) + (PO_4^{3-})$	-6.46	[E.54]
$(MgHPO_4^0) \Leftrightarrow (Mg^{2+}) + (HPO_4^{2-})$	-2.91	[E.55]

Appendix F: Symbiotic N₂ fixation

Rhizobial growth

$R_{max,i,l} = M_{hi,l} R' [\chi_{ni,l}] / ([\chi_{ni,l}] + K_{\chi n}) f_t f_{NP}$	respiration demand	[F1]
$f_t = T_l \{ \exp[B - H_a/(RT_l)] \} / \{ 1 + \exp[(H_{dl} - ST_l)/(RT_l)] + \exp[(ST_l - H_{dh})/(RT_l)] \}$	Arrhenius function	[F2]
$f_{NP} = \min \{ [N_{ni,l}] / [N_n'], [P_{ni,l}] / [P_n'] \}$	N or P limitation	[F3]

$R_{i,l} = R_{\max i,l} (V_{O_{2i,l}}/V_{O_{2\max i,l}})$	O ₂ limitation	[F4]
$V_{O_{2\max i,l}} = 2.67 R_{\max i,l}$	O ₂ demand	[F5]
$V_{O_{2i,l}} = V_{O_{2\max i,l}} [O_{2ri,l}] / ([O_{2ri,l}] + K_{O_{2r}})$	equilibrate O ₂ uptake with supply	[F6a]
$= 2\pi L_{ri,l} D_{sO_2} ([O_{2l}] - [O_{2ri,l}]) / \ln((r_{ri,l} + r_{wl})/r_{ri,l})$		[F6b]
$R_{mi,l} = R_m N_{ni,l} f_{tm}$	maintenance respiration	[F7]
$f_{tm} = e^{[y(T_l - 298.16)]}$	temperature function	[F8]
$R_{gi,l} = \max\{0.0, R_{i,l} - R_{mi,l}\}$	growth + fixation respiration	[F9]
$R_{si,l} = \max\{0.0, R_{mi,l} - R_{i,l}\}$	microbial senescence	[F10]
$L_{Ci,l} = R_{si,l} \min\{M_{ni,l} / (2.5N_{ni,l}), M_{ni,l} / (25.0P_{ni,l})\}$	microbial C litterfall	[F11]

N₂ fixation

$V_{N_{2i,l}} = \min\{R_{gi,l} E_{N_2}' f_{CP}, M_{ni,l} [N_n'] - N_{ni,l}\} [N_{2ri,l}] / ([N_{2ri,l}] + K_{N_{2r}})$	rate of N ₂ fixation	[F12]
$f_{CP} = \min\{\chi_{ni,l} / (1.0 + [V_{ni,l}] / K_{I\chi_n}), \pi_{ni,l} / (1.0 + [V_{ni,l}] / K_{I\pi_n})\}$	product inhibition of N ₂ fixation	[F13]
$R_{N_{2i,l}} = V_{N_{2i,l}} / E_{N_2}'$	fixation respiration	[F14]
$U_{\chi i,l} = (R_{gi,l} - R_{N_{2i,l}}) / (1 - Y_n')$	growth respiration	[F15]
$\delta M_{ni,l} / \delta t = U_{i,l} Y_n' - L_{Ci,l}$	microbial C growth	[F16]
$\delta N_{ni,l} / \delta t = \delta M_{ni,l} / \delta t \min\{V_{ni,l} / \chi_{ni,l}, [N_n']\}$	microbial N growth	$\delta M_{ndi,l} / \delta t > 0$ [F17a]

$\delta N_{ni,l}/\delta t = N_{ni,l}/M_{ni,l}$	$\delta M_{ni,l}/\delta t$	microbial N growth	$\delta M_{ndi,l}/\delta t < 0$	[F17b]
$\delta P_{ni,l}/\delta t = \delta M_{ni,l}/\delta t \min\{\pi_{ni,l}/\chi_{ni,l}, [P_n']\}$		microbial P growth	$\delta M_{ndi,l}/\delta t > 0$	[F18a]
$\delta P_{ni,l}/\delta t = P_{ni,l}/M_{ni,l}$	$\delta M_{ni,l}/\delta t$	microbial P growth	$\delta M_{ndi,l}/\delta t < 0$	[F18b]
$L_{Ni,l} = \text{abs}(\delta N_{ni,l}/\delta t)$		microbial N litterfall	$\delta N_{ndi,l}/\delta t < 0$	[F19]
$L_{Pi,l} = \text{abs}(\delta P_{ni,l}/\delta t)$		microbial P litterfall	$\delta P_{ndi,l}/\delta t < 0$	[F20]

Module-root exchange

$V_{\chi,l} = \kappa (\chi_{ri,l} M_{ni,l} - \chi_{ni,l} M_{ri,l}) / (M_{ni,l} + M_{ri,l})$	nodule–root C exchange	[F21]
$V_{\nui,l} = \kappa (V_{ri,l} \chi_{ni,l} - V_{ni,l} \chi_{ri,l}) / (\chi_{ni,l} + \chi_{ri,l})$	nodule–root N exchange	[F22]
$V_{\pii,l} = \kappa (\pi_{ri,l} \chi_{ni,l} - \pi_{ni,l} \chi_{ri,l}) / (\chi_{ni,l} + \chi_{ri,l})$	nodule–root P exchange	[F23]
$\delta \chi_{ni,l}/\delta t = V_{\chi,l} - \min\{R_{mi,l}, R_{i,l}\} - R_{N2i,l} - U_{\chi,l} + F_{LC,l} L_{Ci,l}$	nodule nonstructural C	[F24]
$\delta \nu_{ni,l}/\delta t = V_{\nui,l} - \delta N_{ni,l}/\delta t + V_{N2i,l} + F_{LN,l} L_{Ni,l}$	nodule nonstructural N	[F25]
$\delta \pi_{ni,l}/\delta t = V_{\pii,l} - \delta P_{ni,l}/\delta t + F_{LP,l} L_{Pi,l}$	nodule nonstructural P	[F26]

Definition of variables in appendix F

Variable	Definition	Units	Equations	Input Values	Reference
B	parameter such that $f_t = 1.0$ at $T_l = 298.15$ K		F2	17.533	

$\chi_{ni,l}$	nodule nonstructural C	g m^{-2}	F17a,F18a,F21,F2 2,B23,B24		
$[\chi_{ni,l}]$	nodule nonstructural C concentration	g g^{-1}	F1,F13		
$\chi_{ri,l}$	root nonstructural C	g m^{-2}	F21,F22,F23		
D_{so_2}	diffusivity of aqueous O_2	$\text{m}^2 \text{h}^{-1}$	F6b		
E_{N_2}'	direct energy cost of N_2 fixation	g N g C^{-1}	F12,F14	0.25	Gutschick (1981), Voisin et al. (2003)
F_{LC1}	fraction of nodule C litterfall remobilized as nonstructural C	-	F24		
F_{LN1}	fraction of nodule N litterfall remobilized as nonstructural N	-	F25		
F_{LP1}	fraction of nodule P litterfall remobilized as nonstructural P	-	F26		
f_{CP}	effect of nodule nonstructural C or P content on N_2 fixation	-	F12,F13		
f_{NP}	effect of nodule N or P content on respiration	-	F1,F3		
f_t	temperature function for nodule respiration	-	F1,F2		
f_{tm}	temperature function for nodule maintenance respiration	-	F7,F8		

H_a	energy of activation	J mol^{-1}	F2	57.5×10^3
H_{dh}	energy of high temperature deactivation	J mol^{-1}	F2	220×10^3
H_{dl}	energy of low temperature deactivation	J mol^{-1}	F2	190×10^3
K_{χ_n}	Michaelis-Menten constant for nodule respiration of $\chi_{\text{ndi},l}$	g g^{-1}	F1	0.01
$K_{I\chi_n}$	inhibition constant for nonstructural N:C on N_2 fixation	g g^{-1}	F13	10
K_{In_n}	inhibition constant for nonstructural N:P on N_2 fixation	g g^{-1}	F13	1000
K_{N_2r}	Michaelis-Menten constant for nodule N_2 uptake	g N m^{-3}	F12	0.14
K_{O_2r}	Michaelis-Menten constant for nodule O_2 uptake	g O m^{-3}	F6a	
κ	rate constant for nonstructural C,N,P exchange between root and nodule	h^{-1}	F21,F22,F23	
$L_{ri,l}$	root length	m m^{-2}	F6b	
$L_{Ci,l}$	nodule C litterfall	$\text{g C m}^{-2} \text{h}^{-1}$	F11,F16,F24	
$L_{Ni,l}$	nodule N litterfall	$\text{g N m}^{-2} \text{h}^{-1}$	F19,F25	
$L_{Pi,l}$	nodule P litterfall	$\text{g P m}^{-2} \text{h}^{-1}$	F20,F26	

