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Abstract. Bacteria recycle vast amounts of organic car-
bon, playing key biogeochemical and ecological roles in the
ocean. Bacterioplankton dynamics are expected to be depen-
dent on phytoplankton primary production, but there is a high
diversity of processes (e.g., sloppy feeding, cell exudation,
viral lysis) involved in the transfer of primary production to
dissolved organic carbon available to bacteria. Here, we show
the percentage of living heterotrophic bacterioplankton in the
subtropical NE Atlantic Ocean in relation to phytoplankton
extracellular carbon release (PER). PER represents the frac-
tion of primary production released as dissolved organic car-
bon. PER variability was explained by phytoplankton cell
death, with communities experiencing higher phytoplankton
cell mortality showing a larger proportion of phytoplankton
extracellular carbon release. Both PER and the percentage of
dead phytoplankton cells increased from eutrophic to olig-
otrophic waters, while abundance of heterotrophic bacteria
was highest in the intermediate waters. The percentage of liv-
ing heterotrophic bacterial cells (range: 60-95 %) increased
with increasing phytoplankton extracellular carbon release
from productive to oligotrophic waters in the subtropical NE
Atlantic. The lower PERs, observed at the upwelling waters,
have resulted in a decrease in the flux of phytoplankton dis-
solved organic carbon (DOC) per bacterial cell. The results
highlight phytoplankton cell death as a process influencing
the flow of dissolved photosynthetic carbon in this region
of the subtropical NE Atlantic Ocean, and suggest a close
coupling between the fraction of primary production released
and heterotrophic bacterial cell survival.

1 Introduction

Heterotrophic bacteria play a key ecological role in the cycle
of carbon and nutrients in aquatic systems (Cole et al., 1988;
Fuhrman, 1992; Ducklow, 2000), being the major consumers
of dissolved organic matter in the ocean (Sherr and Sherr,
1994; Azam, 1998). Heterotrophic bacteria recycle organic
carbon through respiratory processes and channel significant
amounts of dissolved organic carbon to higher levels of the
pelagic food webs via the microbial loop (Williams, 1981,
Azam et al., 1983; Sherr and Sherr, 1988). The availability
of dissolved organic carbon (DOC) is a major constraint for
heterotrophic bacterial dynamics, influencing a range of pro-
cesses, including heterotrophic bacteria growth efficiency,
respiration or cell activity (Kirchman et al., 1991, 2004;
Carlson and Ducklow, 1996; Herndl et al., 1997; Kirchman,
1997). Indeed, a high percentage of bacterial cells are ei-
ther metabolically inactive or dead in natural marine plank-
ton communities (Choi et al., 1996; Smith and del Giorgio,
2003).

Phytoplankton, in turn, provide the main source of DOC
to support bacterial dynamics (such as growth and produc-
tion), linking phytoplankton and bacterial dynamics in the
ocean. Phytoplankton release DOC as a result of cell lysis or
direct exudation (Nagata, 2000), and about 50 % of daily pri-
mary production can be released by phytoplankton as DOC
(Karl etal., 1998), potentially supplying a source of carbon to
heterotrophic bacteria. Extracellular release or dissolved or-
ganic carbon production by phytoplankton (DOCp) is a pro-
cess mostly dependent on the phytoplankton physiological
state (Fogg, 1977; Sharp, 1977; Becker et al., 2014), which
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is mediated by nutrient availability (Myklestad, 1977; Ober-
nosterer and Herndl, 1995), incident ultraviolet (UV) radi-
ation and photosynthetically active radiation (PAR) (Berges
and Falkowski, 1998; Llabrés and Agusti, 2006), and viral
infection (Mihling et al., 2005). Phytoplankton cell death re-
sults in cell lysis (Brussaard et al., 1995; Agusti et al., 1998;
Agusti and Duarte, 2000) and would lead to the release of
incorporated carbon compounds. Veldhuis et al. (2001) re-
ported that senescent or dying cells, meaning those with a
reduced viability (increased membrane permeability), still
photosynthesized, although photosynthetic activity dropped
by as much as 60 % relative to that of the viable cells. Re-
cent studies, exploring the release of DOC by phytoplankton
(Agusti and Duarte, 2013; Lasternas et al., 2013), provided
evidence that increasing phytoplankton mortality in olig-
otrophic waters led to increasing DOCp among senescent or
dying natural populations and thus accounts for a large frac-
tion of the photosynthetic carbon channeled through bacteria
characteristic of oligotrophic marine communities. In a com-
parison of contrasting oceanic systems, Agusti and Duarte
(2013) found that the percentage of phytoplankton extracel-
lular carbon release (PER) was related to phytoplankton ly-
sis rates, with the largest PER observed at the oligotrophic
waters. Lasternas et al. (2013) found that oligotrophication,
forced by an anticyclonic eddies formation in the eastern
North Atlantic, resulted in increased phytoplankton cell mor-
tality and increased PER within anticyclonic eddies’ waters.

