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Abstract. Climate controls fire regimes through its influence

on the amount and types of fuel present and their dryness.

CO2 concentration constrains primary production by limit-

ing photosynthetic activity in plants. However, although fuel

accumulation depends on biomass production, and hence on

CO2 concentration, the quantitative relationship between at-

mospheric CO2 concentration and biomass burning is not

well understood. Here a fire-enabled dynamic global veg-

etation model (the Land surface Processes and eXchanges

model, LPX) is used to attribute glacial–interglacial changes

in biomass burning to an increase in CO2, which would

be expected to increase primary production and therefore

fuel loads even in the absence of climate change, vs. cli-

mate change effects. Four general circulation models pro-

vided last glacial maximum (LGM) climate anomalies –

that is, differences from the pre-industrial (PI) control cli-

mate – from the Palaeoclimate Modelling Intercomparison

Project Phase 2, allowing the construction of four scenar-

ios for LGM climate. Modelled carbon fluxes from biomass

burning were corrected for the model’s observed prediction

biases in contemporary regional average values for biomes.

With LGM climate and low CO2 (185 ppm) effects included,

the modelled global flux at the LGM was in the range

of 1.0–1.4 PgCyear−1, about a third less than that mod-

elled for PI time. LGM climate with pre-industrial CO2

(280 ppm) yielded unrealistic results, with global biomass

burning fluxes similar to or even greater than in the pre-

industrial climate. It is inferred that a substantial part of the

increase in biomass burning after the LGM must be attributed

to the effect of increasing CO2 concentration on primary pro-

duction and fuel load. Today, by analogy, both rising CO2

and global warming must be considered as risk factors for

increasing biomass burning. Both effects need to be included

in models to project future fire risks.

1 Introduction

Biomass burning, which is a major factor influencing terres-

trial carbon fluxes to the atmosphere (Andreae and Merlet,

2001; Prentice et al., 2011a; Seiler and Crutzen, 1980), is

strongly determined by fuel availability and dryness (Alder-

sley et al., 2011; Bistinas et al., 2013; Krawchuk et al.,

2009; Krawchuk and Moritz, 2009, 2011; Moritz et al., 2013;

Bistinas et al., 2014). Both are influenced by climate: short-

term stochastic climate variability (weather) controls igni-

tions through lightning and fuel moisture and fire spread

through temperature, precipitation, moisture and wind speed;

long-term climate controls vegetation type and productivity,

and hence fuel production (Bowman et al., 2009; Dale et al.,

2000; Flannigan et al., 2000; Harrison et al., 2010). How-

ever, vegetation type and productivity are also directly in-

fluenced by atmospheric CO2 concentration (Cowling, 1999;

Farquhar, 1997; Prentice and Harrison, 2009), allowing the
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possibility that anthropogenic changes in atmospheric CO2

concentration could influence biomass burning via changes

in the types and quantities of fuel (Harrison et al., 2010; Koch

and Mooney, 1996; Moritz et al., 2005). Very little informa-

tion is currently available about these potential effects.

Progress in differentiating between the large-scale controls

of fire by CO2 and climate could in principle be made by

evaluating changes in fire regimes with the help of global

vegetation–fire models which (a) are based on a solid foun-

dation of knowledge at the process level, including the phys-

iology of photosynthesis and the physiological effects of

CO2 on plants with different photosynthetic pathways, and

(b) have been shown to reproduce major spatial and tempo-

ral patterns in fire regimes as observed from space. Neverthe-

less, the available global data on changes in biomass burning

do not span a sufficiently wide array of environmental condi-

tions to allow modelled CO2 effects to be tested directly. This

is because the most reliable remotely sensed record of burnt

area is that obtained from the MODIS instrument, which was

launched as recently as 2000 CE (Giglio et al., 2010). Any ef-

fects of the increase in CO2 concentration on biomass burn-

ing over this interval are likely to have been overwhelmed by

the effects of spatial and interannual variability in climate.