$M_{ni,l}$	nodule structural C	g C m^{-2}	F1,F11,F12,F16
			,F17,F18,F21
$M_{ri,l}$	root structural C	g C m^{-2}	F21
$[N_n']$	maximum nodule structural N concentration	g N g C^{-1}	F3,F12 0.1
$N_{ni,l}$	nodule structural N	g N m^{-2}	F7,F11,F12,F17,F 19,F25
$[N_{ni,l}]$	nodule structural N concentration	g N g C^{-1}	F3,F17a
$[N_{2ri,l}]$	rhizosphere aqueous N ₂ concentration	g N m^{-3}	F12
$V_{ni,l}$	nodule nonstructural N	g N m^{-2}	F17a,F22,F25
$V_{ri,l}$	root nonstructural N	g N m^{-2}	F22
$[V_{ni,l}]$	nodule concentration of nonstructural N	g g^{-1}	F13,F17a
$[O_{2ri,l}]$	rhizosphere aqueous O ₂ concentration	g O m^{-3}	F6a,b
$[O_{2l}]$	soil aqueous O ₂ concentration	g O m^{-3}	F6b
$[P_n']$	maximum nodule structural P concentration	g P g C^{-1}	F3,F18a 0.01

$P_{ni,l}$	nodule structural P	g P m^{-2}	F18a,F20,F26	
$[P_{ni,l}]$	nodule structural P concentration	g P g C^{-1}	F3,F11	
$\pi_{ni,l}$	nodule nonstructural P	g P m^{-2}	F18a,F23,F26	
$\pi_{ri,l}$	root nonstructural P	g P m^{-2}	F23	
$[\pi_{ni,l}]$	nodule concentration of nonstructural P	g g^{-1}	F13	
R	gas constant	$\text{J mol}^{-1} \text{ K}^{-1}$	F2	8.3143
$R_{gi,l}$	nodule growth respiration	$\text{g C m}^{-2} \text{ h}^{-1}$	F9,F12,F15	
R'	specific nodule respiration at 25°C, and non-limiting O ₂	h^{-1}	F1	0.125
	$\chi_{ndi,l}$, $\nu_{ndi,l}$ and $\pi_{ndi,l}$			
$R_{i,l}$	nodule respiration under ambient O ₂	$\text{g C m}^{-2} \text{ h}^{-1}$	F4,F9,F10,F24	
R_m	specific nodule maintenance respiration at 25°C	$\text{g C g C}^{-1} \text{ h}^{-1}$	F7	
$R_{maxi,l}$	nodule respiration under non-limiting O ₂	$\text{g C m}^{-2} \text{ h}^{-1}$	F1,F4,F5	
$R_{mi,l}$	nodule maintenance respiration	$\text{g C m}^{-2} \text{ h}^{-1}$	F7,F9,F10,F24	
$R_{N2i,l}$	nodule respiration for N ₂ fixation	$\text{g C m}^{-2} \text{ h}^{-1}$	F14,F15,F24	

$R_{si,l}$	nodule senescence respiration	$\text{g C m}^{-2} \text{ h}^{-1}$	F9,F11	
$r_{ri,l}$	root radius	m	F6b	
r_{wl}	radius of soil water films	m	F6b	
S	change in entropy	$\text{J mol}^{-1} \text{ K}^{-1}$	F2	710
T_l	soil temperature	K	F2,F8	
$U_{\chi i,l}$	uptake of nodule nonstructural C for growth	$\text{g C m}^{-2} \text{ h}^{-1}$	F15,F16,F24	
$V_{\chi i,l}$	nonstructural C transfer between root and nodule	$\text{g C m}^{-2} \text{ h}^{-1}$	F21,F24	
$V_{\nu i,l}$	nonstructural N transfer between root and nodule	$\text{g N m}^{-2} \text{ h}^{-1}$	F22,F25	
$V_{\text{N}_2 i,l}$	N_2 fixation	$\text{g N m}^{-2} \text{ h}^{-1}$	F12,F14,F25	
$V_{\text{O}_2 \text{maxi},l}$	O_2 uptake by nodules under non-limiting O_2	$\text{g O m}^{-2} \text{ h}^{-1}$	F4,F5,F6a	
$V_{\text{O}_2 i,l}$	O_2 uptake by nodules under ambient O_2	$\text{g O m}^{-2} \text{ h}^{-1}$	F4,F6	
$V_{\pi i,l}$	nonstructural P transfer between root and nodule	$\text{g P m}^{-2} \text{ h}^{-1}$	F23,F26	
Y'_n	nodule growth yield	g C g C^{-1}	F15,F16	0.67
y	shape parameter for f_{tm}	-	F8	0.081

Appendix G: CH₄ production and consumption

Anaerobic fermenters and H₂ producing acetogens

$R_{i,f} = \{R'f M_{i,f,a} [DOCi,c]/(Kf ((1 + [O_2]/K_i) + [DOCi,c]))\} f_t$	respiration by fermenters	[G1]
$DOCi,c \rightarrow 0.67 A_{i,c} + 0.33 CO_2\text{-C} + 0.11 H_2$	partition respiration products	[G2]
$Ui,f,c = R_{mi,f} + (R_{i,f} - R_{mi,f})(1.0 + Y_f)$	uptake by fermenters	$[R_{i,f} > R_{mi,f}]$ [G3a]
$Ui,f,c = R_{i,f}$		$[R_{i,f} < R_{mi,f}]$ [G3b]
$Y_f = -\Delta G_f / E_M$	growth yield of fermentation	[G4]
$\Delta G_f = \Delta G'f + \{RT \ln([H_2]/[H'_2])^4\}$	free energy change of fermentation	[G5]
$\delta M_{i,f,j,c}/\delta t = F_j U_{i,f,c} - F_j R_{i,f} - D_{i,f,j,c}$	growth of fermenters	$[R_{i,f} > R_{mi,f}]$ [G6a]
$\delta M_{i,f,j,c}/\delta t = F_j U_{i,f,c} - R_{mi,f,j} - D_{i,f,j,c}$		$[R_{i,f} < R_{mi,f}]$ [G6b]

Acetotrophic methanogens

$R_{i,m} = \{R'_m M_{i,m,a} [A_{i,c}]/(K_m + [A_{i,c}])\} f_t$	respiration by acetotrophic	[G7]
	methanogens	
$A_{i,c} \rightarrow 0.50 CH_4\text{-C} + 0.50 CO_2\text{-C}$	partition respiration products	[G8]
$U_{i,m,c} = R_{mi,m} + (R_{i,m} - R_{mi,m})(1.0 + Y_m)$	uptake by acetotrophic	$[R_{i,m} > R_{mi,m}]$ [G9a]
	methanogens	

$$U_{i,m,c} = R_{i,m} \quad [R_{i,m} < R_{mi,m}] \quad [G9b]$$

$$-Y_m = -\Delta G'_m / E_M \quad \begin{array}{l} \text{growth yield of acetotrophic} \\ \text{methanogenesis} \end{array} \quad [G10]$$

$$\delta M_{i,m,j,c}/\delta t = F_j U_{i,m,c} - F_j R_{i,m} - D_{i,m,j,c} \quad \begin{array}{l} \text{growth of acetotrophic} \\ \text{methanogens} \end{array} \quad [R_{i,m} > R_{mi,m}] \quad [G11a]$$

$$\delta M_{i,m,j,c}/\delta t = F_j U_{i,m,c} - R_{mi,m,j} - D_{i,m,j,c} \quad [R_{i,m} < R_{mi,m}] \quad [G11b]$$

Hydrogenotrophic methanogens

$$R_h = \{R'_h M_{h,a} [H_2]/(K_h + [H_2]) [CO_2]/(K_c + [CO_2])\} f_t \quad \begin{array}{l} \text{respiration by hydrogenotrophic} \\ \text{methanogens} \end{array} \quad [G12]$$

$$CO_2\text{-C} + 0.67 H_2 \rightarrow CH_4\text{-C} + 3 H_2O \quad \text{partition respiration products} \quad [G13]$$

$$U_{h,c} = R_{mh} + (R_h - R_{mh})(1.0 + Y_h) \quad \begin{array}{l} \text{uptake by hydrogenotrophic} \\ \text{methanogens} \end{array} \quad [R_h > R_{mh}] \quad [G14a]$$

$$U_{h,c} = R_h \quad [R_h < R_{mh}] \quad [G14b]$$

$$Y_h = -\Delta G_h/E_C \quad \begin{array}{l} \text{growth yield of hydrogenotrophic} \\ \text{methanogenesis} \end{array} \quad [G15]$$

$$\Delta G_h = \Delta G'_h - \{RT\ln([H_2]/[H'_2])^4\} \quad \begin{array}{l} \text{free energy change of} \\ \text{hydrogenotrophic methanogenesis} \end{array} \quad [G16]$$

$$\delta M_{h,j,c}/\delta t = F_j U_{h,c} - F_j R_h - D_{h,j,c}$$

growth of hydrogenotrophic

$[R_h > R_{mh}]$

[G17a]

methanogens

$$\delta M_{h,j,c}/\delta t = F_j U_{h,c} - R_{mh,j} - D_{h,j,c}$$

$[R_h < R_{mh}]$

[G17b]