Yet, the possible relationship between the phytoplankton
cell status and DOCp, on the one hand, and the status of
heterotrophic bacterial cells, on the other, remains unclear.
The status of bacterial cells depends on a large number of
processes but is ultimately dependent on the functioning of
membrane proton pumps and the integrity of the cell mem-
brane that indeed defines the viability of bacteria (Shapiro,
2008). While there is still controversy about the differences
between active and viable bacteria, the analysis of bacterial
cell-membrane integrity allows the discrimination between
living and dying cells and has been introduced in recent stud-
ies assessing the environmental factors driving bacterial sur-
vival (Alonso-Séez et al., 2007; Gasol et al., 2009; Moran
and Calvo-Diaz, 2009; Lasternas et al., 2010). These new ap-
proaches allow the characterization of the bacterial status at
the individual-cell level and offer, as identified by Gasol et
al. (2008), great potential to further our understanding on the
variability of bacterial activity in aquatic systems, beyond the
insights derived from previous approaches based on the ex-
amination of bulk assemblage properties.

Here, we examine the health status of heterotrophic bacte-
ria in the NE subtropical Atlantic and test their hypothesized
relationships with the status of photosynthetic plankton cells
and the release of dissolved organic carbon. The phytoplank-
ton and bacteria cell health status were investigated by quan-
tifying the percentage of living and dying cells in communi-
ties across a range of oceanographic conditions from highly
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oligotrophic to productive waters in the NE subtropical At-
lantic.

2 Materials and methods
2.1 Study site and sampling

This study was conducted in the subtropical NE Atlantic
Ocean section during the RODA 2 cruise on board R/V Hes-
pérides from 2 to 27 February 2007. A total of 23 stations
were sampled: nine stations in the north Atlantic gyre area
(Zone 1), eight placed in the vicinity of the Canary Current
region (Zone 2), and six stations in the area influenced by
Mauritania’s upwelling (Zone 3; Fig. 1). At each station,
vertical profiles of temperature, salinity, and fluorescence
down to a 200 m depth were performed using a Seabird 911
Plus conductivity—temperature—depth (CTD) system. Seawa-
ter samples were collected in 12 L Niskin bottles mounted
on a General Oceanics rosette sampler from seven depths
from the surface to 200m. Seawater from the same CTD
casts were used for the various samples performed during
the cruise. Thus, samples for nutrient analysis (phosphate,
nitrate + nitrite, ammonium, and silicate) were collected
down to 200m. Samples for the determination of the dis-
solved inorganic phosphate concentrations and the nitrate +
nitrite concentrations were kept frozen until analyzed in a
Bran + Luebbe AA3 autoanalyzer following standard spec-
trophotometric methods (Hansen and Koroleff, 1999), and
ammonium concentrations were measured spectrofluoromet-
rically within 1 h of collection following Kérouel and Aminot
(1997).

2.2 Primary production and percentage of extracellular
release (PER)

In situ total primary production (TPP) and particulate pri-
mary production (PPP) was successfully measured using 14C
additions (Steemann-Nielsen, 1952) at 10 of the 23 stations
of the study. Indeed, the rough sea and technical issues that
occurred during the cruise prevented us from properly de-
ploying the buoys for incubations at all the stations. Seawater
sampled at five depths, including the surface (5 m), two inter-
mediate depths, the deep chlorophyll maximum (DCM) and
an ultimate depth below the DCM, was poured into transpar-
ent (light) and obscure (black masking tape-covered) poly-
carbonate bottles (150 mL) and inoculated with 80 uCi ac-
tivity of a NaH#CO3 working solution. Inoculated bottles
were set up at respective depths along a mooring buoy and
incubated in situ for 4 h at the same time of the day (from
12:00 to 16:00), always including noon. As recommended
by Moran and Estrada (2002), a short incubation period was
used to optimize the measurements and minimize the contri-
bution of trophic-related processes to DOC production. For
each sample, two aliquots of 5mL (replicates) were intro-
duced in scintillation vials (20 mL) for the determination of
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Figure 1. Areas of sampling and stations occupied during the
RODA cruise. Zones 1, 2, and 3 correspond to three singular hydro-
graphical and biological conditions: oligotrophic tropical Atlantic
zone (Zone 1); intermediate Gran Canaria Current area (Zone 2);
upwelling associated waters (Zone 3).