As an alternative approach, here we use process-based

modelling together with palaeodata which document the re-

sponse of fire regimes to environmental changes on a longer

timescale, encompassing the large natural variations in atmo-

spheric CO2 concentration between glacial and interglacial

climates. Sedimentary charcoal records provide information

about changes in fire regimes with sometimes annual, but

more generally multi-decadal, resolution over such long pe-

riods. When appropriately processed (Power et al., 2010),

these records can be combined to provide composite re-

gional and global histories (see e.g. Power et al., 2008;

Marlon et al., 2009; Daniau et al., 2010, 2012; Mooney et

al., 2011) of changes in fire regimes on multi-millennial

timescales. Power et al. (2008) analysed charcoal records

covering the last 21 000 years. Although regional patterns in

fire regimes were shown to differ between the last glacial

maximum (LGM, ca. 21 000 years ago, 21 kaBP) and the

recent past, fire prevalence in most regions was low at the

LGM and until about 16 000 yearsBP, after which there was

a gradual transition to the higher fire prevalence character-

istic of the Holocene. Daniau et al. (2012) confirmed this

global pattern with an analysis of a more extensive data set,

and suggested that it could be largely explained in terms

of changing temperature and moisture controls. Specifically,

Daniau et al. (2012) showed that fire increased monotoni-

cally with temperature, and peaked at intermediate moisture

levels. Changes in fire regime, both on regional and global

scales, tracked the glacial–interglacial increase in tempera-

ture. The strong correlation between biomass burning (in-

dexed by charcoal abundance) and local temperature and

moisture regimes was assumed to reflect climate controls on

productivity, fuel accumulation and fuel dryness.

However, the glacial–interglacial transition was also char-

acterized by a progressive, nearly 100 ppm increase in CO2

concentration. Large-scale effects of temperature increase

(driven in part by rising CO2) and ecophysiological effects

of rising CO2 on vegetation and primary production can-

not be readily distinguished based on time-series information

alone (Prentice and Harrison, 2009; Bennett et al., 2013), be-

cause of their temporal correlation. However, process-based

modelling can make the distinction. Harrison and Prentice

(2003) showed using the BIOME4 model that ecophysiolog-

ical CO2 effects are required to account for the full extent

of the reduction in global forest cover during glacial times.

The same general approach and model was used by Bragg et

al. (2013) to demonstrate that observed glacial–interglacial

changes in the stable carbon isotope signature of vegetation

in southern Africa are dominated by ecophysiological CO2

effects. Prentice et al. (2011b) demonstrated that the LPX

model produced realistic patterns of biome distribution at

the LGM when driven by climate outputs from four cou-

pled ocean–atmosphere general circulation models from the

Palaeoclimate Modelling Intercomparison Project Phase 2

(PMIP2) and with the observed LGM atmospheric CO2 level;

but they did not analyse the modelled fire regimes, nor did

they explicitly separate climate and CO2 effects on vegeta-

tion.

Here we apply the LGM climate scenarios used by Pren-

tice et al. (2011a) to drive the LPX model (Prentice et

al., 2011b). Our aim was to demonstrate whether a qualita-

tively realistic simulation of the patterns of biomass burn-

ing at the LGM vs. pre-industrial time could be obtained

by modelling; and, if so, to assess the extent to which the

well-documented increase in global biomass burning from

the LGM to the Holocene could be explained by climate

change alone, vs. the alternative of climate change together

with the ecophysiological effects of increased CO2.

2 Methods

LPX (Prentice et al., 2011b) was developed from the

Lund-Potsdam-Jena SPread and InTensity of FIRE (LPJ-

SPITFIRE) model (Thonicke et al., 2010), which in turn was

a development of the original LPJ (Sitch et al., 2003; Gerten

et al., 2004) dynamic global vegetation model. LPJ simulates

vegetation dynamics, and land–atmosphere exchanges of wa-

ter and CO2, using a set of nine plant functional types (PFT):

tropical broadleaved evergreen tree, tropical broadleaved

raingreen tree, temperate needleleaved evergreen tree, tem-

perate broadleaved evergreen tree, temperate broadleaved

summergreen tree, boreal needleleaved evergreen tree, bo-

real broadleaved summergreen tree, C3 perennial grass/forb

and C4 perennial grass/forb. Each PFT has different dy-

namics in terms of production and physiological responses

to climate. Photosynthetic activity (gross primary produc-

tion) depends on water availability, temperature, atmospheric
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CO2 concentration and photosynthetically active radiation (a

function of insolation and cloudiness). Net primary produc-

tion accounts for carbon loss through respiration by plant

tissues (Sitch et al., 2003) and is assumed to equate with

biomass growth.