Autotrophic methanotrophs

$$X'_t = \{X'_t M_{t,a} [CH_4]/(K_t + [CH_4])\} f_t$$

CH₄ oxidation by methanotrophs

[G18]

under non-limiting O₂

$$R'_t = X'_t Y_{t_R}$$

respiration by methanotrophs under

[G19]

non-limiting O₂

$$Y_{t_R} = -\Delta G'_t / E_G$$

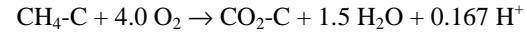
energy yield from CH₄ oxidation

[G20]

$$X_t = X'_t f_{O_2 t}$$

CH₄ oxidation by methanotrophs

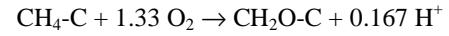
[G21a]


under ambient O₂

$$R_t = R'_t f_{O_2 t}$$

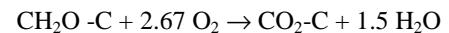
respiration by methanotrophs under

[G21b]


ambient O₂

O₂ requirements for CH₄ oxidation

[G22]


by methanotrophs

O₂ requirements for growth by

[G23]

methanotrophs

O_2 requirements for respiration by

[G24]

methanotrophs

$$U_{t,c} = R_{mt} + (R_t - R_{mt})(1.0 + Y_{t_G})$$

uptake by methanotrophs

$[R_t > R_{mt}]$ [G25a]

$$U_{t,c} = R_t$$

$[R_t < R_{mt}]$ [G25b]

$$Y_{t_G} = -\Delta G'_{\text{c}} / E_M$$

growth yield of methanotrophy

[G26]

$$\delta M_{t,j,c}/\delta t = F_j U_{t,c} - F_j R_t - D_{t,j,c}$$

$[R_t > R_{mt}]$ [G27a]

$$\delta M_{t,j,c}/\delta t = F_j U_{t,c} - R_{mt,j} - D_{t,j,c}$$

$[R_t < R_{mt}]$ [G27b]

Definition of variables in appendix G

Variable	Definition	Units	Equations	Input Values	Reference
A	acetate	g C m^{-2}	[G2]		
[A]	aqueous concentration of acetate	g C m^{-3}	[G7]		
<i>a</i>	descriptor for j = active component of M_i				
$[\text{CH}_4]$	aqueous concentration of CH_4	g C m^{-3}	[G18]		
$[\text{CO}_2]$	aqueous concentration of CO_2	g C m^{-3}	[G12]		
$D_{h,j,c}$	decomposition of hydrogenotrophic methanogens	$\text{g C m}^{-2} \text{ h}^{-1}$	[G17]		

Di,f,j,c	decomposition of fermenters and acetogens	$\text{g C m}^{-2} \text{ h}^{-1}$	[G6]		
Di,m,j,c	decomposition of acetotrophic methanogens	$\text{g C m}^{-2} \text{ h}^{-1}$	[G11]		
Dt,j,c	decomposition of autotrophic methanotrophs	$\text{g C m}^{-2} \text{ h}^{-1}$	[G27]		
E_C	energy required to construct new M from CO_2	kJ g C^{-1}	[G15]	75	
E_G	energy required to transform CH_4 into organic C	kJ g C^{-1}	[G20]	23.5	Anthony (1982)
E_M	energy required to construct new M from organic C	kJ g C^{-1}	[G4,G10,G26]	25	
F_j	partitioning coefficient for j in M_i, n_j		[G6,G11,G17,G2 7]		
f	descriptor for fermenters and acetogens in each M_i				
fo_{2t}	ratio of O_2 uptake to O_2 requirement for CH_4 oxidation		[G21a,b]		
f_t	temperature function for growth-related processes (dimensionless)		[G1,G7,G12]		
$\Delta G'_c$	free energy change of C oxidation- O_2 reduction	kJ g C^{-1}	[G26]	-37.5	Brock and Madigan (1991)

ΔG_f	free energy change of fermentation plus acetogenesis	kJ g $P_{i,c}^{-1}$	[G4,G5]	
$\Delta G'_f$	ΔG_f when $[H_2] = [H_2']$	kJ g $P_{i,c}^{-1}$	[G5]	-4.43
				Brock and Madigan (1991), Schink (1997)
ΔG_h	free energy change of hydrogenotrophic methanogenesis	kJ g $CO_2 \cdot C^{-1}$	[G15,G16]	
$\Delta G'_h$	free energy change of hydrogenotrophic methanogenesis when $[H_2] = [H_2']$	kJ g $CO_2 \cdot C^{-1}$	[G16]	-0.27
				Brock and Madigan (1991)
$\Delta G'_m$	free energy change of acetotrophic methanogenesis	kJ g $A_{i,c}^{-1}$	[G10]	-1.03
				Brock and Madigan (1991), Schink (1997)
$\Delta G'_t$	free energy change of CH_4 oxidation by methanotrophs	kJ g $CH_4 \cdot C^{-1}$	[G20]	-9.45
				Brock and Madigan (1991)

$[H_2]$	aqueous concentration of H_2	$g H m^{-3}$	[G5,G12,G16]	
$[H_2']$	aqueous concentration of H_2 when $\Delta G_h = \Delta G'_h$ and $\Delta G_f = \Delta G'_f$	$g H m^{-3}$	[G5,G16]	150×10^{-6} Brock and Madigan (1991)
h	descriptor for hydrogenotrophic methanogens in each M_i			
i	descriptor for organic matter-microbe complex ($i =$ plant residue, manure, particulate OM, or humus)			
j	descriptor for structural or kinetic components for each functional type within each M_i (<i>e.g.</i> $a = active$)			
K_c	M-M constant for uptake of CO_2 by hydrogenotrophic methanogens	$g C m^{-3}$	[G12]	0.12
K_f	M-M constant for uptake of $DOC_{i,c}$ by fermenters and acetogens	$g C m^{-3}$	[G1]	12 McGill et al. (1981)
K_i	inhibition constant for O_2 on fermentation	$g O m^{-3}$	[G1]	0.064
K_h	M-M constant for uptake of H_2 by hydrogenotrophic methanogens	$g H m^{-3}$	[G12]	0.01 Robinson and Tiedje (1982), Mosey (1983)

K_m	M-M constant for uptake of $A_{i,c}$ by acetotrophic methanogens	g C m^{-3}	[G7]	12	Smith and Mah (1978), Zehnder et al. (1980)
K_t	M-M constant for uptake of CH_4 by methanotrophs	g C m^{-3}	[G18]	3×10^{-3}	Conrad (1984)
k	descriptor for elemental fraction within each j ($j = c, n$ or p)				
M	microbial communities	g C m^{-2}			
M_h	hydrogenotrophic methanogen community	g C m^{-2}	[G12,G17]		
$M_{i,f}$	fermenter and acetogenic community	g C m^{-2}	[G1,G6]		
$M_{i,m}$	acetotrophic methanogen community	g C m^{-2}	[G7,G11]		
M_t	autotrophic methanotrophic community	g C m^{-2}	[G18,G27]		
m	descriptor for acetotrophic methanogens in each M_i				
DOC	soluble organic matter	g C m^{-2}	[G2]		
[DOC]	aqueous concentration of soluble organic matter	g C m^{-3}	[G1]		
R	gas constant	$\text{kJ mol}^{-1} \text{ K}^{-1}$	[G5,G16]	8.3143×10^{-3}	