total labeled organic carbon production (TOC): the sum of
14C incorporated into POC (particulate organic carbon), re-
leased as DOC. The remaining volume was filtered through
0.22um mesh membrane filters (cellulose membrane fil-
ters) of 25 mm to determine PPP (PPP > 0.22 um). To re-
move inorganic *C, the liquid samples were acidified with
100 pL of 10% HCI and shaken for 12 h, while the filters
were fumed with concentrated HCI (37 %) for 12 h. Then,
10 and 5 mL of scintillation cocktail (Packard Ultima Gold
XR) were respectively added to the TPP and PPP vials, and
the disintegrations per minute were counted after 24 h with
a scintillation counter (EG&G Wallac). Disintegration per
minute from dark incubations from particulate and total sam-
ples were subtracted from light particulate and total sam-
ples, respectively. The error of the measurements of TPP
and PPP represented 14 and 9 %, respectively, in our study.
The DOCp was calculated as the difference between total
and particulate primary production (Moran et al., 2001) and
the percentage of phytoplankton extracellular carbon release
(PER =100 DOCp/TPP) was calculated.

2.3 Bacterioplankton abundance and viability

At each station, the proportion of living heterotrophic
bacteria was quantified from seawater sampled at up to
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seven depths (at the same CTD casts as before). To do so,
we used the nucleic acid double-staining (NADS) (Grégori
et al., 2001) flow cytometric protocol. This technique con-
sists of the use of two nucleic acid fluorescent dyes, SYBR
Green | (SG1; Molecular Probes) and propidium iodide (PI;
Sigma Chemical Co.). Bacterial membranes are permeable to
SG1, independent of the cell viability, resulting in green flu-
orescence when stained. However, living or viable cells with
intact plasmic membranes are impermeable to PI. Thus, only
compromised or damaged cells are stained with PI (Barbesti
et al., 2000), showing red fluorescence as described in Fal-
cioni et al. (2008). Subsamples were analyzed immediately
after collection. Samples (1 mL) were stained with 10 uL of
Propidium iodide (P1, 1 mgmL~? stock solution), reaching a
final concentration of 10 ugmL~1 and incubated for 30 min
in a dark room. Then, 10 uL of SYBR Green | (10-fold dilu-
tion of 10000 x commercial solution in dimethyl sulfoxide)
was added to subsamples and incubated for 10 more minutes.
SG1 and PI fluorescence were detected using a FACSCal-
ibur flow cytometer (Beckton Dickinson) in the green (FL1)
and the red (FL3) cytometric channels, respectively. Bivari-
ate plots of green versus red fluorescence (FL1 vs. FL3) al-
lowed for discrimination of live (green fluorescent, imper-
meable to PI) from dead cells (red fluorescent membrane-
compromised cells, stained by Pl and SG1). Bacterial con-
centration was calculated using a 1 pum diameter fluorescent
bead solution (Polysciences, Inc.) as an internal standard. To-
tal heterotrophic bacterial abundance was calculated as the
sum of red and green fluorescent cell abundance, while liv-
ing bacterial cell abundance was determined from the green
fluorescent cell counts. In our study, errors due to including
stained Prochlorococcus in the dead/living bacteria counts by
NADS, represented less than 3% in the percentages of bac-
terial viability.

2.4 Phytoplankton communities and viability of
populations

Water samples of 200 mL were filtered through Whatmann
GF/F filters to estimate total chlorophyll a concentration
(Chl a) and extracted for 24 h in 90 % acetone before fluoro-
metric determination (Turner Designs fluorometer) following
Parsons et al. (1984). Samples for the quantification of nano-
and microphytoplankton abundance was sampled at the sur-
face (5m) and the DCM at each station, at the same casts as
for the other parameters.