LPJ-SPITFIRE and LPX were designed to improve on the

simple representation of fire in LPJ by explicitly modelling

the rate at which fire spreads as a function of wind speed

and physical properties (including dryness) of the fuel, and

responses of the vegetation itself (including different mortal-

ity mechanisms) to the intensity and combustion efficiency

of fires. Litter drying is calculated using a simplified form of

the Nesterov Index. The daily accumulation of this index de-

pends on atmospheric dryness (the diurnal temperature range

is used as an approximation for this purpose) and maximum

temperature. Accumulation takes place over precipitation-

free periods, which are modelled stochastically as a function

of monthly wet-day frequency (Gerten et al., 2004). The rate

of fire spread then follows the Rothermel equations (Rother-

mel, 1972). Thonicke et al. (2010) described the full set

of equations and parameters in the fire component of LPJ-

SPITFIRE, and Prentice et al. (2011b) documented the mod-

ifications made in LPX. Although LPJ-SPITFIRE accounts

for both natural and human ignitions, lightning is the only

ignition source in LPX. Only allowing natural ignitions is

appropriate for palaeo-simulations when potential human ig-

nitions are not of key importance on a global scale. LPX

produces reasonable simulations of fire regimes under mod-

ern conditions, including the spatial and seasonal patterns of

burnt area (Prentice et al., 2011b). Kelley et al. (2013) per-

formed quantitative comparisons of model outputs against a

set of benchmarks, showing that both LPJ and LPX can pro-

duce reasonably good simulations of vegetation, carbon- and

water-cycle characteristics including vegetation cover (as the

fraction of absorbed photosynthetically active radiation, fA-

PAR), gross primary production (GPP), net primary produc-

tion (NPP), canopy height, net ecosystem carbon exchange

and runoff. However, LPX produces a much better simula-

tion of the spatial and temporal patterns of burnt area than

LPJ.

We used outputs from four coupled ocean–atmosphere

models (HadCM3M2, MIROC3.2, FGOALS-1.0g and

CNRM-CM33) to derive LGM climate variables for the

LPX model. The LGM simulations were carried out fol-

lowing the PMIP2 protocol (Braconnot et al., 2007), with

orbital parameters for 21 kaBP, expanded ice sheets and

changes in land–sea geography specified by Peltier (2004),

and greenhouse gas concentrations derived from ice-core

records (CO2: 185 ppm, CH4: 350 ppb, N2O: 200 ppb). The

control is a pre-industrial (PI: 1750 CE) simulation, with

greenhouse gas concentrations corresponding to 1750 CE

(CO2: 280 ppm, CH4: 760 ppb, N2O: 270 ppb) and orbital pa-

rameters set to 1950 CE values (the difference in insolation

patterns between 1750 and 1950 CE is negligible). Anoma-

lies (i.e. the difference between LGM and PI gridded val-

ues) of monthly temperature, precipitation and cloudiness

were bilinearly interpolated to the 0.5◦ grid used by LPX

and then added to detrended values of these variables for

the period 1900–1950 from the TS 3.0 version of the Cli-

mate Research Unit (CRU) data set. A widely used weather

generation approach is used to convert monthly precipitation

and wet-day inputs into a time course of daily precipitation

values, as required for predictions of hydrological regimes

and (especially) for fire probabilities, which depend strongly

on fuel moisture and therefore on the length of the periods

between precipitation events. The outcome of these proce-

dures is a high-resolution LGM climate scenario, preserving

interannual variability, for each climate model used as input.

Although several other modelling groups ran LGM simula-

tions in PMIP2, the four selected models are representative of

the range of simulated LGM climates (Harrison et al., 2014).

Furthermore, Prentice et al. (2011a) have already shown that

they produce a reasonably good simulation of global vege-

tation patterns, as shown by pollen-based reconstructions for

the LGM.

The simulated outputs used for the purposes of this study

were: carbon flux from fire (which accounts for biomass

burning), burnt area, NPP, “fast” and “slow” carbon pools,

annual mean growing degree days above a baseline temper-

ature of 5 ◦C (GDD), foliage projective cover (FPC), dom-

inant plant functional type (PFT) and canopy height. In or-

der to display the overall impact of changes in CO2 and cli-

mate on vegetation distribution, we used an algorithm that

converts modelled vegetation properties into 12 broad veg-

etation types (or biomes) based on simulated canopy height,

FPC, PFT and GDD (Prentice et al., 2011b). A climatic crite-

rion (low GDD) is used to discriminate arctic–alpine biomes

from the rest. This is because LPX, in common with many

other vegetation models, does not explicitly characterize tun-

dra plants as a distinct PFT. A low GDD criterion has often

been used in static biogeography models to characterize tun-

dra (see e.g. Sykes et al., 1996). We used ensemble averages

of these variables for the four LGM simulations with LGM

CO2 and the four LGM simulations with pre-industrial CO2

to derive biome maps. The pre-industrial biome distribution

was simulated using the detrended CRU climate data and pre-

industrial CO2.