R'_f	specific respiration by fermenters and acetogens at saturating $[P_{i,c}]$, 30 °C and zero water potential	$g C g M_{i,f,a}^{-1} h^{-1}$	[G1]	0.4	Lawrence (1971), Wofford et al. (1986)
R_h	CO ₂ reduction by hydrogenotrophic methanogens	$g C m^{-2} h^{-1}$	[G12,G13,G14,G17,G18]		
R'_h	specific CO ₂ reduction by hydrogenotrophic methanogens at saturating [H ₂] and [CO ₂], and at 30 °C and zero water potential	$g C g M_{h,a}^{-1} h^{-1}$	[G12]	0.12	Shea et al. (1968), Zehnder and Wuhrmann (1977)
$R_{i,f}$	respiration of hydrolysis products by fermenters and acetogens	$g C m^{-2} h^{-1}$	[G1,G2,G3,G6]		
$R_{i,m}$	respiration of acetate by acetotrophic methanogens	$g C m^{-2} h^{-1}$	[G7,G8,G9,G11]		
R'_m	specific respiration by acetotrophic methanogens at saturating $[A_{i,c}]$, 30 °C and zero water potential	$g C g M_{i,m,a}^{-1} h^{-1}$	[G7]	0.20	Smith and Mah (1980)
$R_{mh,j}$	maintenance respiration by hydrogenotrophic methanogens	$g C m^{-2} h^{-1}$	[G14,G17]		

$R_{m^i,f,j}$	maintenance respiration by fermenters and acetogens	$\text{g C m}^{-2} \text{ h}^{-1}$	[G3,G6]
$R_{m^i,m,j}$	maintenance respiration by acetotrophic methanogens	$\text{g C m}^{-2} \text{ h}^{-1}$	[G9,G11]
$R_{m^t,j}$	maintenance respiration by methanotrophs	$\text{g C m}^{-2} \text{ h}^{-1}$	[G25,G27]
R_t	CH_4 oxidation by methanotrophs for respiration	$\text{g C m}^{-2} \text{ h}^{-1}$	[G21b,G23,G24, G25,G27a]
R'_t	CH_4 oxidation by methanotrophs for respiration at saturating O_2	$\text{g C m}^{-2} \text{ h}^{-1}$	[G19,G21b]
T	soil temperature	K	[G5,G16]
t	descriptor for autotrophic methanotrophs		
$U_{h,c}$	rate of CO_2 uptake by M_h	$\text{g C m}^{-2} \text{ h}^{-1}$	[G14,G17,G18]
$U_{i,f,k}$	rate of $\text{DOC}_{i,k}$ uptake by $M_{i,f}$	$\text{g C m}^{-2} \text{ h}^{-1}$	[G3,G6]
$U_{i,m,c}$	rate of $\text{A}_{i,c}$ uptake by $M_{i,m}$	$\text{g C m}^{-2} \text{ h}^{-1}$	[G9,G11]
$U_{t,c}$	rate of CH_4 uptake by M_t	$\text{g C m}^{-2} \text{ h}^{-1}$	[G25,G27]
X_t	CH_4 oxidation by methanotrophs	$\text{g C m}^{-2} \text{ h}^{-1}$	[G21a,G22]

X'_t	CH ₄ oxidation by methanotrophs at saturating O ₂	g C m ⁻² h ⁻¹	[G1,G2,G4a]		
X'_t	specific CH ₄ oxidation by methanotrophs at saturating O ₂ , 30 °C and zero water potential	g C g ⁻¹ h ⁻¹	[G18]	0.5	Conrad (1984)
Y_f	biomass yield from fermentation and acetogenic reactions	g M _{i,f} g DOC _{i,c} ⁻¹	[G3,G4]		
Y_h	biomass yield from hydrogenotrophic methanogenic reaction	g M _h g CO ₂ -C ⁻¹	[G14,G15,G18]		
Y_m	biomass yield from acetotrophic methanogenic reaction	g M _{i,m} g A _{i,c} ⁻¹	[G9,G10]		
Y_{t_G}	biomass yield from methanotrophic growth respiration	g M _t -C g CH ₄ -C ⁻¹	[G25a,G26]		
Y_{t_R}	ratio of CH ₄ respired vs. CH ₄ oxidized by methanotrophs	g C g C ⁻¹	[G19,G20]		

Appendix H: Inorganic N transformations

Mineralization and immobilization of NH₄⁺ by all microbial populations

$$I_{\text{NH}_4i,n,j} = (M_{i,m,j,C} C_{Nj} - M_{i,m,j,N}) \quad (I_{\text{NH}_4i,n,j} < 0) \quad [\text{H1a}]$$

$$I_{\text{NH}_4i,n,j} = (M_{i,m,j,C} C_{Nj} - M_{i,m,j,N}) [\text{NH}_4^+]/([\text{NH}_4^+] + K_{\text{NH}_4m}) \quad (I_{\text{NH}_4i,n,j} > 0) \quad [\text{H1b}]$$

$$I_{\text{NO}_3i,n,j} = (M_{i,m,j,C} C_{Nj} - (M_{i,m,j,N} + I_{\text{NH}_4i,n,j})) [\text{NO}_3^-]/([\text{NO}_3^-] + K_{\text{NO}_3m}) \quad (I_{\text{NO}_3i,n,j} > 0) \quad [\text{H1b}]$$

Oxidation of DOC and reduction of O₂ by heterotrophs

$$X'_{\text{DOC}i,h} = \{X'_{\text{DOC}} M_{i,h,a} [\text{DOC}_i]/([\text{DOC}_i] + K_{\text{Xh}}\} f_t \quad [\text{H2}]$$

$$R'_{O_{2i,h}} = \mathbf{RQ}_C X'_{DOCi,h} \quad [H3]$$

$$R_{O_{2i,h}} = 4\pi n M_{i,h,a} D_{sO_2} ([O_{2s}] - [O_{2mi,h}]) [r_m r_w / (r_w - r_m)] \quad [H4a]$$

$$= R'_{O_{2i,h}} [O_{2mi,h}] / ([O_{2mi,h}] + K_{O_{2h}}) \quad [H4b]$$

$$X_{DOCi,h} = X'_{DOCi,h} R_{O_{2i,h}} / R'_{O_{2i,h}} \quad [H5]$$

Oxidation of DOC and reduction of NO_3^- , NO_2^- and N_2O by denitrifiers

$$R'_{\text{NO}_3i,d} = E_{\text{NO}_x} f_e (R'_{O_{2i,d}} - R_{O_{2i,d}}) \quad [H6]$$

$$R_{\text{NO}_3i,d} = R'_{\text{NO}_3i,d} [\text{NO}_3^-] / ([\text{NO}_3^-] + K_{\text{NO}_3d}) \quad [H7]$$

$$R_{\text{NO}_2i,d} = (R'_{\text{NO}_3i,d} - R_{\text{NO}_3i,d}) [\text{NO}_2^-] / ([\text{NO}_2^-] + K_{\text{NO}_2d}) \quad [H8]$$

$$R_{\text{N}_2\text{O}i,d} = 2 (R'_{\text{NO}_3i,d} - R_{\text{NO}_3i,d} - R_{\text{NO}_2i,d}) [\text{N}_2\text{O}] / ([\text{N}_2\text{O}] + K_{\text{N}_2\text{Od}}) \quad [H9]$$

$$X_{DOCi,d} = X_{DOCi,d} (\text{from [H5]}) + F_{\text{NO}_x} (R_{\text{NO}_3i,d} + R_{\text{NO}_2i,d}) + F_{\text{N}_2\text{O}} R_{\text{N}_2\text{O}i,d} \quad [H10]$$

Oxidation of NH_3 and reduction of O_2 by nitrifiers

$$X'_{\text{NH}_3i,n} = X'_{\text{NH}_3} M_{i,n,a} \{ [\text{NH}_3s] / ([\text{NH}_3s] + K_{\text{NH}_3n}) \} \{ [\text{CO}_2s] / ([\text{CO}_2s] + K_{\text{CO}_2}) \} f_t \quad [H11]$$

$$R'_{O_{2i,n}} = \mathbf{RQ}_{\text{NH}_3} X'_{\text{NH}_3i,n} + \mathbf{RQ}_C X'_{C_i,n} \quad [H12]$$

$$R_{O_{2i,n}} = 4\pi n M_{i,n,a} D_{sO_2} (r_m r_w / (r_w - r_m)) ([O_{2s}] - [O_{2mi,n}]) \quad [H13a]$$

$$= R'_{O_{2i,n}} [O_{2mi,n}] / ([O_{2mi,n}] + K_{O_{2n}}) \quad [H13b]$$

$$X_{\text{NH}_3i,n} = X'_{\text{NH}_3i,n} R_{O_{2i,n}} / R'_{O_{2i,n}} \quad [H14]$$