Microphytoplankton ~ communities abundance were
counted under epifluorescence microscope, and phototrophic
picoplankton was counted on board on fresh samples by flow
cytometry. The proportion of dead cells in the autotrophic
communities examined was quantified by applying the cell
digestion assay (CDA), a cell membrane permeability test
consisting of the exposure of the phytoplankton communi-
ties to an enzymatic cocktail (DNAse and Trypsin, Agusti
and Sanchez, 2002). Both enzymes are able to enter the
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cytoplasm and digests cells with compromised membranes
(dead or dying cells), which are removed from the sample.
The cells remaining in the sample after the CDA are living
cells — those with intact membranes (Agusti and Sanchez,
2002) —, which are then counted by flow cytometry or
epifluorescence microscope, as described above. For micro-
phytoplankton counts and a viability test, samples of 2-3 L
were concentrated into 50-70 mL samples using a Millipore
cell concentration chamber. This concentration system has
been used in previous studies (Alonso-Laita and Agusti,
2006; Lasternas et al., 2010; Lasternas and Agusti, 2010)
with accurate results for microphytoplankton and no effect
on the viability or other cell properties (i.e., movement for
flagellated cells, integrity of frustules, etc.). 10 mL aliquots
(duplicates) of the concentrated sample were used as blanks
for cell abundance quantification, and duplicated 10 mL
aliquots of the cell concentrate were used to apply the CDA
by adding 2mL of DNAse | solution — 400 ugmL~1 in
HBSS (Hanks’ Balanced Salts) —, followed by a 15 min in-
cubation at 35°C in a digital dry bath. After this time, 2mL
of trypsin solution (1% in HBSS) were added, followed
by a 30min incubation at 35°C. At the end of this time,
samples were placed in ice in order to stop the enzymatic
cell digestion process. Both 10mL aliquots (duplicates)
from blanks and CDA samples were filtered onto 2um
pore-size black polycarbonate filters, with the samples from
CDA washed several times with filtered seawater to remove
the enzymes, then fixed with gluteraldehyde (1% final
concentration), and stored frozen at —80°C until counting.
Phytoplankton cells were counted using an epifluorescence
microscope (Zeiss® Axioplan Imaging), and were classified
into three major groups: flagellates, dinoflagellates, and
diatoms, which were then separated into pennate and centric.
For phototrophic picoplankton abundance and cell viability,
at each station fresh samples from seven depths were
counted on board (duplicated counts) using a FACSCalibur
Flow Cytometer (Beckton Dickinson). Duplicated 1mL
fresh samples without enzymes were used for blanks, and
duplicated 1 mL fresh samples were used for the CDA
following Agusti (2004), applying the same procedure as
indicated above. An aliquot of a calibrated solution of 1 pm
diameter fluorescent beads (Polysciences Inc.) was added to
the samples as an internal standard for the quantification of
cell concentration. The red (FL3; bandpass filter: > 670 nm),
green (FL1; bandpass filter: 530 nm) and orange (FL2; band-
pass filter: 585nm) fluorescence and the forward and side
scattering signals of the cells and beads were used to detect
phototrophic picoplankton populations of Synechococcus,
Prochlorococcus, and autotrophic picoeukaryotes (Marie
et al., 2005). The percentage of dead cells was calculated
for the different phytoplankton taxonomic groups within
micro-, nano-, and phototrophic picoplankton populations,
from the ratio between the concentration of dead cells (total
concentration minus the concentrations of living cells) and
total population abundance, which includes both living and
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death cells (Agusti and Séanchez, 2002). The incubation
time and concentration of enzymes of the CDA were tested
to be sufficiently efficient for the digestion of different
phytoplankton groups (Agusti and Sanchez, 2002). Also, it
was checked in previous studies using blank samples that the
incubation procedure does not reduce the initial abundance
of cells (Agusti and Sanchez, 2002; Agusti, 2004). We do
not recommend the CDA for studying bacterial viability in
natural communities because staining is required to quantify
heterotrophic bacteria. If there is the need to stain cells
after the CDA, Darzynkiewicz et al. (1994) recommended
washing the samples after the enzymatic test to remove the
enzymes, and resuspending cells in culture media until the
complete recovery of the membranes’ coats before adding
the stain. This procedure is not feasible with natural bacterial
samples, and we better recommend the use of double vital
staining methods, such as the NADS (Grégori et al., 2001)
used in this study, to quantify heterotrophic bacteria viability.
Moreover, although the CDA was successful when applied to
analyze cell viability in diatom and cyanobacteria colonies
(Agusti et al., 2006), we also do not recommend the use of
the CDA method to quantify the viability of multicellular or-
ganisms as zooplankton. To inform oneself about the health
state of an invertebrate using the CDA (e.g., copedods,
Zetsch and Meysman, 2012), one must count the individual
cells within the organism before (living and dead cells) and
after the application of the CDA (only living cells), which
is not feasible without tissue disruption. Also, the CDA is
not a qualitative method but a quantitative one. The CDAs
provide valuable results only after quantification of cells
in control samples (without enzymes) and quantification
of remaining living cells in samples exposed to the CDA
enzymatic cocktail (living cells remained). Non-quantitative
applications of the method (Zetsch and Meysman, 2012) or
results without informing oneself of quantitative data are not
appropriate uses for this method.

