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Abstract. Like other inland seas, the Caspian Sea (CS) has

been influenced by climate change and anthropogenic distur-

bance during recent decades, yet the scientific understand-

ing of this water body remains poor. In this study, an eco-

geographical classification of the CS based on physical in-

formation derived from space and in situ data is developed

and tested against a set of biological observations. We used a

two-step classification procedure, consisting of (i) a data re-

duction with self-organizing maps (SOMs) and (ii) a synthe-

sis of the most relevant features into a reduced number of ma-

rine ecoregions using the hierarchical agglomerative cluster-

ing (HAC) method. From an initial set of 12 potential phys-

ical variables, 6 independent variables were selected for the

classification algorithm, i.e., sea surface temperature (SST),

bathymetry, sea ice, seasonal variation of sea surface salinity

(DSSS), total suspended matter (TSM) and its seasonal vari-

ation (DTSM). The classification results reveal a robust sep-

aration between the northern and the middle/southern basins

as well as a separation of the shallow nearshore waters from

those offshore. The observed patterns in ecoregions can be

attributed to differences in climate and geochemical factors

such as distance from river, water depth and currents. A

comparison of the annual and monthly mean Chl a concen-

trations between the different ecoregions shows significant

differences (one-way ANOVA, P < 0.05). In particular, we

found differences in phytoplankton phenology, with differ-

ences in the date of bloom initiation, its duration and ampli-

tude between ecoregions. A first qualitative evaluation of dif-

ferences in community composition based on recorded pres-

ence–absence patterns of 25 different species of plankton,

fish and benthic invertebrate also confirms the relevance of

the ecoregions as proxies for habitats with common biologi-

cal characteristics.

1 Introduction

The Caspian Sea (CS) is an enclosed water body that plays

an important geopolitical role in the Central Asia region

(Kosarev and Kostianoy, 2005). During the last few decades,

the joint action of natural and anthropogenic factors has

been aggravating the environmental state in the CS (Kopele-

vich et al., 2004; Barale, 2008). Increasing human activities

such as the oil and gas industries, especially in the northern

part of the CS, fisheries, agriculture and tourism (Kopele-

vich et al., 2004), together with decades of environmen-

tal mismanagement (Barale, 2008), have led to the severe

degradation of water quality. The unintentional introduction

of the ctenophore jellyfish Mnemiopsis leidyi in late 1999

(Shiganova et al., 2001) has added to the environmental prob-

lems, affecting a whole trophic level, since this organism

feeds voraciously on zooplankton (Kideys et al., 2008). M.

leidyi is only one of many introduced species: since the early

20th century, more than 60 non-native invasive species rang-

ing from phytoplankton to fishes and their parasites have be-

come established in the CS (Shiganova et al., 2010, 2011).

Thus, the CS ecosystem has recently been shown to change

drastically over timescales of several decades (Shiganova et

al., 2004, 2010, 2011; Karpinsky et al., 2005), with mas-

sive impacts on plankton and fish biomass, chlorophyll a
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levels, primary production and nutrient status (Shiganova et

al., 2011). For example, the change in the trophic status of

the CS from oligotrophic to eutrophic (Leonov and Stygar,

2001) is attributed partly to the effects of M. leidyi on the CS

ecosystem (Saravi Nasrollahzadeh et al., 2008). Due to the

severity of these changes, ecosystem management and mon-

itoring efforts to restore the health of the CS, or at least to

mitigate some of the most severe changes, are required.

In this context, the inefficiency of management efforts fo-

cusing on single species only or based on limited regions

in marine environments is well known (Zacharias and Roff,

2000). For an ecosystem-based management approach, in

which all the interactions between the CS ecosystem and

its surrounding biotic and abiotic environment are consid-

ered (EPAP, 1996), managers need to deal with the challenge

of mapping the physical and biological components of the

whole ecosystem (Gregr and Bodtker, 2007). However, there

is still no comprehensive archive of oceanographic informa-

tion on the whole CS. The existing data on oceanographic ob-

servations in the CS are heterogeneously distributed in space

and time and most of the observations stem from the north-

ern and middle regions and are confined to the coastal parts

of the CS. Moreover, most of the data date back to the So-

viet era, not reflecting the substantial biological and environ-

mental changes that have occurred since then (Kosarev and

Kostianoy, 2005).

In recent years, marine ecosystem mapping has been

greatly facilitated through the increased availability of re-

mote sensing data (Richardson and LeDrew, 2006; McDer-

mid et al., 2005). Detailed broad-scale spatial and tempo-

ral variability of several environmental variables, such as

sea surface temperature and chlorophyll a concentration, can

be captured by satellites (Robinson, 2004). Satellite data

can be used for a biogeophysical classification of the CS,

in a fashion similar to studies done in the European seas

(Hoepffner and DoWell, 2005), the North Atlantic (Roff et

al., 2003; Devred et al., 2007), the North Pacific (Gregr and

Bodtker, 2007; Kavanaugh et al., 2013) or the World Ocean

(Longhurst, 1998; Vichi et al., 2011; Spalding et al., 2012).

In these studies, regions with similar environmental patterns

are grouped into ecological units or so-called “ecoregions”.

Each ecoregion may respond in a different way to environ-

mental changes and management policies (Bailey, 1996).

The close association between the oceanographic and bi-

ological characteristics in pelagic systems (Day and Roff,

2000) has been described both for primary producers (e.g.,

Platt et al., 2005; Reynolds, 2006) as well as for the higher

trophic levels of the food chain (e.g., Thrush and Dayton,

2010). The link between ocean physics and biology is of

great significance, especially for the areas where the biolog-

ical data are scarce. Different applications, such as the com-

putation of primary production (Platt and Sathyendranath,

1999) or species habitat modeling (e.g., Valavanis, 2008; Ir-

win et al., 2012) have benefited from the association between

physical/environmental factors and the biological responses.

This association provided the basis for a number of studies

in which biogeographic maps of the oceans have been devel-

oped based on abiotic non-taxonomic oceanographic classi-

fications (e.g., Dietrich et al., 1963; Longhurst, 1998; Day

and Roff, 2000). Ecoregions reflect the diversity in physical

habitat types and hence, indirectly, the range of conditions

that influence species distribution and community composi-

tion in marine ecosystems (Bredin et al., 2001). Bredin et

al. (2001) linked trawl surveys and observational data on a

variety of rare and endangered fish and Cetacean species of

the Bay of Fundy to the physically defined ecoregions for this

area. They noticed the significance of some ecoregions for

the distribution of specific species. Gregr and Bodtker (2007)

assessed the biological relevance of their physical-based

epipelagic ecoregions of the North Pacific using remote sens-

ing measurements of chlorophyll a concentrations (Chl a).