Oxidation of NO_2^- and reduction of O_2 by nitrifiers

$$X'_{\text{NO}_2i,o} = X'_{\text{NO}_2} M_{i,o,a} \{[\text{NO}_2^-]/([\text{NO}_2^-] + K_{\text{NO}_2o})\} \{[\text{CO}_{2s}]/([\text{CO}_{2s}] + K_{\text{CO}_2})\} f_t \quad [\text{H15}]$$

$$R'_{\text{O}_2i,o} = \mathbf{RQ}_{\text{NO}_2} X'_{\text{NO}_2i,o} + \mathbf{RQ}_C X'_{C,i,o} \quad [\text{H16}]$$

$$R_{\text{O}_2i,o} = 4\pi n M_{i,o,a} D_{\text{SO}_2} (r_m r_w/(r_w - r_m)) ([\text{O}_{2s}] - [\text{O}_{2mi,o}]) \quad [\text{H17a}]$$

$$= R'_{\text{O}_2i,o} [\text{O}_{2mi,o}]/([\text{O}_{2mi,o}] + K_{\text{O}_2o}) \quad [\text{H17b}]$$

$$X_{\text{NO}_2i,o} = X'_{\text{NO}_2i,o} R_{\text{O}_2i,o} / R'_{\text{O}_2i,o} \quad [\text{H18}]$$

Oxidation of NH_3 and reduction of NO_2^- by nitrifiers

$$R'_{\text{NO}_2i,n} = E_{\text{NO}_x} f_e (R'_{\text{O}_2i,n} - R_{\text{O}_2i,n}) \quad [\text{H19}]$$

$$R_{\text{NO}_2i,n} = R'_{\text{NO}_2i,n} \{[\text{NO}_2^-]/([\text{NO}_2^-] + K_{\text{NO}_2n})\} \{[\text{CO}_{2s}]/([\text{CO}_{2s}] + K_{\text{CO}_2})\} \quad [\text{H20}]$$

$$X_{\text{NH}_3i,n} = X_{\text{NH}_3i,n} (\text{from [H14]}) + 0.33 R_{\text{NO}_2i,n} \quad [\text{H21}]$$

Definition of variables in appendix H

Name	Definition	Units	Equations	Input Values	Reference
------	------------	-------	-----------	--------------	-----------

Subscripts

a active component of $M_{i,m}$

d heterotrophic denitrifier population (subset of *h*)

<i>h</i>	heterotrophic community (subset of <i>m</i>)
<i>i</i>	substrate-microbe complex
<i>j</i>	kinetic components of $M_{i,m}$
<i>m</i>	all microbial communities
<i>n</i>	autotrophic ammonia oxidizer population (subset of <i>m</i>)
<i>o</i>	autotrophic nitrite oxidizer population (subset of <i>m</i>)

Variables

C_{Nj}	maximum ratio of $M_{i,m,j,N}$ to $M_{i,m,j,C}$ maintained by $M_{i,m,j}$	g N g C ⁻¹	[H1]	0.22 and 0.13 for <i>j</i> = labile and resistant
[CO _{2S}]	CO ₂ concentration in soil solution	g C m ⁻³	[H11,H15,H20]	
[DOC _i]	concentration of dissolved decomposition products	g C m ⁻³	[H2]	
D_{sO_2}	aqueous dispersivity-diffusivity of O ₂	m ² h ⁻¹	[H4,H13,H17]	
E_{NO_x}	e ⁻ accepted by NO _x vs. O ₂ when oxidizing DOC	g N g O ₂ ⁻¹	[H6,H19]	28/32 = 0.875
F_{NO_x}	e ⁻ donated by C vs. e ⁻ accepted by NO _x when oxidizing DOC	g C g N ⁻¹	[H10]	12/28 = 0.43

$F_{\text{N}_2\text{O}}$	e^- donated by C vs. e^- accepted by N_2O when oxidizing DOC	g C g N^{-1}	[H10]	$6/28 = 0.215$	
f_e	fraction of electrons not accepted by O_2 transferred to N oxides	-	[H6,H19]	0.25	Koike and Hattori (1975)
f_t	temperature function for microbial processes	-	[H2,H11]		
$I_{\text{NH}_4i,n,j}$	mineralization ($I_{\text{NH}_4i,n,j} < 0$) or immobilization ($I_{\text{NH}_4i,n,j} > 0$) of NH_4^+ by $M_{i,n,j,C}$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H1]		
$I_{\text{NO}_3i,n,j}$	immobilization ($I_{\text{NO}_3i,n,j} > 0$) of NO_3^- by $M_{i,n,j,C}$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H1]		
K_{CO_2}	Michaelis-Menten constant for reduction of $\text{CO}_{2\text{S}}$ by $M_{i,n,a}$ and $M_{i,o,a}$	g C m^{-3}	[H11,H15,H20]	0.15	
K_{NH_3n}	M-M constant for oxidation of $\text{NH}_{3\text{S}}$ by nitrifiers	g N m^{-3}	[H11]	0.01	Suzuki et al. (1974)
K_{NH_4m}	M-M constant for microbial NH_4^+ uptake	g N m^{-3}	[H1]	0.35	
K_{NO_2d}	M-M constant for reduction of NO_2^- by denitrifiers	g N m^{-3}	[H8]	3.5	Yoshinari et al. (1977)
K_{NO_2n}	M-M constant for reduction of NO_2^- by nitrifiers	g N m^{-3}	[H20]	3.5	

K_{NO_2o}	M-M constant for oxidation of NO_2^- by nitrifiers	$g N m^{-3}$	[H15]	10	
K_{NO_3d}	M-M constant for reduction of NO_3^- by denitrifiers	$g N m^{-3}$	[H7]	3.5	Yoshinari et al. (1977)
K_{N_2Od}	M-M constant for reduction of N_2O by denitrifiers	$g N m^{-3}$	[H9]	0.35	Yoshinari et al. (1977)
K_{O_2h}	M-M constant for reduction of O_{2s} by heterotrophs	$g O_2 m^{-3}$	[H4b]	0.064	Griffin (1972)
K_{O_2n}	M-M constant for reduction of O_{2s} by NH_3 oxidizers	$g O_2 m^{-3}$	[H13b]	0.32	Focht and Verstraete (1977)
K_{O_2o}	M-M constant for reduction of O_{2s} by NO_2^- oxidizers	$g O_2 m^{-3}$	[H17b]	0.32	Focht and Verstraete (1977)
K_{Xh}	M-M constant for oxidation of DOC by heterotrophs	$g C m^{-3}$	[H2]	12	McGill et al. (1981)
$M_{i,h,a}$	active biomass of heterotrophs	$g C m^{-2}$	[H2,H7]		
$M_{i,n,a}$	active biomass of NH_3 oxidizers	$g C m^{-2}$	[H11,H13]		

$M_{i,m,j,C}$	C biomass of microbial population $M_{i,m,j}$	g C m^{-2}	[H1]
$M_{i,m,j,N}$	N biomass of microbial population $M_{i,m,j}$	g N m^{-2}	[H1]
$M_{i,o,a}$	active biomass of NO_2^- oxidizers	g C m^{-2}	[H15,H17]
$[\text{NH}_3]$	concentration of NH_3 in soil solution	g N m^{-3}	[H11]
$[\text{NH}_4^+]$	concentration of NH_4^+ in soil solution	g N m^{-3}	[H1]
$[\text{NO}_2^-]$	concentration of NO_2^- in soil solution	g N m^{-3}	[H8,H15,H20]
$[\text{NO}_3^-]$	concentration of NO_3^- in soil solution	g N m^{-3}	[H7]
$[\text{N}_2\text{O}]$	concentration of N_2O in soil solution	g N m^{-3}	[H9]
n	number of microbes	g^{-1}	[H13,H17]
$[\text{O}_{2mi,h}]$	O_2 concentration at heterotrophic surfaces	$\text{g O}_2 \text{ m}^{-3}$	[H7]
$[\text{O}_{2mi,n}]$	O_2 concentration at NH_3 oxidizer surfaces	$\text{g O}_2 \text{ m}^{-3}$	[H13]
$[\text{O}_{2mi,o}]$	O_2 concentration at NO_2^- oxidizer surfaces	$\text{g O}_2 \text{ m}^{-3}$	[H17]
$[\text{O}_{2s}]$	O_2 concentration in soil solution	$\text{g O}_2 \text{ m}^{-3}$	[H7,H13,H17]
$R_{\text{NO}_2i,d}$	NO_2^- reduction by denitrifiers	$\text{g N m}^{-2} \text{ h}^{-1}$	[H8,H9,H10]
$R'_{\text{NO}_2i,n}$	rate of NO_2^- reduction by NH_3 oxidizers under non-limiting $[\text{NO}_2^-]$ and $[\text{CO}_{2s}]$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H19,H20]