Charcoal data are used to provide regional indices of

biomass burning. Due to the transformation necessarily in-

volved in the processing of sedimentary charcoal records,

the data cannot be interpreted in a strictly quantitative way.

However, relative changes in the charcoal index for a region

give unambiguous information about the sign of change and

an indication of the relative magnitude of changes between

different intervals. Comparisons are made here between rel-

ative changes in biomass burning between LGM and PI, as

modelled (with LGM CO2 or PI CO2), and as represented

in the charcoal data assembled by Daniau et al. (2012) for

the LGM and recent times. The charcoal-derived values are

averages for the period 22–20 kaBP to represent the LGM,
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and from 850 to 1750 CE for PI. The interval 22–20 kaBP

is conventionally used to represent the LGM in syntheses

of data (see e.g. Bartlein et al., 2011) and the PI interval

was chosen to avoid major human influence on fire regimes

(see e.g. Marlon et al., 2008). The charcoal-derived averages

were compared to a 30-year average of the simulated biomass

burning. Relative changes were calculated as

R =
X−Xref

Xref

, (1)

where X is the LGM value and Xref is the correspond-

ing PI value for each latitudinal band. The latitudinal bands

considered are southern extratropical (SET, > 30◦ S), south-

ern tropical (ST, 0–30◦ S), northern tropical (NT, 0–30◦ N)

and northern extratropical (NET, > 30◦ N). Although the

amount of charcoal production shows large variations be-

tween biomes, this approach compares fire occurrence in rel-

ative terms, and as the emission factors for each biome are

based on published data we assume that carbon flux from fire

is systematically related to the amount of charcoal produced.

There are known biases. LPX tends consistently to under-

estimate burnt area in forested regions and overestimate burnt

area in non-forested regions (Kelley et al., 2013). The bias

in non-forested regions is probably due to an overestimation

of NPP on areas limited by fuel, which leads to bigger ar-

eas being burned and more carbon being released to the at-

mosphere. Areas with higher precipitation rates, on the other

hand, have simulated drying rates which are too low, prevent-

ing the simulation of open woody vegetation that would be

more susceptible to burning. This problem explains in partic-

ular the large underestimation of fire in boreal forests. Kelley

et al. (2014) have recently addressed these issues in an im-

proved version of LPX applied to Australia, but this version

has not yet been tested globally.

The standard version of LPX used here simulates the main

features and spatial patterns of modern fire regimes well, al-

beit with quantitative biases that are expected to be corrected

in future modelling work. However the LGM to PI transi-

tion involves large changes in the relative global coverage of

forests vs. other vegetation types (Prentice et al., 2011a), and

thus it was important for this study to minimize the effect of

these biases on global fire statistics. This was done by classi-

fying modelled vegetation into biomes (as described above)

and then calculating the ratio of multi-annual mean burnt

area within each biome from GFED3 to the multi-annual

mean burnt area simulated by LPX under the present climate

(Table 1). We applied these ratios as correction factors to the

“raw” simulated burnt area in both the PI and LGM climates.

We excluded agricultural, peat and deforestation fires from

the GFED data in order to derive estimates closer to the sim-

ulations (which do not include these categories of fires). The

separation of different types of fire in GFED is specified ac-

cording to emissions rather than burnt area, so the correc-

tions were applied directly to emissions. The ratios were cal-

Table 1. Correction factors (rounded to two decimal places)

for biomass burning, based on the ratio between GFED3 (non-

anthropogenic) biomass burning and simulated biomass burning for

each biome (uncertainties in parentheses).

Biome Biomass burning ratio

(GFED/simulations)

Tropical forest 2.96 (0.51)

Temperate forest 0.05 (0.01)

Boreal forest 379.96 (116.06)

Tropical savannah 0.95 (0.11)

Temperate parkland 0.04 (0.01)

Dry grass/shrub 0.18 (0.15)

Desert 0.03 (0.01)

Shrub tundra 0.28 (0.02)

Tundra 0.19 (0.07)

culated using the following selected regions for each of the

biomes:

– Tropical forest: S America, Asia, Africa

– Temperate forest: N America, Eurasia

– Boreal forest: N America, Eurasia

– Tropical savannah: N Australia, N Africa, S Africa

– Temperate parkland: N America, Eurasia

– Dry grass/shrubland: Aral sea region, Australia, Great

Basin USA

– Desert: Sahara Desert, Middle East, Gobi Desert

– Shrub tundra: N America, Eurasia

– Tundra: N America, Eurasia

Our broad definition of tropical forests includes tropical dry

forests, which are a significant natural source of global CO2

emissions (Batchelder, 1967; Stott et al., 1990; Middleton

et al., 1997; Stott, 2000; Keeley and Bond, 2001; Roberts,

2001). Even if most of the burnt area in tropical moist forests

today is linked to deforestation, tropical dry forests are floris-

tically and structurally intermediate between tropical moist

forests and savannahs, and are prone to lightning-set fires.