The results of Gregr and Bodtker (2007) showed a signifi-

cant difference in Chl a concentrations between ecoregions

and suggested the possibility of describing regions with dif-

ferent biological attributes using only physical variables. The

importance of environmental conditions for the distribution

of M. leidyi and several other species in the CS has been

highlighted in different reports (e.g., Karpinsky et al., 2005;

Shiganova et al., 2011). While episodic evidence of species

occurrence and species richness exists for different locations

of the CS and for a subset of dominant species on all trophic

levels that inhabits the CS (e.g., Shiganova et al., 2011), a

geo-referenced presence–absence or biomass data set con-

taining information about all major dominant species across

multiple trophic levels has, to our knowledge, not yet been

published. A previous data synthesis and extrapolation effort

was made by the Caspian Environment Program (CEP) for

a set of 36 species in 2002, but the recently observed rapid

changes in marine ecosystem structure and functioning indi-

cate that habitat maps will require regular updating. As de-

tailed above, scientific evidence suggests that species distri-

bution and community structure is, in part, controlled by en-

vironmental conditions. If a link between environmental vari-

ables accessible through remote sensing and the biological

structure of the CS ecosystem could be established, remote

sensing would be of crucial importance for high-resolution

ecosystem monitoring in this area.

In the present study, we applied an objective classifica-

tion method to cluster the Caspian Sea into ecoregions based

on a set of geophysical data. The main objective of this

study is to provide a map of the CS divided into differ-

ent areas with homogeneous geophysical attributes, i.e., so-

called ecoregions to assist the effective management of the

CS. We then tested for the biological significance of the ob-

tained ecoregions using long-term satellite-derived Chl a dis-

tribution and available species composition data. Through-

out the manuscript, we use the terms ecoregion to imply

a homogenous area of the CS with similar biogeophysi-

cal/environmental characteristics.
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Table 1. List of the potential variables used, their units, resolution and sources.

Variable Sensor/ Units Spatial Temporal Source

provider resolution extent

Sea surface temperature (SST) and AVHRR ◦C 0.08789◦ 1985–2003 http://apdrc.soest.hawaii.edu

its seasonal variation (DSST)

Total suspended matter (TSM) and MERIS g m−3 0.04166◦ 2003–2010 http://www.globcolour.info/

its seasonal variation (DTSM)

Photosynthetic active radiation (PAR) and MODIS Aqua Einstein m−2 day−1 0.04◦ 2003–2011 http://oceancolor.gsfc.nasa.gov

its seasonal variation (DPAR)

Wind speeda (turbulence) (WSP) and QuikSCAT m s−1 0.25◦ 2000–2007 http://apdrc.soest.hawaii.edu

its seasonal variation (DWSP)

Sea surface salinity (SSS) and CASPCOMb ppt – 1995 http://www.caspcom.com

its seasonal variation (DSSS)

Bathymetry (depth) DNO of m – – http://www.caspianenvironment.org

the RF MD

Sea ice (ICE) AARI % – 2004–2012 http://wdc.aari.ru/datasets/

a QuikSCAT data are produced by Remote Sensing Systems and sponsored by the NASA Ocean Vector Winds Science Team. Data are available at www.remss.com. b Committee on

Hydrometeorology and Pollution Monitoring of the Caspian Sea.
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Figure 1. Map of the CS showing the three sub-regions, the major

rivers (solid lines) and bathymetry (depth in meters).

2 Methods

2.1 Study area

The CS (Fig. 1) is a landlocked water body with no major

outlet to the ocean. Its surface area is about 371 000 km2,

with a length of about 1210 km and average width of 320 km

from 37 to 47◦ N and 47 to 55◦ E (Barale, 2008). The CS

is commonly divided into three basins, hereafter denoted as

the northern Caspian Basin (NCB), the middle Caspian Basin

(MCB) and the southern Caspian Basin (SCB), occupying

about 29 %, 36 and 35 % of the surface area of the CS, re-

spectively. Progressing southward, the depth of the CS in-

creases considerably, averaging only about 5 m in the NCB,

190 m in the MCB and 330 m in the SCB (UNEP, 2006).

Around 60 % of the CS, mainly the area along the north-

ern and eastern coasts, consists of shelf areas with less than

100 m depth (Fig. 1; Ibrayev et al., 2010). The Kara-Bogaz-

Gol, a hypersaline lagoon at the eastern slope of the CS is not

considered in this study (Kopelevich et al., 2008).

2.2 Ecoregion classification

2.2.1 Data description

We identified 12 geophysical variables as potential candi-

dates for the ecoregion classification (Table 1). For 5 observ-

ables, we considered both the annual mean and their seasonal

variations, forming 10 independent variables, while sea ice

and bathymetry constituted the remaining ones.

The satellite-based observables consisted of sea surface

temperature (SST) from the Advanced Very High Resolution

Radiometer (AVHRR), total suspended matter (TSM) from

MEdium Resolution Imaging Spectrometer (MERIS; level-

3 binned products), photosynthetic active radiation (PAR)

from the Moderate Resolution Imaging Spectroradiometer

(MODIS) Aqua level 3 products, and wind speed (WSP)

from Quick Scatterometer (QuikSCAT). Following Bakun

and Parrish (1991), we computed the wind-generated turbu-

lent mixing index as the cube of surface wind speed (WSP3).

This represents the rate at which wind turbulent kinetic en-

ergy is injected into the ocean and becomes available for mix-

ing the upper thermocline (Niiler, 1975). Bathymetry data

based on interpolated echo sounding measurements were

www.biogeosciences.net/11/6451/2014/ Biogeosciences, 11, 6451–6470, 2014
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extracted from the digitalized official CS navigation map1.

Because of the non-normal distribution of bathymetry data

throughout the CS, we used log-transformed bathymetry

data. We digitized monthly surface isohaline data of the

CS to create sea surface salinity (SSS) maps (Kosarev and

Tuzhilkin, 1995). Sea ice data, provided by the Centre for Ice

Hydrometeorological Information at the Arctic and Antarc-

tic Research Institute in St. Petersburg (AARI), were used

to create maps of percentage of sea ice coverage throughout

the year (2004 to 2012). All data were interpolated onto a

0.1◦ longitude–latitude resolution grid, i.e., re-gridded onto

a 120× 98 grid with 11 760 pixels.