$R_{\text{NO}_2i,n}$	rate of NO_2^- reduction by NH_3 oxidizers under ambient $[\text{NO}_2^-]$ and $[\text{CO}_{2\text{S}}]$	$\text{g N m}^{-2} \text{h}^{-1}$	[H20,H21]
$R'_{\text{NO}_3i,d}$	NO_3^- reduction by denitrifiers under non-limiting $[\text{NO}_3^-]$	$\text{g N m}^{-2} \text{h}^{-1}$	[H6,H7,H8,H9]
$R_{\text{NO}_3i,d}$	NO_3^- reduction by denitrifiers under ambient $[\text{NO}_3^-]$	$\text{g N m}^{-2} \text{h}^{-1}$	[H7,H8,H9,H10]
$R_{\text{N}_2\text{O}i,d}$	N_2O reduction by denitrifiers	$\text{g N m}^{-2} \text{h}^{-1}$	[H9,H10]
$R'_{\text{O}_2i,d}$	rate of $\text{O}_{2\text{S}}$ reduction by denitrifiers under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g O}_2 \text{ m}^{-2} \text{h}^{-1}$	[H6]
$R_{\text{O}_2i,d}$	rate of $\text{O}_{2\text{S}}$ reduction by denitrifiers under ambient $[\text{O}_{2\text{S}}]$	$\text{g O}_2 \text{ m}^{-2} \text{h}^{-1}$	[H6]
$R'_{\text{O}_2i,h}$	rate of $\text{O}_{2\text{S}}$ reduction by heterotrophs under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g O}_2 \text{ m}^{-2} \text{h}^{-1}$	[H3,H4,H5]
$R_{\text{O}_2i,h}$	rate of $\text{O}_{2\text{S}}$ reduction by heterotrophs under ambient $[\text{O}_{2\text{S}}]$	$\text{g O}_2 \text{ m}^{-2} \text{h}^{-1}$	[H4,H5]
$R'_{\text{O}_2i,n}$	rate of $\text{O}_{2\text{S}}$ reduction by NH_3 oxidizers under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g O}_2 \text{ m}^{-2} \text{h}^{-1}$	[H12,H13,H14,H19]

$R_{O_2i,n}$	rate of O_2S reduction by NH_3 oxidizers under ambient $[O_2S]$	$g O_2 m^{-2} h^{-1}$	[H13,H14,H19]		
$R'_{O_2i,o}$	rate of O_2S reduction by NO_2^- oxidizers under non-limiting $[O_2S]$	$g O_2 m^{-2} h^{-1}$	[H16,H17,H18]		
$R_{O_2i,o}$	rate of O_2S reduction by NO_2^- oxidizers under ambient $[O_2S]$	$g O_2 m^{-2} h^{-1}$	[H17,H18]		
RQ_C	respiratory quotient for reduction of O_2 coupled to oxidation of C	$g O_2 g C^{-1}$	[H3,H12,H16]	2.67	Brock and Madigan (1991)
RQ_{NH₃}	respiratory quotient for reduction of O_2 coupled to oxidation of NH_3S	$g O_2 g N^{-1}$	[H12]	3.43	Brock and Madigan (1991)
RQ_{NO₂}	respiratory quotient for reduction of O_2 coupled to oxidation of NO_2^-	$g O_2 g N^{-1}$	[H16]	1.14	Brock and Madigan (1991)
r_m	radius of microbial sphere	m	[H4,H13,H17]		
r_w	radius of r_m + water film at current soil water potential	m	[H4,H13,H17]	from ψ_s	according to Kemper (1966)
$X'_{C,i,n}$	rate of C oxidation by NH_3 oxidizers under non-limiting $[O_2S]$	$g C m^{-2} h^{-1}$	[H12]		

$X'_{\text{C},o}$	rate of C oxidation by NO_2^- oxidizers under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g C m}^{-2} \text{ h}^{-1}$	[H16]		
X'_{DOC}	specific rate of DOC oxidation by heterotrophs at 25 °C under non-limiting [DOC] and $[\text{O}_{2\text{S}}]$	$\text{g C g C}^{-1} \text{ h}^{-1}$	[H2]	0.125	Shields et al. (1973)
$X'_{\text{DOC},h}$	rate of DOC oxidation by heterotrophs under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H2,H3,H5]		
$X_{\text{DOC},h}$	rate of DOC oxidation by heterotrophs under ambient $[\text{O}_{2\text{S}}]$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H5]		
$X_{\text{DOC},d}$	rate of DOC oxidation by heterotrophs under ambient $[\text{O}_{2\text{S}}]$ and $[\text{NO}_x]$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H10]		
X'_{NH_3}	specific rate of NH_3 oxidation by NH_3 oxidizers at 25 °C under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g N g C}^{-1} \text{ h}^{-1}$	[H11]]	0.625	Belser and Schmidt (1980)
$X_{\text{NH}_3,n}$	rate of NH_3 oxidation by NH_3 oxidizers coupled with reduction of $\text{O}_2 + \text{NO}_2^-$ under ambient $[\text{O}_{2\text{S}}]$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H14,H21]		
$X'_{\text{NH}_3,n}$	rate of NH_3 oxidation by NH_3 oxidizers under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g N m}^{-2} \text{ h}^{-1}$	[H11,H12,H14]		

$X'_{\text{NO}_2i,o}$	rate of NO_2^- oxidation by NO_2^- oxidizers under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g N m}^{-2} \text{h}^{-1}$	[H15,H16,H18]		
$X_{\text{NO}_2i,o}$	rate of NO_2^- oxidation by NO_2^- oxidizers coupled with reduction of O_2 under ambient $[\text{O}_{2\text{S}}]$	$\text{g N m}^{-2} \text{h}^{-1}$	[H18]		
X'_{NO_2}	specific rate of NO_2^- oxidation by NO_2^- oxidizers at 25 °C under non-limiting $[\text{O}_{2\text{S}}]$	$\text{g N g C}^{-1} \text{h}^{-1}$	[H15]	2.5	Belser (1977)

553

554 **References**

555

556 Addiscott, T. M.: Kinetics and temperature relationships of mineralization and
557 nitrification in Rothamsted soils with differing histories, *J. Soil Sci.*, 34, 343-353,
558 doi: 10.1111/j.1365-2389.1983.tb01040.x, 1983.

559 Anthony, C.: *The Biochemistry of Methylotrophs*, Academic Press, London, UK, 1982.

560 Barber, S. A., and Silberbush, M.: Plant root morphology and nutrient uptake, in: *Roots, Nutrient*
561 *and Water Influx, and Plant Growth*, edited by: Barber, S. A., and Bouldin, D. R., Amer. Soc.
562 *Agron. Spec. Publ. no. 49*, Madison, WI, 65-87, 1984.

563 Barnes, B.V., Zak, D. R., Denton, S. R., and Spurr, S. H.: *Forest Ecology*, 4th edition,
564 Wiley and Sons, NY, 1998.

565 Belser, L.W., and Schmidt, E. L.: Growth and oxidation kinetics of the three genera of
566 ammonia oxidizers, *FEMS Microbiol. Lett.*, 7, 213-216, doi: 10.1111/j.1574-
567 6941.1980.tb01628.x, 1980.

568 Belser, L.W.: Nitrate reduction to nitrite, a possible source of nitrite for growth of nitrite-
569 oxidizing bacteria, *Appl. Environ. Micro.*, 34, 403-410, 1977.

570 Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. L., and Long, S. P.: Improved
571 temperature response functions for models of rubisco-limited photosynthesis, *Plant*
572 *Cell Environ.*, 24, 253-259, doi: 10.1111/j.1365-3040.2001.00668.x, 2001.

573 Bernacchi, C. J., Pimentel, C., and Long, S. P.: In vivo temperature response functions of
574 parameters required to model RuBP-limited photosynthesis, *Plant Cell Environ.*, 26,
575 1419–1430, doi: 10.1046/j.0016-8025.2003.01050.x, 2003.