Warm temperate forest, sclerophyll woodland and boreal

parkland were not considered for correction because their

distribution area is much more restricted, and less accurately

simulated, than other biomes. Ratios were calculated by di-

viding the total amount of carbon released from the selected

areas in the GFED data by the same quantity in the present

vegetation simulations, based on CRU TS3.0 climate for the

period 1997–2011. Uncertainties of the ratios were attributed
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using the formula:

U (b)=
AvgGFED(b)+

MaxGFED(b)−MinGFED(b)
2

AvgPI(b)+
MaxPI(b)−MinPI(b)

2

−
SumGFED(b)

SumPI(b)
, (2)

where U(b) is the calculated uncertainty for biome b, and

Avg, Max, Min and Sum represent the average, maximum,

minimum and summed values from the PI simulation and

GFED, respectively. These ratios were multiplied by the to-

tal simulated biomass burning rates per biome for all simu-

lations. We also calculated area burned as a fraction of total

area, and carbon released through burning as a fraction of

total carbon uptake, for each biome.

As a further check on the realism of the simulation of

the changing terrestrial carbon cycle, simulated global car-

bon pools (soil and vegetation) were compared with inde-

pendently estimated global values, based on δ13C changes

from ocean sedimentary records and ice core records, for

the PI (Denman et al., 2007) and LGM (Ciais et al., 2011).

These estimates include an inert pool associated with per-

mafrost. Since LPX does not simulate permafrost, our com-

parisons are confined to the active pool estimated by Denman

et al. (2007) and Ciais et al. (2011).

3 Results

Simulated carbon pools (Fig. 1) are in good agreement with

results presented by Ciais et al. (2011). According to the

simulations, LGM carbon storage was reduced by 40–52 %

(depending on the climate model used for the simulations),

similar to the 43 % reduction inferred by Ciais et al. (2011).

The model results indicate that the reduction was mainly

due to the ecophysiological effect of changes in CO2 con-

centration, as carbon accumulation was similar to or even

greater than pre-industrial in the LGM simulations when

CO2 was kept unchanged at PI levels. This finding supports

the suggestion of Prentice and Harrison (2009) and Prentice

et al. (2011a) that the increase in carbon storage from LGM

to Holocene was primarily caused by CO2. Between 27 and

30 % of the global land area was covered by forest in the

LGM simulations with PI CO2 whereas under LGM CO2

only 15–16 % of the global land area was covered by for-

est (Fig. 2). The area of tropical forests, in particular, was

21–31 % under LGM climate and PI CO2, whereas simula-

tions using LGM CO2 showed a 60–63 % reduction of trop-

ical forests, with higher levels of fragmentation – consistent

with tropical pollen records (Harrison and Prentice, 2003),

and with offshore leaf-wax δ13C records from tropical south-

ern Africa (Bragg et al., 2013), both of which indicate a ma-

jor reduction in the area occupied by forests at the LGM.

Figure 3 shows the simulated changes in the carbon flux

from biomass burning according to biomes. Without correc-
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PI CO2. CRU represents the PI climate simulation under CRU TS3.0 climate. The simulated 3 

total carbon is compared to estimates of the total active pool by Ciais et al (2011).  4 

 5 
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carbon pools simulated by LPX when driven by climate outputs

from the four LGM simulations and with either LGM or PI CO2.

CRU represents the PI climate simulation under CRU TS3.0 cli-

mate. The simulated total carbon is compared to estimates of the

total active pool by Ciais et al. (2011).

tion for known contemporary biases (Fig. 3, top), the mod-

elled global biomass burning flux at the LGM (with realistic

CO2) is apparently larger than that modelled for PI condi-

tions. However, most of this simulated biomass burning at

the LGM is due to non-forest biomes (including temperate

parkland, dry grass/shrub and desert) whose emissions are

overestimated by large factors (Table 1). After bias correc-

tion, modelled biomass burning flux becomes 24–43 % less

under LGM conditions, ranging from 1.0 to 1.4 PgCyear−1

across the four LGM climate scenarios.