Decadal-scale interannual variability of physical param-

eters used are, in general, much smaller than the spatial

variability and the latitudinal gradients of these parameters

throughout the CS, i.e., the patterns that were used for ecore-

gions boundary delineation. For example, for a period from

1982 to 2000, a positive SST trend of about 0.05 to 0.1 ◦C per

year was observed in the CS (Ginzburg et al., 2005). This in-

crease is very small in comparison with the spatial variability

of climatological SST throughout the CS for the same period

of time (4.24 to 24.9 ◦C; see Fig. 4). In other words, despite

the interannual to decadal-scale variability in physical fea-

tures, like other water bodies, a generally persistent spatial

pattern in the environmental variables used for this classifi-

cation has been described for physical properties of the CS

on decadal scales. Thus, while the available climatologies

did not necessarily have the same time span, they can still

be used to characterize the general spatial patterns in the CS

(see Table 2). The seasonal amplitudes of the physical vari-

ables, denoted here by DSST, DSSS, DTSM, DWSP, DWSP3

and DPAR (abbreviations defined in Table 1), were computed

by subtracting average values of the summer months (June,

July, August) from those of the winter months (December,

January, February).

2.2.2 Selection of classification variables

A robust classification requires the input variables to be as

independent as possible, which is often not the case with

environmental data sets. To eliminate redundant (strongly

correlated) variables (Raftery and Dean, 2006; May et al.,

2011), the collinearity between the 12 potential input vari-

ables was investigated using Spearman’s rank correlation

coefficient (rs; Supplement, Sect. S1; Wheater and Cook,

2005). Variables were sorted and represented in a dendro-

gram, where the vertical axis represents the degree of inde-

pendence (σ) between variables based on their correlation

coefficient (σ = 1–rs; Fig. 2; see Supplement, Sect. S1 for

details).

We decided to cut the dendrogram at σ = 0.25 (rs = 0.75),

i.e., to group/cluster variables with a correlation of rs >=

1The Navigation Map, Department of Navigation and Oceanog-

raphy of the Russian Federation Ministry of Defense (DNO of the

RF MD), scale: 1 : 1 000 000; 1987.
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Figure 2. Dendrogram of all the potential variables correlation ma-

trix (annual means). The dashed line shows the sensitivity at which

the dendrogram was cut. The abbreviations are defined in Table 1.

DSST, DWSP3, DPAR, DSSS and DTSM represent the seasonal

amplitude of the corresponding parameter (SST, WSP3, PAR, SSS

and TSM, respectively).

0.75 (Fig. 2, dashed line on the dendrogram). From each

branch, one representative variable was chosen as an inde-

pendent variable. DSSS, TSM, depth and DTSM were di-

rectly selected, while we chose ICE and SST from the two

groups of highly correlated variables. The selection of a

cutoff correlation coefficient and of one variable from each

branch was a compromise between the retention of as many

environmental predictor variables as possible and the avoid-

ance of high correlations that would have confounded the

interpretation of the resulting patterns. A sensitivity test of

classification output to the choice of representative variables

from these two groups was conducted (see Sect. 2.2.5). All

the variables were normalized to unit variance in order to

avoid the dominance of those variables with significantly

higher variance in the data clustering (Kohonen, 2000).

2.2.3 Classification method

We followed a two-step classification procedure, consisting

of (i) a data reduction using self-organizing maps (SOMs)

and (ii) a synthesis of most relevant features into reduced

number of marine provinces using the hierarchical agglom-

erative clustering (HAC) method. This two-step classifica-

tion procedure has been successfully used in several previ-

ous studies (e.g., Saraceno et al., 2006; Leloup et al., 2007;

Lachkar and Gruber, 2012).

Self-organizing maps (SOMs)

The SOM is an unsupervised learning technique that allows

the detection and visualization of the underlying structure

in large- and high-dimensional data sets. To this end, SOM

implements topology-preserving mapping from the higher-

dimensional observation space into a lower-dimensional

(here two) lattice of prototype vectors called neurons. Each

neuron (prototype) represents a local summary of simi-

lar observations. The topology preservation implies that

Biogeosciences, 11, 6451–6470, 2014 www.biogeosciences.net/11/6451/2014/
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neighboringneurons on the map represent similar observa-

tions in the input space. This is achieved thanks to neighbor-

hood relations that connect adjacent neurons. At the end of

the training, the SOM approximates the probability density

function of the input data (Kohonen, 2000). A batch-training

algorithm was used to train the self-organizing maps (SOM

toolbox package2). Neurons were arranged on a hexagonal

grid. This ensures that distance between neighboring neurons

is the same in all directions. The strength of neuron connec-

tions was determined using a Gaussian neighborhood func-

tion, thus ensuring a smoother mapping and a higher gen-

eralization capability of the trained maps (Kohonen, 2000;

Lachkar and Gruber, 2012). The learning rate decreases lin-

early with time, and the radius of the neighborhood decreases

from an initial value of n/4 (where n is the size of the map,

i.e., number of neurons in each direction) to 1 at the end of

the training.

The output of a self organizing neural network can be sen-

sitive to the choice of additional training parameters such as

the size of the map (e.g., Gonzalez et al., 1997). Yet, no stan-

dard, general principal exists for choosing these parameters

(Chon, 2011; Lachkar and Gruber, 2012). To address this is-

sue, the sensitivity of the SOM output to the neuron map size

was quantified based on the average of the quantization and

topological errors (Uriarte and Martin, 2005). A saturation in

the reduction of the total error was observed at high numbers

of neurons. The size of the neuron map was determined based

on a cutoff criterion (reduction in total error after addition

of further neurons < 5 %). This led to the use of a 20× 20

neuron map (Supplement, Sect. S2, Table S2 and Fig. S1 for

details).

Hierarchical ascending clustering (HAC)

Multiple scales are in interaction within and between ecosys-

tems. With the prior knowledge of hierarchy being an impor-

tant feature of ecosystems (Vichi et al., 2011), we used the

hierarchical agglomerative clustering (HAC) method (Jain

and Dubes, 1988) to cluster the resulting 400 neurons (Sup-

plement Fig. S2) into the major geophysical ecoregions of

the CS in a bottom-up clustering procedure. The use of hi-

erarchical clustering here presents several advantages over

other techniques of flat clustering (e.g.,K means clustering).