- 576 Berry, J. A., and Farquhar, G. D.: The CO₂ concentrating function of photosynthesis: a
577 biochemical model, in: Proceedings of the 4th Interntl. Congress on Photosynthesis,
578 edited by: Hall, D., Coombs, J., and Goodwin, T., Biochemical Society, London, 119-
579 131, 1978.
- 580 Brock, T. D., and Madigan, M. T.: Biology of Microorganisms, 6th edition, Prentice Hall,
581 NJ, 1991.
- 582 Campbell, G. S.: Soil Physics with BASIC, Elsevier, Netherlands, 1985.
- 583 Conrad, R.: Capacity of aerobic microorganisms to utilize and grow on atmospheric trace
584 gases (H₂, CO, CH₄), in: Current Perspectives in Microbial Ecology, edited by: Klug,
585 M. J., and Reddy, C. A., Amer. Soc. Microbiol. Wash. DC, 461-467, 1984.
- 586 de Vries, D.A.: Thermal properties of soils, in: Physics of Plant Environment, edited by:
587 van Wijk, R., North Holland Publishing Co., Amsterdam, Netherlands, 210-235, 1963.
- 588 Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modelling
589 subsurface hydrology of Mer Bleue bog, Soil Sci. Soc. Am. J., 74, 680-694,
590 doi:10.2136/sssaj2009.0148, 2010.
- 591 Doussan C., Vercambre, G., and Pagès, L.: Modelling of the hydraulic architecture of
592 root systems: An integrated approach to water absorption-distribution of axial and
593 radial conductances in maize, Ann. Bot., 81, 225-232, doi: 10.1006/anbo.1997.0541,
594 1998.
- 595 Edwards, G., and Walker, D.: C₃, C₄: Mechanisms, and Cellular and Environmental
596 Regulation of Photosynthesis, Univ. of California Press, Berkely, CA, 1983.

- 597 Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic
598 CO₂ assimilation in leaves of C₃ species, *Planta*, 149, 78-90, doi: 10.1007/BF00386231,
599 1980.
- 600 Focht, D. D., and Verstraete, W.: Biochemical ecology of nitrification and denitrification, *Adv.*
601 *Micro. Ecol.*, 1, 135-214, 1977.
- 602 Furbank, F. T., and Hatch, M. D.: Mechanism of C₄ photosynthesis, The size and composition
603 of the inorganic carbon pool in bundle sheath cells, *Plant Physiol.*, 85, 958-964, doi:
604 10.1104/pp.85.4.958, 1987.
- 605 Grant, R. F.: Mathematical modelling of nitrous oxide evolution during nitrification, *Soil Biol.*
606 *Biochem.*, 27, 1117-1125, doi: 10.1016/0038-0717(95)00038-G, 1995.
- 607 Grant, R. F.: Mathematical modelling of nitrous oxide evolution during nitrification, *Soil Biol.*
608 *Biochem.*, 27, 1117-1125, doi: 10.1016/0038-0717(95)00038-G, 1995.
- 609 Grant, R. F.: Simulation in *ecosys* of root growth response to contrasting soil water and
610 nitrogen, *Ecol. Model.*, 107, 237-264, doi: 10.1016/S0304-3800(97)00221-4, 1998a.
- 611 Grant, R. F.: Simulation of methanogenesis in the mathematical model *ecosys*, *Soil Biol.*
612 *Biochem.*, 30, 883-896, doi: 10.1016/S0038-0717(97)00218-6, 1998b.
- 613 Grant, R. F.: Simulation of methanotrophy in the mathematical model *ecosys*, *Soil Biol.*
614 *Biochem.*, 31, 287-297, doi: 10.1016/S0038-0717(98)00119-9, 1999.
- 615 Grant, R. F.: A review of the Canadian ecosystem model *ecosys*, in: *Modeling Carbon*
616 *and Nitrogen Dynamics for Soil Management*, edited by: Shaffer, M., CRC Press,
617 Boca Raton, Fla., 173–264, 2001.
- 618 Grant, R. F.: Modelling topographic effects on net ecosystem productivity of boreal black
619 spruce forests, *Tree Physiol.*, 24, 1-18, doi: 10.1093/treephys/24.1.1, 2004.

- 620 Grant, R. F., and Flanagan, L. B.: Modeling stomatal and nonstomatal effects of water
621 deficits on CO₂ fixation in a semiarid grassland, *J. Geophys. Res.-Biogeosci.*, 112,
622 G03011, doi: 10.1029/2006JG000302, 2007.
- 623 Grant, R. F., and Heaney, D. J.: Inorganic phosphorus transformation and transport in
624 soils: mathematical modelling in *ecosys*, *Soil Sci. Soc. Am. J.*, 61, 752-764, doi:
625 10.2136/sssaj1997.03615995006100030008x, 1997.
- 626 Grant, R. F., and Hesketh, J. D.: Canopy structure of maize (*Zea mays L.*) at different
627 populations: simulation and experimental verification, *Biotronics*, 21, 11-24, 1992.
- 628 Grant, R. F., and Rochette, P.: Soil microbial respiration at different temperatures and
629 water potentials: Theory and mathematical modeling, *Soil Sci. Soc. Am. J.*, 58, 1681-
630 1690, doi: 10.2136/sssaj1994.03615995005800060015x, 1994.
- 631 Grant, R. F., Juma, N. G., and McGill, W. B.: Simulation of carbon and nitrogen
632 transformations in soils: Mineralization, *Soil Biol. Biochem.*, 25, 1317-1329, doi:
633 10.1016/0038-0717(93)90046-E, 1993a.
- 634 Grant, R. F., Juma, N. G., and McGill, W. B.: Simulation of carbon and nitrogen
635 transformations in soils: Microbial biomass and metabolic products, *Soil Biol.*
636 *Biochem.*, 25, 1331-1338, doi: 10.1016/0038-0717(93)90047-F, 1993b.
- 637 Grant, R. F., Wall, G. W., Kimball, B. A., Frumau, K. F. A., Pinter Jr., P. J., Hunsaker, D.
638 J., and Lamorte, R. L.: Crop water relations under different CO₂ and irrigation: testing
639 of *ecosys* with the Free Air CO₂ Enrichment (FACE) experiment, *Agricul. Forest
640 Meteorol.*, 95, 27-51, doi: 10.1016/S0168-1923(99)00017-9, 1999.

- 641 Grant, R.F., Amrani, M., Heaney, D. J., Wright, R., and Zhang, M.: Mathematical
642 modelling of phosphorus losses from land application of hog and cattle manure, *J.
643 Environ. Qual.*, 33, 210-231, doi: 10.2134/jeq2004.2100, 2004.
- 644 Grant, R. F., Kimball, B. A., Wall, G. W., Triggs, J. M., Brooks, T. J., Pinter Jr., P. J.,
645 Conley, M. M., Ottman, M. J., Lamorte, R. L., Leavitt, S. W., Thompson, T. L., and
646 Matthias, A. D.: Modeling elevated carbon dioxide effects on water relations, water
647 use, and growth of irrigated sorghum, *Agron. J.*, 96, 1693-1705, doi:
648 10.2134/agronj2004.1693, 2004.
- 649 Grant, R. F., Black, T. A., Humphreys, E. R., and Morgenstern, K.: Changes in net
650 ecosystem productivity with forest age following clearcutting of a coastal Douglas fir
651 forest: testing a mathematical model with eddy covariance measurements along a
652 forest chronosequence, *Tree Physiol.*, 27, 115-131, doi: 0.1093/treephys/27.1.115,
653 2007.
- 654 Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., McCaughey, J. H., and
655 Trofymow, J. A.: Net ecosystem productivity of temperate and boreal forests after
656 clearcutting—a Fluxnet-Canada synthesis, *Tellus B*, 62, 475-496, doi: 10.1111/j.1600-
657 0889.2010.00500.x, 2010.
- 658 Green, R. E., and Corey, R. B.: Calculation of hydraulic conductivity: A further
659 evaluation of some predictive methods, *Soil Sci. Soc. Am. Proc.*, 35, 3–8, doi:
660 10.2136/sssaj1971.03615995003500010010x, 1971.
- 661 Griffin, D. M.: *Ecology of Soil Fungi*, Syracuse Univ. Press, Syracuse NY, 1972.

- 662 Jiao, J. A., and Chollet, R.: Light/dark regulation of maize leaf phosphoenol pyruvate
663 carboxylase by in vivo phosphorylation, *Arch. Biochem. Biophys.*, 261, 409-417, doi:
664 10.1016/0003-9861(88)90357-8, 1988.
- 665 Kemper, W. D., and Rollins, J. B.: Osmotic efficiency coefficients across compacted
666 clays, *Soil Sci. Soc. Amer. J.*, 30, 529-534, doi: 10.2136/sssaj1966.0361599500300
667 0050005x, 1966.
- 668 Kimmins, J. P.: *Forest Ecology*, Pearson Prentice Hall, NJ, 2004.
- 669 Koike, I., and Hattori, A.: Growth yield of a denitrifying bacterium, *Pseudomonas*
670 *denitrificans*, under aerobic and denitrifying conditions, *Soc. General Microbiol.*, 88,
671 1-10, doi: 10.1099/00221287-88-1-1, 1975.
- 672 Laisk, A., and Edwards, G. E.: A mathematical model of C₄ photosynthesis: The
673 mechanism of concentrating CO₂ in NADP-malic enzyme type species, *Photosyn.*
674 *Res.*, 66, 199-224, doi: 10.1023/A:1010695402963, 2000.
- 675 Larcher, W.: *Physiological Plant Ecology*, 4th edition, Springer-Verlag, Berlin, 2001.
- 676 Lawlor, D.: *Photosynthesis: Molecular, Physiological and Environmental Processes*,
677 Longman Group, Essex, UK, 1993.
- 678 Lawrence, A. L.: Anaerobic biological treatment processes, in: *Advances in Chemistry*
679 Series 105, edited by: Gould, R. F., Amer. Chem. Soc. Wash. DC, 163-189, 1971.
- 680 Leegood, R. C.: Transport during C₄ photosynthesis, in: *Advances in Photosynthesis:*
681 *Physiology and Metabolism*, edited by: Leegood, R. C., Sharkey, T.D. and von
682 Caemmerer, S., Kluwer Academic Publishers, Dordrecht, 449-469, 2000.