The modelled biomass burning flux at the LGM is still

dominated by emissions from non-forest biomes, even af-

ter bias correction (Fig. 3). Changes in biome areas, espe-

cially the major reduction in the area occupied by forests,

are simulated fairly consistently in all four scenarios and

contribute strongly to the reduction in modelled biomass

burning. The simulations also indicate changes in the frac-

tional area burned as a consequence of the LGM climate

(greatly decreased in forest and tundra biomes, increased in

non-forest biomes), and a general increase in fractional area

burned when PI CO2 is imposed (Table 2, left columns).

Biomass burned per unit area of tropical forests is strongly

reduced in the LGM climate, but this effect is cancelled and

turned into a large increase when PI CO2 is imposed (Table 2,

middle columns). The fraction of annual NPP lost to the at-

mosphere through burning is greatly reduced in the LGM cli-

mate, both in tropical forests and in savannahs. This effect is

partly counteracted, but not cancelled, by imposing PI CO2

(Table 2, right columns).

The large effect of CO2 concentration on the burnt frac-

tion of NPP in tropical savannahs and forests (Table 2, right

columns) is notable. A major modelled effect of low CO2

concentration in the Tropics is reduced tree cover, whereas

the C4 grasses that dominate in tropical savannahs (and are

present in fire-prone tropical dry forests) continue to thrive.

Savannah and tropical forest emissions include a major con-

tribution from the woody component, so the reduction in tree

www.biogeosciences.net/11/6017/2014/ Biogeosciences, 11, 6017–6027, 2014
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Figure 2. Biome distributions derived from LPX simulations for PI climate and CO2 (top), LGM climate and CO2 (middle), and LGM

climate with PI CO2 (bottom). The LGM simulations were driven by average climate anomalies from the four scenarios.

 24 

Figure 3: Simulated carbon fluxes from fire (Pg C yr-1) for each biome under PI climate and 1 

CO2 (CRU TS3.0), LGM climate and CO2, and LGM climate with PI CO2 under all four 2 

LGM climate model conditions: uncorrected results (top) and results after correction for 3 

contemporary biases (bottom).  4 

 5 
  6 Figure 3. Simulated carbon fluxes from fire (PgCyear−1) for each biome under PI climate and CO2 (CRU TS3.0), LGM climate and CO2,

and LGM climate with PI CO2 under all four LGM climate model conditions: uncorrected results (top) and results after correction for

contemporary biases (bottom).
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cover translates into an important reduction in the fraction of

NPP consumed.

The net global effect of LGM CO2 is a strong suppression

of biomass burning, according to the bias-corrected model

results (Fig. 3). In the LGM climate with imposed (unrealis-

tic) PI CO2 the modelled global biomass burning flux is sim-

ilar to (in fact, on average slightly greater than) that for the

PI climate; the distribution among biomes is relatively sim-

ilar to that in the PI climate. With LGM climate and LGM

CO2, only 0.6–2 % of the flux originates in tropical forests.

With LGM climate and PI CO2 this figure rises to 41–69 %,

in response to the unrealistically large simulated areas of this

biome under PI CO2, and the higher rates of biomass burned

per unit area due to the increase of productivity in tropical

forests (Table 2, middle columns).

The LGM climate results in a general reduction of biomass

burning in the southern tropical latitude band in particular

(Fig. 4). Again CO2 has an impact here. Compared to the

LGM simulations with imposed PI CO2, the LGM simula-

tions with realistic CO2 show a reduction in biomass burn-

ing rates across all latitude bands, with the exception of the

Southern Tropics in two models.

Comparisons with charcoal data (Fig. 5) indicate that the

large biomass burning fluxes modelled with LGM climate

and PI CO2, especially the consistently and greatly increased

fluxes in the Northern Hemisphere, are wholly unrealistic.

By contrast, the modelled biomass burning fluxes with LGM

climate and LGM CO2 show a pattern more consistent with

the charcoal data, with realistic reductions relative to PI in

the Southern Hemisphere and globally. However, three out

of the four models simulate a marginal increase in biomass

burning at the LGM in the Northern Tropics and a large in-

crease in the Northern Extra-Tropics, whereas the charcoal

data unequivocally show a reduction in both latitude bands.

4 Discussion

Above-ground detritus (litter), which is of major importance

in the initiation and spread of fires, in these four LGM sce-

narios was calculated to amount to an average of 142 PgC for

the PI and 79 PgC for the LGM (Prentice et al., 2011a). Our

results suggest that the ecophysiological effect of CO2 on pri-

mary production, and thus litter accumulation and biomass

burning, provided the dominant contribution to the observed

increase in biomass burning from the LGM to the Holocene.