First and foremost, HAC provides structured clustering with

valuable information on the levels of similarity and relative

distance between clusters. Additionally, HAC is an unsuper-

vised classification method that requires no a priori speci-

fication of the number of classes. Finally, HAC provides a

deterministic clustering insensitive to initialization (Frades

and Matthiessen, 2010). An Euclidean distance metric was

used for measuring dissimilarity between pairs of objects,

with Ward’s method applied as linkage criterion in the MAT-

2SomToolbox, Helsinki University of Technology, available at

www.cis.hut.fi/projects/somtoolbox

LAB environment (The MathWorks, 1998). A tree-like dia-

gram (dendrogram) was used to display the HAC clustering

(Fig. S4). Cutting the hierarchical tree at different levels of

similarity resulted in a different number of ecoregions.

2.2.4 Number of ecoregions

The choice of the final number of clusters highly affects the

quality of the clustering (Hong et al., 2011). In this study,

a 10-fold cross-validation approach was conducted to deter-

mine the optimum number of ecoregions (De’ath and Fabri-

cius, 2000). The data were divided into two unequal parts

of 90 % (the training set) and 10 % (the validation set). The

training data set was reduced to 400 classes (20× 20 neu-

rons) using the SOM (see Sect. 2.2.3 above). These 400 pro-

totypes were further agglomerated using the HAC algorithm.

Cutting the HAC dendrogram at different levels of similar-

ity for each cross-validation iteration, a total of 140 cross-

validation experiments were performed that clustered the 400

neurons into 2 to 15 ecoregions. The ecoregion of the clos-

est neuron on the map (using the Euclidean distance, i.e. the

distance measure used for training the SOM algorithm), also

called best matching unit (BMU), was attributed to each ob-

servation from the validation set.

For each cross-validation experiment, the clustering error

was computed as the average distance of the validation ob-

servations to the center (average) of their respective ecore-

gions in the training set (Sect. S3 for details). The final

cross-validation error for each experiment was calculated by

averaging errors for all the 10 given iterations (Table S3).

The cross-validation error was minimized with 11 ecoregions

(Fig. S3), which was identified as the optimal number of

ecoregions. Further analysis was performed to characterize

the individual ecoregions. Since we were interested in large-

scale structures in the CS, we further merged ecoregions that

covered less than 3 % of the CS into the statistically most-

similar neighboring ecoregion. This procedure resulted in a

final classification of the CS into 10 ecoregions.

We used a non-parametric, one-way analysis of variance

by ranks (Kruskal–Wallis H test) to test whether ecoregions

differed in their environmental conditions (Zar, 1999). A sig-

nificant result of the Kruskal–Wallis H test implies that at

least one ecoregion differs from all others. We then applied a

multi-step a posteriori pairwise testing procedure based on

studentized range statistics (Dunn’s procedure) to identify

which ecoregions differ significantly from others (P < 0.05).

Dunn’s test is a non-parametric multiple comparison test,

analogous to for example, a Tukey–Kramer test (Wheater and

Cook, 2005).

2.2.5 Swapping dependent variables

To estimate the effects of our choice of environmental pre-

dictor variables from the two groups of dependent variables

on the results of the classification (Fig. 2, Sect. 2.2.2), several

www.biogeosciences.net/11/6451/2014/ Biogeosciences, 11, 6451–6470, 2014
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sensitivity tests were run where we exchanged one or more of

the input variables with another representative from the same

group (i.e., variable with a high degree of correlation; Ta-

ble 3). All other parameters were kept constant, with 20× 20

number of neurons and 11 number of classes. The output of

each experiment (i.e., different maps of ecoregions) was then

compared with the original classification. The agreement be-

tween the two classification outputs was quantified using the

Kappa index of agreement. Kappa is a chance-adjusted mea-

sure of the relative percentage of similarity between the two

classification results that considers the location and value of

each two correspondent pixels (Gregr and Bodtker, 2007).

Possible values of Kappa range from−1 to 1, with 1 indicat-

ing perfect agreement and −1 representing worse than ran-

dom agreement (Sim and Wright, 2005).

2.3 Ecoregion validation

2.3.1 Biological data for ecoregion validation

To validate the geophysically based ecoregion classification

with independent biological information, we used satellite

chlorophyll data and available information on species dis-

tribution for a range of marine taxa. The chlorophyll a con-

centrations (Chl a) were obtained from ESA’s GlobColour

Project (http://www.globcolour.info/) as monthly mean stan-

dard mapped images with a spatial resolution of 4.6 km.

The GlobColour data contain the merged product from three

satellite sensors, namely the Sea-Viewing Wide Field-of-

View Sensor (SeaWiFS), MODIS-AQUA and MERIS (Mar-

itorena et al., 2010). The satellite-derived Chl a concentra-

tions tend to be biased towards higher values in the CS (e.g.,

Kopelevich et al., 2004; Fendereski et al., 2010), but is un-

likely to affect the relative spatial and temporal variability

which is the critical property for the ecoregion classifica-

tion (Kopelevich et al., 2004; Nezlin, 2005; Thomalla et al.,

2011). We produced an annual mean climatology of Chl a us-

ing data for the period from January 2003 through December

2010, excluding data before 2003 in order to reflect the situ-

ation after the invasion of M. leidyi, which altered the Chl a

pattern (Kopelevich et al., 2008).

In addition to Chl a concentrations, digitalized habitat

maps based on in situ species observations of 36 differ-

ent marine species were downloaded from caspianenviron-

ment.org. The observations were based on the data from dif-

ferent cruises, compiled and mapped by the Caspian Environ-

ment Program (CEP) in 2002, and extrapolated to the entire

CS for seven of the 36 species. While this data set is limited

in terms of its time span and the number of species included

(36 species distribution data for periods before peak abun-

dances of M. leidyi; Shiganova et al., 2011), it is the only data

set currently available where individual measurements of

species distribution (presence–absence and biomass) cover

the entire Caspian Sea. Since the raw species data was not

available, we used the digitalized published habitat maps

for all available species. We separated the species for which

habitat maps were available into a pelagic group and a ben-

thic group. In shallow seas, like most parts of the CS (e.g.,

Ibrayev et al., 2010; Shiganova et al., 2010), the whole wa-

ter column tends to be mixed, leading to only small gra-

dients in species distribution along the vertical axis (Ny-

baken, 2000). However, because of their high degree of de-

pendency on topographic features, sediment particle size,

etc., (Day and Roff, 2000), benthic species were studied sep-

arately from pelagic species. Species for which sampling

data were confined to a limited area of the CS were dis-

carded from this analysis. This led to the exclusion of two

phytoplankton species (Exuviaella cordata and Rhizosole-

nia calcar-avis), two zooplankton species (Acartia tonsa

and Cercopagis pengoi), two benthic invertebrata (Dreissena

(Pontodreissena) rostriformis and Gammarus (Chaetogam-

marus) pauxillus), two fish species (Stenodus leucichthys

leucichthys and Stizostedion lucioperca) and one mammal

(Phoca (Pusa) caspica). Furthermore, one phytoplankton

species (Dactyliosolen fragilissimus, recorded as Rhizosole-

nia fragilissima in the original data set) was eliminated, be-

cause its abundance and ubiquity has drastically changed in

the CS since the introduction of another diatom, Pseudosole-

nia calcar-avis in the 1930s and the jellyfish invasion in the

late 20th century (Shiganova et al., 2005; Karpinsky, 2010;