2.5 Statistics

Spearman’s rank coefficients were used to determine corre-
lation coefficients between variables that departed from nor-
mality (Siegel and Castellan, 1988). The averages and stan-
dard error were calculated from the whole data set of each
parameter and average ratios were calculated as the average
of ratios. The statistical significance of the differences be-
tween average values was tested using the Wilcoxon signed-
rank test, with a critical p value of 0.05. Linear regression
analyses were applied to raw data.

3 Results
The waters studied included three distinct oceanographic

zones (Fig. 1): the oligotrophic subtropical Atlantic Ocean,
which presented significantly warmer and saltier waters and
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Table 1. Average £+ SE hydrological properties, nutrients and chlorophyll a concentration, primary production rates, percentage of phy-
toplankton extracellular carbon release (PER), health status of phytoplankton and heterotrophic bacteria and DOC flux per bacteria cell
quantified at the three zones. The average values for the zones connected by the same letter are not significantly different (Wilcoxon signed-
rank test, p < 0.05), and those for the zones connected by a different letter are significantly different (p < 0.05).

Mean + SE Oligotrophic Intermediate Upwelling
Temperature (°C) 21.46+0.16" 19.15+0.16C 19.94+0.22B
Salinity (PSU) 37.21+0.04" 36.87+0.038  36.74+0.04C
Dissolved inorganic nitrogen (pmolNL~1) 0.31+0.068  075+0.158  2.28+0.41A
Ammonium (umol N L—1) 0.104+0.01B 011400148  0.13+0.01A
Phosphate (umolPL~1) 0.214+0.03"B  0.09+0.02B  0.33+0.03*
Chlorophyll (mgChl am=3) 0.28+£0.02B  0.37+£0.04"B  0.48+0.05”
Total primary production (mgCm~3h=1) 0.70+£0.104  0.96+0.13"  1.14+0.204
Dissolved organic carbon production by phytoplankton (ngCm~—3h=1) 058 +0.09A  0.64+0.10°  0.414+0.09”
PER 81.9+1.9° 64.4+4.78 413+7.9
Phytoplankton dead cells (%DC) 51.9+4.2A 39.1+2.78 44.1+4.48
Heterotrophic living bacteria (%HLB) 85.7+1.1A 79.940.98 74.841.0C
Flux of DOC per bacteria cell (pgCcell=1h—1) 1.824+0.42A 159402478  0.81+0.21B
Table 2. Average £ SE of the nano-/microphytoplankton abundances in the three zones.
Mean (cellsL~—1) + SE Oligotrophic Intermediate Upwelling
Nano-microphytoplankton  2.22+0.31 x 103  2.83+0.38 x 103  5.89+1.54 x 103
Flagellates 1.094+0.22 x 103  1.53+£0.11x 103  2.78+0.74 x 103
Diatoms 518+0.76 x 102 8.41+126x10%2 2.2340.72 x 10
Dinoflagellates 6.094+0.15x 102 4.63+1.68 x 102  8.77 4 3.02 x 102
low nutrient concentration (Table 1); waters influenced by Ofgorophic iormedite Upweiig
the NW African upwelling system, characterized by cooler *.\ "x S
and fresher waters, higher dissolved nutrient concentration, o \ i g
and higher chlorophyll a concentrations (Table 1); the tran- - ¥ A vl
sitional system around the Canary Islands, influenced by the : 7 ,/'/ /
Canary current, exhibiting intermediate temperature, salin- ° / e

ity, and nutrient concentration (Table 1). We also observed
a significant trend between chlorophyll a concentrations and
depth, independent of the zone of sampling (Fig. 2).