This effect arises because CO2 concentration – especially at

the low end of its natural range, where the CO2 response of

photosynthesis is steepest – is a major control on net primary

production, and therefore also on the amount of fuel available

and, indirectly, the amount of carbon that returns to the atmo-

sphere through burning. The simulated effect was strong in

the Tropics, where low CO2 dramatically reduced the mod-

elled area occupied by forests, the fraction of NPP consumed

by fire in tropical forests and savannahs, and the total global
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Figure 4: Simulated carbon flux from biomass burning (Pg C yr-1) by latitude bands, after 1 

applying the biome correction. The CRU column represents the PI simulation using CRU 2 

TS3.0 climate; the rest of the columns represent the values for each of the modelled LGM 3 

climates and the two CO2 scenarios. The latitude bands are Northern Extra-Tropics (NET, 30-4 

70ºN), Northern Tropics (NT, 0-30ºN), Southern Tropics (ST, 0-30ºS) and Southern Extra-5 

Tropics (SET, 30-70ºS). 6 
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Figure 4. Simulated carbon flux from biomass burning

(PgCyear−1) by latitude bands, after applying the biome cor-

rection. The CRU column represents the PI simulation using

CRU TS3.0 climate; the rest of the columns represent the values

for each of the modelled LGM climates and the two CO2 scenarios.

The latitude bands are Northern Extra-Tropics (NET, 30–70◦ N),

Northern Tropics (NT, 0–30◦ N), Southern Tropics (ST, 0–30◦ S)

and Southern Extra-Tropics (SET, 30–70◦ S).
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Figure 5: Relative differences of modelled carbon flux from biomass burning by latitude 1 

bands, for LGM climate and CO2, and LGM climate with PI CO2, relative to PI. Observed 2 

relative changes in average charcoal index (from data in Daniau et al. 2012) are also shown. 3 
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Figure 5. Relative differences of modelled carbon flux from

biomass burning by latitude bands, for LGM climate and CO2, and

LGM climate with PI CO2, relative to PI. Observed relative changes

in average charcoal index (from data in Daniau et al., 2012) are also

shown.

biomass burning flux. Although the modelled area of non-

forest burned was greater under LGM conditions, the global

amount of CO2 released by fire was considerably less, due to
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Table 2. Percentage of biome area burnt (uncorrected) and biomass burned per unit area and percentage of annual net primary production

released into the atmosphere by fire (biome-corrected), for each biome under simulated PI (CRU) and LGM conditions. The LGM climate

columns show average results from the four LGM climate scenarios, with LGM CO2 and PI CO2 respectively. Note that the relative im-

portance of tropical forests is mainly due to the burning fluxes coming from tropical dry forests; the corrections were calculated excluding

deforestation fires, which would be relevant today but not for the purposes of this study.

Annual area burned Annual biomass burned Annual biomass burned

relative to total per unit area relative to NPP

biome area (%) (gm−2) (%)

CRU Avg LGM CRU Avg LGM CRU Avg LGM

CO2-LGM CO2-PI CO2-LGM CO2-PI CO2-LGM CO2-PI

Tropical forest 0.39 0.001 0.20 22.55 0.82 40.16 15.74 0.10 3.71

Warm temperate forest 0.64 0.003 0.01 0.11 0.05 0.08 0.11 0.01 0.01

Temperate forest 0.66 0.0 0.001 0.00 0.00 0.00 0.24 0.05 0.09

Boreal forest 0.47 0.0 0.0 5.52 6.65 13.11 0.88 1.36 2.43

Tropical savannah 1.51 9.23 10.30 57.70 56.30 52.76 18.91 0.04 7.01

Sclerophyll woodland 0.23 0.05 0.09 0.54 0.56 1.47 0.88 0.09 0.19

Temperate parkland 1.82 6.40 8.74 1.50 1.53 2.15 1.67 0.44 0.53

Boreal parkland 0.41 1.60 1.98 10.22 13.11 18.67 3.61 4.28 4.98

Dry grass/shrub 1.93 8.22 9.56 6.23 7.80 7.88 2.51 2.62 2.58

Desert 0.74 1.75 1.61 0.06 0.34 0.21 0.74 6.98 4.55

Shrub tundra 0.84 0.16 0.18 1.35 0.71 0.77 0.18 0.13 0.11

Tundra 0.70 0.04 0.05 0.40 0.05 0.06 0.04 0.31 0.30

the much lower areal emissions from burning in non-forest

biomes.