Shiganova, 2011). Thus, our final validation data set con-

sisted of 25 species, including zooplankton (2 species), 9

pelagic fish species, 11 demersal fish species, and 9 benthic

invertebrata (see Table S6).

Since abundance or biomass estimates were not available

for all species, recorded observations were transformed into

presence patterns and were subsequently used for the valida-

tion of our ecoregions (Table S6). To this end, the individual

species distribution maps were mapped onto the ecoregions.

For each ecoregion, two vectors representing the presence

of pelagic (Table S6, zooplankton and pelagic fish) and ben-

thic (Table S6, demersal fish and invertebrata) species were

created. The presence (or absence) of each species in each

of the 10 ecoregions was defined on the basis of the coor-

dinate match between occurrence and ecoregion data, with

“1” (“NaN”) defining the presence (absence) of a species in

a given ecoregion. Since the lack of presence of species in

an ecoregion does not necessarily mean its absence in that

ecoregion (it can be due to, for example, the lack or impre-

cision of sampling in that area for the target species), ecore-

gions in which the given species were not observed were as-

signed “NaN” for that species (see also Sect. 4.3 for a thor-

ough discussion on data availability and data quality). Those

ecoregions for which species presence data were solely lo-

cated near/on its borders were assigned “1” for that species.

2.3.2 Biological evaluation of the ecoregions

To test whether physically different ecoregions may host

different type of communities (Bredin et al., 2001), we
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compared the chlorophyll and ecosystem composition be-

tween ecoregions. Given the different nature of the chloro-

phyll and species data, two different methods had to be em-

ployed. For chlorophyll, a parametric, one-way analysis of

variance (ANOVA) was used to identify whether there are

significant differences between the 10 ecoregions in their

spatial distribution of annual mean Chl a. Because of the

lognormal distribution of Chl a concentrations in the ocean

(Campbell, 1995), Chl a data was transformed logarith-

mically prior to the test. When overall significant differ-

ences were observed between ecoregions, pair-wise compar-

isons of ecoregions were conducted using the Tukey–Kramer

multiple comparison test (Kramer, 1956). Ecoregions were

then analyzed in terms of the initiation, duration and am-

plitudes of the phytoplankton bloom. For each ecoregion,

Chl a annual median was calculated in two steps: first, the

temporal median over full-year monthly mean climatologies

(2003–2011) was calculated, and then, the spatial median

within the individual ecoregion was found. The initiation of

the net growth phase date was defined as the period of the

year when an increase in Chl a monthly mean climatology

values (2003–2011) was observed relative to the annual me-

dian (Thomalla et al., 2011).

For the evaluation of differences in the community struc-

ture, the degree to which each pair of ecoregions were sim-

ilar based on their pelagic and benthic species composition

was measured using the Sørensen–Dice similarity coefficient

(Sect. S4; Sørensen, 1948; Dice, 1948). This statistical mea-

sure for comparison of two samples was designed to com-

pare binary presence–absence data. The Sørensen–Dice coef-

ficient ranges from 0 to 1, with 0 representing no overlap and

1 showing a complete agreement between two sets of sam-

ples, A and B. The resulting Dice coefficient matrix of all

the potential pair-wise combinations of the different ecore-

gions was projected on a dendrogram (Fig. 10; see Sect. S4

for details).

3 Results

3.1 Ecoregions of the CS

The 10 identified geophysically based ecoregions form spa-

tially coherent units and sub-divide the three previously de-

fined basins (see e.g., Kopelevich et al., 2004) in a nat-

ural manner (Fig. 3 and Table 2). Using names accord-

ing to their geographical characteristics, we found five of

the distinguished ecoregions in the NCB (NCB River Out-

flows (NCB-RO), NCB Western Shelf (NCB-WS), NCB Ural

Furrow (NCB-UF), NCB Easternmost Shelf (NCB-ES) and

NCB Transition (NCB-T)), three in the MCB (MCB Transi-

tion (MCB-T), MCB Coastal (MCB-C) and MCB Offshore

(MCB-OS)) and two in the SCB (SCB Coastal (SCB-C) and

SCB Offshore (SCB-OS)). In general, ecoregions in the NCB

are smaller in size than those identified in the two other

Figure 3. Ecoregions of the CS derived from the SOM classifica-

tion algorithm with six independent clustering variables (SST, ICE,

DSSS, depth, TSM and DTSM).

basins. The spatial coherence strongly supports our classifi-

cation method, as the geographical location of the individual

pixels was not used in any steps of the classification proce-

dure. Spatially coherent patterns in the distribution of ecore-

gions reflect the gradients in physical environmental vari-

ables in the CS, which is also evident from the distribution

maps of these sets of physical input variables (Fig. 4; see

Sect. 3.3 for description of the spatial distribution of physi-

cal variables with regard to ecoregions).

The 10 ecoregions are clearly organized in a hierarchi-

cal manner. Indeed, a close inspection of the HAC den-

drogram (Fig. S4) and the hierarchical splitting of clusters

(Fig. 5) shows that ecoregions in the NCB, on the one hand,

and those in the MCB and SCB, on the other hand, be-

long to two separate branches in the hierarchy of clusters.