Maximum TPP was found at the waters influenced by
the upwelling (2.68+0.03mgCm~—3h~1 at station #8 —
21°49' N/20°52’ W) and the lowest values at the oligotrophic
zone, although differences in the averaged values were not
significant between the three zones (Table 1). Dissolved pri-
mary production (DOC,) was positively related to total pri-
mary production (TPP; log DOCp = —0.501 4 0.92 (+0.09)
log TPP, R2 =0.68, P < 0.001, N = 45), and tended to in-
crease as total primary production increased, but with a slope
slightly lower than 1, indicating that DOC, tended to be
proportionally lower in productive waters (Table 1). Thus,
the percentage of phytoplankton extracellular carbon release
(PER), which varied greatly across the study (Table 1), was
greatest in the most oligotrophic waters sampled and de-
clined towards more productive waters (Table 1).
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o 02 04 08 08 10 02 04 06 08 10 02 04 06 08

Chlorophyll (mg . m) Cnlorophyll (mg . m<) Chlorophyll (mg . m*)

Figure 2. Profile plots showing the relationships between chloro-
phyll a concentrations and depth by zones of sampling.

Nano-microphytoplankton communities were present
along the study site, and showed higher abundance at
the DCM than at the surface waters, with slightly higher
abundance within Zone 3, the area influenced by the up-
welling system (Table 2). Autotrophic flagellates dominated
the microphytoplanktonic community throughout the study
(Table 2) and presented relatively uniform abundance within
the studied zones. Diatoms were sparse within Zone 1
(Table 2), represented almost solely by the pennate genera
Nitzschia spp., but showed a consistent increase in abun-
dance at the waters influenced by the upwelling (Zone 3,
Table 2), with the centric genera Thalassiosira sp. and
Chaetoceros sp. being the most abundant. Dinoflagellates,
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Figure 3. Box plots showing the abundance distribution of the pi-
coplankton populations within systems. The boxes show the lower
and upper quartiles, median, minimum, and maximum values,
and outliers. Numbers correspond to averaged (+ SE) abundances
within systems. The boxes connected by same letter are not signifi-
cantly different (Wilcoxon signed-rank test, p < 0.05).

primarily represented by the naked form Gymnodinium spp.,
displayed low abundance across the cruise (Table 2), and
were principally located in surface waters.

Prochlorococcus spp., the most abundant phytoplankton
detected during the cruise (Fig. 3), presented significant
higher values than both populations of Synechococcus spp.
and picoeukaryotes at Zones 1 and 2, and decreased at wa-
ters associated to the upwelling system (Zone 3). Within this
zone, the Synechococcus spp. abundance surpassed that of
Prochlorococcus spp. (Fig. 3). Picoeukaryotes’s abundance
was relatively uniform (about 10% cellsmL~1) between the
three zones of study, with maximum values observed at the
intermediate zone of the Canary current (Zone 2, Fig. 3).
Heterotrophic bacteria presented a significantly higher abun-
dance at the oligotrophic zone (Zone 1) and a lower one at
Zone 2 (Fig. 2).

The percentage of dead phytoplankton cells (%DC) varied
greatly across communities (Fig. 4, Table 1). Diatoms domi-
nated the communities in the upwelling area (Table 2), where
they showed a low proportion of dead cells, with the high-
est percentage of dead diatom cells observed in oligotrophic
waters (Fig. 4). Prochlorococcus spp., the dominant pho-
totrophic picoplankton taxa (Table 2), was less abundant and
presented a higher proportion of dead cells in the upwelling
zone (Figs. 3 and 4). The oligotrophic zone presented the
highest phytoplankton mortality (Table 1) associated with the
highest PER rates. The variability in the percentage of phy-
toplankton extracellular carbon release in each station was
closely dependent on the status of the photosynthetic com-
munity, as reflected in a linear increase in the percentage of
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Figure 4. Box plots showing the distribution percentage of dead
phytoplankton cells (%DC) of the different phytoplankton group in
the sampled zones. The boxes present the lower and upper quartiles,
median, minimum, and maximum values, and outliers. The boxes
showing the same letter do not have significantly different mean
values (Mann-Whitney—Wilcoxon test, p < 0.005).
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Figure 5. The relationship between the percentage of dead phy-
toplankton cells (%DC) and the percentage of phytoplankton ex-
tracellular carbon release (PER), averaged by stations across the
study. The full line represents the fitted regression equation:
PER = —35.03+2.08 (£0.49) phytoplankton %DC (R2 =0.69,
P =0.0029, N = 10).

phytoplankton extracellular carbon release with an increase
in the percentage of dead cells in the photosynthetic commu-
nity (Fig. 5).