The model simulations explicitly distinguish the different

physiological responses of C3 and C4 plants to CO2 con-

centration. Tropical savannahs are dominated by C4 grasses,

which respond much less strongly to changes in CO2 than

C3 plants. The large modelled response of burning in tropical

savannahs arises because of their C3 tree component, which

makes a major contribution to both the total biomass and the

total carbon released from fires in savannahs.

When the simulations are compared with charcoal recon-

structions, the simulations with LGM climate and PI CO2 are

shown to produce unrealistic patterns, with very high burn-

ing fluxes in the Northern Tropics and Extra-Tropics. Sim-

ulations with LGM climate and LGM CO2 generate a more

plausible latitudinal pattern of changes in biomass burning.

There are still differences in the Northern Hemisphere, how-

ever. In particular, three of the simulations (driven by outputs

from the CNRM-CM33, MIROC 3.2 and HadCM3M2 cli-

mate models) showed increases in biomass burning at LGM

relative to PI in the Northern Extra-Tropics. There is a sim-

ple explanation for this anomaly. The PMIP models gener-

ally underestimate the magnitude of observed LGM cooling

and drying in the north (Harrison et al., 2014), leading to an

unrealistically extensive simulation of forest biomes across

much of the hemisphere. Indeed, the relative magnitude of

the overestimation in northern biomass burning is consis-

tent with the relative underestimation of the observed cool-

ing by the four climate models: FGOALS-1.0g produces a

significant (> 8 ◦C) zonal cooling across northern Siberia, as

does HadCM3M2, but MIROC 3.2 and CNRM-CM33 only

simulate marked cooling adjacent to the European ice sheet.

The PMIP2 climate models used in this study are coupled

ocean–atmosphere models with a prescribed land surface,

and the LGM vegetation (for climate modelling purposes)

was unchanged from the PI control simulations (Braconnot

et al., 2007). The presence of forest vegetation as the land-

surface condition in the simulations, rather than non-forest

vegetation as observed, may provide at least a partial expla-

nation of the simulation of higher-than-observed LGM tem-

peratures across the northern latitudes (Harrison et al., 2014).

The LPX model (Prentice et al., 2011b) has known biases:

total biomass burning fluxes are over-estimated in some non-

forest biomes, and under-estimated in some forest biomes,

most notably the boreal forest (Table 1). There are poten-

tially large uncertainties in the correction factors applied here

due to (a) likely direct controls of the bias by climate – the

method assumes a correction factor can be applied regardless

of climate variations (and possible temporal shifts) within

biomes, and (b) the large magnitude of the corrections for

some biomes. For example, the application of a correction

factor > 300 for the boreal forest could have contributed

to the over-estimation of LGM fires in the Northern Extra-

Tropics. Another potential source of uncertainty is (c) the

assumed similarity between contemporary fire regimes (af-

ter removal of those fire emissions assigned by GFED to

deforestation, which also involves approximations) and PI

regimes. This assumption is, however, consistent with the
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charcoal record, which shows a reduction of biomass burning

since peak levels at the beginning of the 20th century – pu-

tatively due to land-use shifts – and results in a similar level

of biomass burning today and in the PI interval (Marlon et

al., 2008). Despite these potential sources of uncertainty, the

results presented here demonstrate a very large signal, unam-

biguously pointing to the involvement of CO2 concentration

changes as a major factor in the observed major changes in

global fire patterns between glacial and interglacial times.

The fact that fuel loads are directly affected by CO2

changes, irrespective of any changes caused by changing cli-

mate, has implications for potential future changes in fire

regimes. Many studies have highlighted the possibility of in-

creased fire hazard because of climate warming (e.g. Flan-

nigan et al., 2000); none to our knowledge has previously

indicated the possibility that fire risk could increase in areas

that do not experience substantial warming because the di-

rect impact of rising CO2 on vegetation productivity could

increase fuel loads. Most projections of future fire regimes

have been based on statistical modelling approaches (e.g.

Krawchuk et al., 2009; Moritz et al., 2012), which by defini-

tion cannot account for the independent effects of changes in

CO2 on fuel loads because there is negligible (for ecophysio-

logical purposes) large-scale spatial variation in CO2 concen-

tration across the globe. Available model-based assessments

(e.g. Scholze et al., 2006; Harrison et al., 2010; Kloster et

al., 2010) which in principle do take the ecophysiological

CO2 effect into account were made using an older genera-

tion of both climate projections and vegetation–fire models.

New assessments of future fire risk, using more up-to-date

climate scenarios and modelling tools, are urgently needed.
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