This indicates large contrasts in the physical and environ-

mental conditions between the NCB and the rest of the CS,

as well as a higher degree of similarity between ecoregions

of the MCB and SCB. The dichotomy between the NCB

on the one hand and the MCB and SCB on the other hand

is further evidenced by a non-metric multidimensional scal-

ing analysis (see Sect. S5 and Fig. S5), which highlights

the underlying distances among the different ecoregions in

a two-dimensional projection of the multidimensional pre-

dictor variable space.

www.biogeosciences.net/11/6451/2014/ Biogeosciences, 11, 6451–6470, 2014



6458 F. Fendereski et al.: Biogeographic classification of the Caspian Sea

3.2 Sensitivity of the classification to the choice of input

physical variables

To estimate the sensitivity of our classification to the choice

of representative input variables from the two groups of de-

pendent variables (Fig. 2), several sensitivity experiments

were conducted where one or more of the input variables

were replaced by another representative from the same group

(Table 3, see Sect. 2.2.5). The respective sets of ecoregions

resulting from these sensitivity experiments were compared

with the results of the original classification (Fig. 3) using the

Kappa index of agreement. The Kappa score, ranging from

0.6 to 0.8 (Table 3), indicated a substantial agreement be-

tween the results of the experimental maps and the reference

maps (Landis and Koch, 1977). It suggested that little vari-

ation occurred in the classification output when dependent

variables from the same cluster were swapped, and that while

the relative size of individual ecoregions depended on this

choice, the general pattern remained robust (Sim and Wright,

2005). However, the percentage of agreement varied depend-

ing on which variables had been swapped. In most cases, the

variation in the Kappa index was a direct function of degree

of correlation between the exchanged dependent variables.

3.3 Geophysical differences between ecoregions

The maps of the environmental conditions depicted in Fig. 4

reveal how the gradients in the different physical variables

contributed to the classification. This is most obvious with

bathymetry, which separated the offshore MCB and SCB

from the nearshore regions (Fig. 4). The mean conditions

of the different variables differ substantially between the 10

regions (Fig. 6, Table S4) as revealed by a Kruskal–Wallis

test (P < 0.05). Figure 6 depicts the results of the 45 pair-

wise comparisons on six independent biogeophysical vari-

ables for all ecoregions (Dunn’s test; see Sect. 2.2.4). For

each variable, the same letters were assigned to those ecore-

gions that did not show significant differences in a given vari-

able (P < 0.05). Overall, we failed to reject 7 of the 45 pair-

wise comparisons for SST, 10 for DSSS, 12 for depth, 5 for

TSM, 7 for DTSM and 12 for ICE (P > 0.05). Except for a

few cases, significant differences between ecoregions in the

NCB and those in the MCB and SCB were detected for all

six environmental variables. The physical characteristics of

all ecoregions are discussed below.

3.3.1 Ecoregions in the NCB (NCB-UF, NCB-W,

NCB-T, NCB-E and NCB-RO)

Ecoregions located in the NCB are characterized by lower

SST and higher DSSS and TSM than ecoregions located in

the MCB and SCB (Fig. 6). Despite the differences between

ecoregions in the NCB in almost all of the environmental

variables (see below), these ecoregions are more similar to

each other than to ecoregions located in the MCB and SCB

(Fig. 6 and Table S4). All ecoregions located in the NCB are

covered with sea ice during the winter season. The percent-

age of ice cover in NCB-T is lowest compared to other ecore-

gions in the NCB (P < 0.05; Fig. 6f and Table S4). The other

ecoregions in the NCB do not show significant differences in

this variable (P < 0.05; Fig. 6f).

The NCB does not include any open ocean ecoregions

(water depth < 100 m) as the entire NCB consists of conti-

nental shelf waters with an average water depth of only 5 m

(Barale, 2008). In the NCB, SST is highest in the southern

part (NCB-T) and lowest in the eastern part (NCB-ES; Ta-

ble S4). Due to the spring floods from the Volga and to a

lesser extent from the Ural River (Kosarev, 2005; Kara et

al., 2010), high negative values for DSSS are observed in

all ecoregions of the NCB (Fig. 6b). In NCB-WS, NCB-T

and NCB-RO in the western part of the NCB, DSSS is sig-

nificantly higher than those in the eastern part of this basin

(NCB-UF and NCB-ES, P < 0.05; Fig. 6 and Table S4). Sea-

sonal variability in SSS decreases southwards in the western

part of the NCB (Table S4). In general, TSM in the shal-

low NCB is significantly higher than in the two other basins

(P < 0.05; Fig. 6d and Table S4). Similar to SSS, distance

from major river outflows is important in determining the

patterns in TSM and its seasonal variation. NCB-WS, NCB-

ES and NCB-RO show a higher mean TSM than other ecore-

gions in this basin, and NCB-WS has much smaller seasonal

variations in TSM than NCB-ES and NCB-RO (Fig. 6e and

Table S4).

3.3.2 Ecoregions in the MCB (MCB-OS, MCB-C and

MCB-T) and SCB (SCB-OS and SCB-C)

Ecoregions located in the MCB and SCB are characterized

by higher SST but lower DSSS and TSM than ecoregions

located in the NCB (Fig. 6 and Table S4). Ecoregions in

the MCB and SCB differ significantly between each other in

all of the environmental predictor variables, except for ICE

(P < 0.05; see Fig. 6). Few of the ecoregions in the SCB

and MCB are covered by sea ice (Fig. 6f); the exception is

MCB-T in the northern part of the MCB, which is (partly)

ice covered during winter (Figs. 4f, 6f and Table S4).

The CS primarily consists of continental shelf waters

(62 %; Fig. 6c; Ibrayev et al., 2010); thus, only the MCB-

OS and SCB-OS regions are characterized by water depths

equal or larger than 100 m, thus being significantly deeper

than other ecoregions located in the continental shelf areas

of the CS (P < 0.05; Fig. 6c and Table S4). Ecoregions in

the SCB feature significantly higher annual mean SST than

other ecoregions in the CS (Fig. 6a and Table S4). This is

because the CS has a large north–south gradient in SST dur-

ing winter, while in summer there are no major differences

in the SST throughout the CS (Ibrayev et al., 2010). In gen-

eral, in the ecoregions of the MCB and SCB, salinity can

be as high as 10–13 PSU (practical salinity units; Tuzhilkin

et al., 2005), showing significantly lower seasonalvariability
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Table 2. Ecoregions and their characteristics in terms of the environmental variables.