Bacterial viability varied between 60 and 95% of liv-
ing cells and the average of the percentage of liv-
ing heterotrophic bacteria cells was higher than that of
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Figure 6. Box plots showing the distribution of the percentage of
living bacteria cells, the distribution of PER (percentage of phyto-
plankton extracellular carbon release) and the variation of fluxes of
DOCy per bacteria at the three sampled zones. The boxes present
the lower and upper quartiles, median, minimum, and maximum
values, and outliers. The boxes showing the same letter do not
have significantly different mean values (Wilcoxon signed-rank test,
p < 0.05).

autotrophicpicoplankton (Wilcoxon signed-rank test, P <
0.0001). While bacterioplankton presented the highest abun-
dance in the intermediate waters, the percentage of het-
erotrophic living bacteria was lowest in the most produc-
tive waters and tended to decrease towards more oligotrophic
waters (Fig. 6, Table 1). By dividing the production of dis-
solved organic carbon by phytoplankton and the bacterial
total abundance, we obtained the flux of DOCp per bacte-
rial cell (pg Cbacterial cell=* h—1) and could determine that
availability in DOC for heterotrophic bacteria was higher
in the oligotrophic and intermediate waters (Fig. 6) than at
those influenced by the upwelling. The percentage of liv-
ing heterotrophic bacterioplankton cells was significantly
positively related to the proportion of extracellular dis-
solved organic carbon released (%LC =71.6+ 0.16 PER;
P <0.0001, R? =0.35, Fig. 7).

4 Discussion

The results presented here provide evidence of a close cou-
pling between the heterotrophic bacterial health status and
the release of recently photosynthesized carbon by phyto-
plankton in the NE subtropical Atlantic. The results pre-
sented also suggest a mechanistic pathway linking phyto-
plankton cell death with high phytoplankton extracellular
carbon release and a subsequent increase in the percentage
of living heterotrophic bacteria cells. These results confirm
the power of approaches based on assessments at the single-
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Figure 7. The relationship between the percentage of living het-
erotrophic bacteria and the percentage of extracellular dissolved
organic carbon release. The open symbols represent the individual
percentage of living bacteria and the full line represents the fitted re-
gression equation between the percentage living heterotrophic bac-
teria and PER (%LC = 71.6 +0.16 PER; P < 0.0001, R = 0.35).

cell level (Agusti and Sanchez, 2002; Bidle and Falkowki,
2004; Gasol et al., 2008; Lasternas et al., 2010) to resolve
the relationships between the status of phytoplankton cells
and that of heterotrophic bacteria, mediated by the extracel-
lular release of organic carbon.

Previous attempts at testing the response of the bacte-
rial community (metabolism and/or physiological status) to
DOCp release were conducted among systems but remained
elusive and variable. For instance, in open-ocean sites, bac-
terial production and dissolved primary production (DPP)
are often tightly linked (Moran et al., 2001; Antarctic off
shore waters), while in coastal (Moran et al., 2002a; NE
Atlantic coastal system, Moran et al., 2002b) or eutrophic
sites (Baines and Pace, 1991; Moran et al., 2002b, Antarc-
tic coastal) persists a lack of linkage. Our study provides, to
the best of our knowledge, the first demonstration of a direct
relationship between recently released labile photosynthate,
the preferred carbon source for heterotrophic bacteria (Nor-
rman et al., 1995), and the bacterial health status expressed
as the percentage of living bacterial cells.

A gradient in phytoplankton productivity and community
structure from the African upwelling region to the olig-
otrophic region offshore has been previously reported for
the subtropical NE Atlantic (Teira et al., 2003; Pelegri et
al., 2005; Alonso-Laita and Agusti, 2006), including an
increase in phytoplankton mortality rates and the propor-
tion of dead phytoplankton cells along this gradient (Agusti
et al., 2001; Alonso-Laita and Agusti, 2006). The results
presented here confirm these findings, with phytoplankton
cell viability decreasing from upwelling-influenced waters to
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oligotrophic waters, particularly for diatoms, which showed
a two-fold reduction in the percentage of living cells from
the upwelling to the oligotrophic waters. However, the pat-
terns displayed by the different populations composing the
phytoplankton community were complex, as phytoplank-
ton show intricate and differentiated niches of cell viabil-
ity depending on cell size, irradiance, nutrient concentra-
tion, and temperature (Berges and Flakowski, 1998; Agawin
et al., 2000; Agusti, 2004; Alonso-Laiita and Agusti, 2006;
Agusti and Llabrés, 2007; Lasternas et al., 2010). The per-
centage of dead cells tended to increase with decreasing cell
size, with more than 40% of dead cells generally found
in the phototrophic picoplankton community. There is a re-
ported increase in mortality rates with decreasing cell size
(Marba et al., 2007), which is consistent with a larger popula-
tion turnover for picophytoplankton. Although phototrophic
picoplankton communities are typically dominant in olig-
otrophic waters (Agawin et al., 2000), they showed high
variability in cell viability in the most oligotrophic waters
sampled here. Surface populations are exposed to high PAR
and UV radiation, resulting in high %DC of Prochlorococ-
cus spp., which is strongly sensitive to high solar radiation
(Llabrés and Agusti, 2006; Agusti and Llabrés, 2007; Llabrés
et al., 2010), whereas Synechococcus is typically stressed
by low light at deep layers, but shows higher cell survival
in surface waters (Agusti, 2004; Llabrés and Agusti, 2006).
In addition, the high cell mortality of Prochlorococcus sp.
in the upwelling waters is consistent with the incapacity
of Prochlorococcus sp. to use nitrate (Moore et al., 2002)
and with the decline in cell viability in waters below 21°C
(Alonso-Laita and Agusti, 2006).