- 683 Lizama, H. M., and Suzuki, I.: Kinetics of sulfur and pyrite oxidation by *Thiobacillus*
684 *thiooxidans*. Competitive inhibition by increasing concentrations of cells, Can. J.
685 Microbio., 37, 182-187, doi: 10.1139/m91-028, 1990.
- 686 Luxmoore, R. J., Stolzy, L. H., and Letey J.: Oxygen diffusion in the soil-plant system. I. a
687 model, Agron. J., 62, 317-322, doi: 10.2134/agronj1970.00021962006200030003x, 1970a.
- 688 Luxmoore, R. J., Stolzy, L. H., and Letey, J.: Oxygen diffusion in the soil-plant system. II.
689 Respiration rate, permeability, and porosity of consecutive excised segments of maize and
690 rice roots, Agron. J., 62, 322-324, doi: 10.2134/agronj1970.00021962006200030004x, 1970b.
- 691 McGill, W. B., Hunt, H. W., Woodmansee, R. G., and Reuss, J. O.: Phoenix, a model of
692 the dynamics of carbon and nitrogen in grassland soils, in: Terrestrial Nitrogen Cycles,
693 edited by: Clark, F. E., and Rosswall, T., Ecological Bulletins 33, 49-115, 1981.
- 694 Medrano, H., Escalona, J. M., Bota, J., Gulías, J., and Flexas, J.: Regulation of
695 photosynthesis of C₃ plants in response to progressive drought: stomatal conductance
696 as a reference parameter, Ann. Bot., 89, 895-905, doi: 10.1093/aob/mcf079, 2002.
- 697 Millington, R. J., and Quirk, J. M.: Transport in porous media, in: 7th Trans. Int. Congr.
698 Soil Sci. vol. 1, edited by: van Beren, F. A., Madison, WI, Elsevier, Amsterdam, 97-
699 106, 1960.
- 700 Mosey, F. E.: Kinetic descriptions of anaerobic digestion, in: Third International
701 Symposium on Anaerobic Digestion, Univ. Cambridge, Boston, MS, 37-52, 1983.
- 702 Perrier, A.: Land surface processes: vegetation, in: Atmospheric General Circulation
703 Models, edited by: Eagleson, P. S., Cambridge Univ. Press., Cambridge, UK, 395-448,
704 1982.

- 705 Pirt, S. J.: *Principles of Microbe and Cell Cultivation*, Blackwell Scientific, Oxford,
706 UK, 1975.
- 707 Postgate, J.: *Nitrogen Fixation*, 3rd edition, Cambridge Univ. Press, Cambridge, UK,
708 1998.
- 709 Robinson, J. A., and Tiedje, J. M.: Kinetics of hydrogen consumption by rumen fluid,
710 digestor sludge and sediment, *Appl. Environ. Microbiol.*, 44, 1374-1384, 1982.
- 711 Sawada, S., Sakamoto, T., Sato, M., Kasai, M., and Usuda, H.: Photosynthesis with
712 single-rooted Amaranthus leaves. II. Regulation of Ribulose-1,5-Bisphosphate
713 Carboxylase, Phosphoenolpyruvate Carboxylase, NAD-Malic Enzyme and NAD-
714 Malate Dehydrogenase and coordination between PCR and C₄ photosynthetic
715 metabolism in response to changes in the source-sink balance, *Plant Cell Physiol.*,
716 43, 1293-301, doi: 10.1093/pcp/pcf153, 2002.
- 717 Schink, B.: Energetics of syntrophic cooperation in methanogenic degradation,
718 *Microbiol. Mol. Biol. Rev.*, 61, 262-280, 1997.
- 719 Seeman, J. R., Badger, M. R., and Berry, J. A.: Variations in the specific activity of
720 ribulose-1,5-bisphosphate carboxylase between species utilizing differing
721 photosynthetic pathways, *Plant Physiol.*, 74, 791-794, doi: 10.1104/pp.74.4.791,
722 1984.
- 723 Sharpe, P. S. H., and DeMichelle, D. W.: Reaction kinetics of poikilothermic
724 development, *J. Theor. Biol.*, 64, 649-670, doi: 10.1016/0022-5193(77)90265-X,
725 1977.

- 726 Shea, T. G., Pretorius, W. E., Cole, R. D., and Pearson, E. A.: Kinetics of hydrogen
727 assimilation in the methane fermentation, Water Res., 2, 833-848, doi:
728 10.1016/0043-1354(68)90038-9, 1968.
- 729 Shields, J. A., Paul, E. A., Lowe, W. E., and Parkinson, D.: Turnover of microbial tissue
730 in soil under field conditions, Soil Biol. Biochem., 5, 753-764, doi: 10.1016/0038-
731 0717(73)90020-5, 1973.
- 732 Shulten, H.-R., and Schnitzer, M.: Chemical model structures for organic matter and
733 soils, Soil Sci., 162, 115-130, 1997.
- 734 Skopp, J.: Oxygen uptake and transfer in soils: analysis of the air-water interfacial area,
735 Soil Sci. Soc. Amer. J., 49, 1327-1331, doi: 10.2136/sssaj1985.036159950049000
736 60001x, 1985.
- 737 Smith, M. R., and Mah, R. A.: Growth and methanogenesis by *Methanosarcina* strain 227
738 on acetate and methanol, Appl. Environ. Microbiol., 36, 870-879, 1978.
- 739 Suzuki, I., Dular, U., and Kwok, S. C.: Ammonia or ammonium ion as substrate for
740 oxidation by *Nitrosomonas europeae* cells and extracts, J. Bacteriol., 120, 556-558,
741 1974.
- 742 van Bavel, C. H. M., and Hillel, D. I.: Calculating potential and actual evaporation from a
743 bare soil surface by simulation of concurrent flow of water and heat, Agric. Meteorol.,
744 17, 453-476, doi: 10.1016/0002-1571(76)90022-4, 1976.
- 745 Veen, B. W.: Relation between root respiration and root activity, Plant Soil, 63, 73-76.,
746 doi: 10.1007/BF02374259, 1981.
- 747 Waring, R. H., and Running, S. W.: Forest Ecosystems: Analysis at Multiple Scales, 2nd
748 edition, Academic Press, London, UK, 1998.

- 749 Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid
750 water, *Chem. Rev.*, 77, 219-262, doi: 10.1021/cr60306a003, 1977.
- 751 Williams, D. G., Gempko, V., Fravolini, A., Leavitt, S. W., Wall, G. W., Kimball, B. A.,
752 Pinter Jr., P. J., LaMorte, R., and Ottman, M.: Carbon isotope discrimination by
753 Sorghum bicolor under CO₂ enrichment and drought, *New Phytol.*, 150, 285-293, doi:
754 10.1046/j.1469-8137.2001.00093.x, 2001.
- 755 Wofford, N. G., Beaty, P. S., and McInerey, M. J.: Preparation of cell-free extracts and
756 the enzymes involved in fatty acid metabolism in *Syntrophomonas wolfei*, *J.*
757 *Bacteriol.*, 167, 189-195, 1986.
- 758 Yoshinari, T., Hynes, R., and Knowles, R.: Acetylene inhibition of nitrous oxide
759 reduction and measurement of denitrification and nitrogen fixation in soil, *Soil Biol.*
760 *Biochem.*, 9, 177-183, doi: 10.1016/0038-0717(77)90072-4, 1977.
- 761 Zehnder, A. J. B., and Wuhrmann, K.: Physiology of a *Methanobacterium* strain AZ,
762 *Arch. Microbiol.*, 111, 199-205, doi: 10.1007/BF00549357, 1977.
- 763 Zehnder, A. J. B., Huser, B. A., Brock, T. D. and Wuhrmann, K.: Characterization of an
764 acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium, *Arch.*
765 *Microbiol.*, 124, 1-11, doi: 10.1007/BF00407022, 1980.