Ecoregion Acronyms Characteristics

NCB River Outflows NCB-RO Shallow, dominated by the Volga River outflows,

high in SSS seasonality, high in TSM and its sea-

sonality, covered in ice in winter

NCB Western shelf NCB-WS Shallow, low in SSS and high in its seasonality,

high in TSM, covered in ice in winter

NCB Ural Furrow NCB-UF Shallow, low in SST, low in SSS and its seasonal-

ity, covered in ice in winter

NCB Easternmost shelf NCB-ES Shallow, low in SST, low in DSSS, high in TSM

and its seasonality, highly ice covered in winter

NCB Transition NCB-T Shallow, high in SSS seasonality, partly ice cov-

ered in winter

MCB Transition MCB-T Medium SST, medium DSSS, medium TSM and

DTSM, partly ice covered in winter

MCB Coastal MCB-C Continental shelf area, High in SSS and low in

DSSS, low in TSM and its seasonality

MCB Offshore MCB-OS Deep, low in SST, low in TSM and its seasonality

SCB Coastal SCB-C Continental shelf area, High in SST and SSS, low

in TSM and its seasonality

SCB Offshore SCB-OS Deep, high in SST, low in TSM and its seasonality

Table 3. Kappa index of agreement (0–1) for comparisons of the

classification outputs after swapping dependent input variables (un-

derlined) and the final classification output used in this study as the

reference.

Input variables Kappa index of

agreement

SST, ICE, DSSS, depth, TSM, DTSM 1.0000

SST, SSS, DSSS, depth, TSM, DTSM 0.6535

SST, PAR, DSSS, depth, TSM, DTSM 0.6018

SST, DSST, DSSS, depth, TSM, DTSM 0.6350

WSP3, ICE, DSSS, depth, TSM, DTSM 0.8010

DPAR, ICE, DSSS, depth, TSM, DTSM 0.6332

WSP3, SSS, DSSS, depth, TSM, DTSM 0.7386

than in the NCB (DSSS; Fig. 6b and Table S4). The ele-

vated SSS values in summer in almost all ecoregions in these

two basins (except for MCB-T; Fig. 6b and Table S4) can

be attributed to their distance from major river outflows and

a higher rate of evaporation in summer compared to winter.

In the MCB and SCB, TSM in the continental shelf regions

(MCB-C and SCB-C) is higher than in the deeper basins

(MCB-OS and SCB-OS; Fig. 6d and Table S4). However,

in all of these ecoregions, TSM is higher in winter than in

summer (Fig. 6e), with the highest variability in MCB-C.

3.4 Biological validation of ecoregions

To test the biological significance of ecoregions, we com-

pared climatological annual mean (2003–2011; Fig. 7) and

monthly mean Chl a of the different ecoregions. We also at-

tempted a first qualitative evaluation of differences in ecosys-

tem composition based on recorded presence–absence pat-

terns of 25 different species of plankton, fish and invertebrate

species.

3.4.1 Annual mean Chl a distribution in each ecoregion

Based on a one-way ANOVA test, the 10 ecoregions are sig-

nificantly different from one another in terms of their annual

mean Chl a distributions (P < 0.05). This was supported by a

Tukey–Kramer multiple comparison test (depicted in Fig. 8).

In general, only 4 of the 45 pair-wise Chl a comparisons

do not show significant differences in annual mean Chl a

concentration (P > 0.05; Fig. 8). Results show significant

differences in the annual mean Chl a concentration between

ecoregions of the NCB and those of the MCB and SCB

(Fig. 8). The highest concentrations of Chl a are observed

in the NCB, specifically in the two ecoregions at the mouth

of the Volga River (NCB-WS and NCB-RO; Fig. 8). This

river supplies a large amount of nutrients via 80 % of the to-

tal river runoff to the CS (Tuzhilkin et al., 2005). On the west

side of the NCB, surface Chl a concentrations gradually de-

crease southward. A pronounced west–east and north–south

decrease in Chl a concentrations is observed with increasing

distance from the Volga River (Table S5). In the MCB and

SCB, ecoregions located on the continental shelf (i.e., MCB-

C and SCB-C) do not show significant differences in their

annual mean Chl a distributions (P < 0.05; Fig. 8). Ecore-

gions comprising the deeper basins of the MCB and SCB

(i.e., MCB-OS and SCB-OS) are statistically different from

each other (P < 0.05; Fig. 8) and MCB-OS has lower annual

mean Chl a concentrations than SCB-OS (Table S5).
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Figure 4. Independent input variables for classification the CS: (a) annual mean climatology SST (C◦); (b) SSS seasonal amplitudes (ppt);

(c) depth (m); (d) annual mean climatology TSM (g m−3); (e) TSM seasonal amplitudes (g m−3); (f) ice cover percentage (%). Black contour

lines superimposed on data represent the borders of the ecoregions identified in this study (see Sect. 3.1).

3.4.2 Seasonal variations in Chl a concentration

in ecoregions

Ecoregions were then analyzed in terms of phytoplankton

phenology. Two distinct periods are observed throughout the

CS: a period of the net growth (the “bloom phase”) in sum-

mer and fall and a period with low Chl a concentrations dur-

ing winter and spring (Fig. 9).

Considerable differences in the date of bloom initiation,

bloom duration and amplitude are found between ecore-

gions (Fig. 9). In the NCB, the bloom starts between May

(in NCB-WS; Fig. 9b) and July (NCB-RO and NCB-UF;

Fig. 9a and c, respectively). In all of the ecoregions in the

NCB, Chl a reaches peak concentrations in July, the excep-

tion being NCB-ES, where phytoplankton biomass reaches

its maximum concentration in August (Fig. 9d and Table S5).

The duration of the phytoplankton bloom in the NCB dif-

fers between ecoregions, lasting from 4 months in NCB-WS

(Fig. 9b) and NCB-ES (Fig. 9d) to 6 months in NCB-UF

(Fig. 9c, see Table S5). In the continental shelf and open

waters of the SCB (SCB-C and SCB-OS; Fig. 9i and j, re-

spectively) and MCB-T (Fig. 9f), the bloom initiates in July,

while in the MCB (MCB-C and MCB-OS; Fig. 9g and h, re-

spectively), the bloom period starts with a delay of 1 month,

in August. Blooms in the MCB and SCB last from 5 months

in MCB-OS (Fig. 9h) to 8 months in MCB-C (Fig. 9g).

Within all ecoregions in the MCB and SCB, Chl a shows its

maximum amplitude in October, the exception being SCB-C,

where the peak is observed in August.

3.4.3 Differences in ecosystem composition

between ecoregions

Based on the species data discussed in Sect. 2.3.1, we in-

vestigated differences in species composition between ecore-

gions. Almost all of the species under study are found in

MCB-T, and most of the species are observed in NCB-T.

These ecoregions act as a transition zone between the NCB

and the MCB (Araujo, 2002).
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Figure 5. Hierarchical sequence (from upper left, levels 1 to 9) of ecoregions formation (2 to 10 ecoregions).