The patterns of cell survival of the natural phytoplankton
populations described here provided compelling evidence
that the variation in the proportion of dissolved organic car-
bon release is driven by phytoplankton cell mortality in the
subtropical NE Atlantic Ocean. In agreement with previous
studies, communities in unproductive oligotrophic waters
tended to release, as DOC, a higher fraction of their total pri-
mary production compared to more productive, nutrient-rich
upwelling waters (Teira et al., 2001; Moran et al., 2002a).
Moreover, the mortality among the microphytoplanktonic
groups supported a higher release of primary production as
dissolved organic carbon. In turn, in the upwelling zone, the
microphytoplankton supported a larger biomass and a conse-
quently higher carbon flux through bacteria compared to the
oligotrophic or intermediate waters.

Within the upwelling-influenced area of the NE Atlantic
Ocean, bacterial communities have been identified to be
carbon-limited (Alonso-Saez et al., 2007). In our study, we
found higher bacterial abundance in intermediate and olig-
otrophic waters offshore, consistent with higher values of
DOC released by phytoplankton, slightly declining towards
the waters influenced by the upwelling. The PER was, how-
ever, lowest at the upwelling-influenced area and, accord-
ingly, the supply of dissolved organic carbon per bacterial
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cell was lowest at the upwelling-influenced area. Indeed, the
patterns in the health status of bacteria cells was consistent
with the supply of dissolved organic carbon per cell, both
being highest in the oligotrophic, compared to the more pro-
ductive, waters. This is in agreement with the carbon limita-
tion of the bacterial community in the upwelling-influenced
waters reported by Alonso-Séez et al. (2007). High bacterial
viability was observed in the oligotrophic waters, where phy-
toplankton released a much higher proportion of their pro-
duction as DOC, resulting in a higher flux of DOCp per bac-
terial cell. This finding is also in agreement with reports of
a strong dependence of bacteria on algal extracellular pro-
duction in open-ocean environments, while bacterial carbon
demand was not related to algal DOC, in coastal and produc-
tive systems (Moran et al., 2002a, b). In oligotrophic areas,
allochthonous organic matter from lateral transfer or atmo-
spheric inputs can be an alternative source of carbon to au-
tochthonous production (del Giorgio et al., 1997; Aristegui
et al., 2003 Herndl et al., 2008). Accordingly, DOC freshly
released by phytoplankton is the source of carbon supporting
the most efficient assimilation by bacteria in the oligotrophic
ocean (Coveney and Wetzel, 1989; Norrman et al., 1995).
Moreover, the lability of the compounds released by phy-
toplankton may also change depending on the phytoplank-
ton composition and that would differentially affect bacte-
rial responses (Nelson and Carlson, 2012). Indeed, recent
studies showed that the community structure of heterotrophic
prokaryotes tends to respond to differences in the quality of
organic matter released among microalgal species (Sarmento
et al., 2013). In our study, while we were not able to spec-
ify the quality of the DOC, released by the phytoplankton
community, our results address the positive response of the
bacterial viability to the increasing in DOCp production by
phytoplankton.

Our results support high phytoplankton cell death in
the oligotrophic ocean, consistent with previous findings
(Agusti, 2004; Alonso-Laiita and Agusti, 2006; Lasternas
et al., 2010, 2013), and demonstrate that high phytoplank-
ton cell death in the open oligotrophic areas of the NE At-
lantic results in a large release of DOC relative to primary
production, providing a significant flux of labile carbon, that
results in a healthier heterotrophic bacteria status, as demon-
strated by the relationship between the percentage of living
heterotrophic bacteria viability and PER presented here.
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