The agreement between each pair of ecoregions based

on their pelagic and benthic species composition was mea-

sured using the Dice similarity coefficient (see Methods,

Sect. 2.3.2; Sørensen, 1948; Dice, 1948). Figure 10 shows

the dendrograms used to visualize the degree of similar-

ity/dissimilarity between ecoregions based on their pelagic

and benthic species composition data.

For pelagic species, with the exception of NCB-RO, ecore-

gions can be grouped into two major groups, primarily com-

posed by the NCB ecoregions and the rest of the CS ecore-

gions (Fig. 10a). This clustering of ecoregions according to

their similarity in species composition reflects the results of

our physical classification, where ecoregions from the MCB

and SCB were more similar to each other in their physical at-

tributes than to those from the NCB (Fig. S5). The planktonic
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Figure 6. Box plots of ecoregions (x axis) against the physical variables (y axis) (a: SST, b: DSSS, c: depth, d: TSM, e: DTSM and f:

ICE). The line in the middle of each box represents the ecoregion median. The top and bottom limit of each box are the 25th and 75th

percentiles, respectively. The lines extending above and below each box, i.e., whiskers, represent the full range of non-outlier observations

for each variable beyond the quartile range. Red pluses (+) are observations that have been classified as outliers. The results of Dunn’s

multiple comparison test between different ecoregions (1–10) for each physical variable are shown in figures (a) through (f). Identical letters

depict ecoregions without statistically significant differences between the climatological input variables at the 95 % level (P < 0.05), whereas

different letters depict significant differences between ecoregions.

species included in this study, i.e., E. grimmi and M. leidyi,

and the brackish water fish subspecies, Salmo trutta caspius

(Caspian brown trout) and Clupeonella engrauliformis, were

not observed in any of ecoregions in the NCB, except for

NCB-T (Table S6). The presence of these species is known to

be restricted by low salinity (CEP, 2002), which is a promi-

nent feature of the NCB (Kara et al., 2010). In ecoregions

in the MCB, SCB and NCB-T, a higher number of species

were recorded than in the other ecoregions of the CS. All

planktonic species were observed in these ecoregions, but the

pelagic fish species included in this study were found simul-

taneously only in NCB-T, MCB-T, and MCB-C (Table S6).

Based on the distribution of benthic species, ecoregions

could be grouped into three major groups: NCB-ES and

NCB-RO, MCB-OS and SCB-OS, and ecoregions from all

the three basins (i.e., NCB-UF, NCB-WS, NCB-T, MCB-T,

MCB-C and SCB-C; Fig. 10b). These results only partially

reflect the physical classification, where a strong separation

was observed between ecoregions in the NCB and those in

the MCB and SCB (Fig. 6). This suggests that controls on

the distribution of benthic species might depend on proper-

ties not included in our analysis, such as sediments size and

type (Day and Roff, 2000). Depth seems to be one of the

key environmental factors determining benthic species com-

position (CEP, 2002), thus limiting their distribution to the

shallower areas of the MCB and SCB.

4 Discussion

Ecoregions are geographic regions with specific biotic and

abiotic attributes (Day and Roff, 2000). In this study, the

CS was partitioned into 10 distinct ecoregions using an-

nual mean climatologies and seasonal amplitudes of physical
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Figure 7. Distribution of Chl a concentration (mg m−3) in the CS.

Black contour lines superimposed on data represent the borders of

the ecoregions identified in this study (see Sect. 3.1).

oceanographic variables together with bathymetry data. Al-

though the geographical coordinates of individual grid cells

have not been included in the classification, the partition-

ing resulted in coherent, spatially uniform ecoregions. Ecore-

gions vary in size, with smaller ecoregions located in the

NCB, which shows a higher spatial variability in the input

variables. The MCB and SCB are relatively uniform, con-

taining three and two large ecoregions, respectively. In agree-

ment with our findings, a greater level of biodiversity has also

been reported for the northern part of the CS in comparison

to the two other basins (UNEP, 2006).

4.1 Comparison between marine and adjacent

terrestrial ecosystems

The spatial coherence of our ecoregions is due to natural

gradients in the physical variables used for our classifica-

tion, and the identified patterns are also reflected in the cli-

mate regions of the surrounding terrestrial biosphere. Our

marine ecoregions are geographically consistent with their

surrounding terrestrial ecoregions (Bailey, 1996). This can

be explained by the importance of climate as a major driving

force for both ecosystems. Moderately warm and arid cli-

mates surround the western and eastern parts of the MCB,

respectively (Kosarev, 2005). Ecoregions in the MCB (MCB-

T, MCB-C and MCB-OS) are adjacent to tropical/subtropical

Figure 8. Box plot of ecoregions (x axis) against Chl a concen-

trations (y axis). The ecoregion median (line in the middle of each

box) and the 25th and 75th percentiles (tops and bottoms of each

box, respectively) are shown as in Fig. 6. The two lines extend-

ing vertically from the box (whiskers) depict the variability of non-

outlier observations beyond the quartiles. Outliers are depicted by

red pluses (+). The results of Tukey–Kramer multiple comparison

test between different ecoregions (1–10) for Chl a concentrations

are shown by differences in letters as in Fig. 6, with different letters

above the boxes indicating significant differences between ecore-

gions at P < 0.05.

deserts and prairie regime mountains in the west and tem-

perate deserts in the east (Bailey, 1996). The SCB (SCB-C

and SCB-OS) is surrounded by Bailey’s subtropical regime

mountains to the south, and this area is dominated by a sub-

tropical climate zone, characterized by warm and humid con-

ditions (Kosarev, 2005). SCB-C is bordered by desert climate

(Kosarev, 2005) and tropical/subtropical steppe to the east

(Bailey, 1996).

However, there are also a few areas where the location of

terrestrial ecoregions does not match that of the adjacent ma-

rine ecoregions. Differences in extent and location between

marine and terrestrial ecosystems can be explained by geo-

chemical and regional factors other than the climatic ones

that affect the marine environment, such as the distance from

river inflows, water depth and currents. For example, terres-

trial regions are fairly uniform around the NCB (Bailey’s

temperate deserts), where we found the greatest environmen-

tal diversity in the marine ecosystem. The distance from the

Volga and Ural rivers (with 80 and 15 % of total riverine

runoff to the CS, respectively; Kosarev, 2005) is important

in shaping the NCB’s ecoregions. In the MCB and SCB, wa-

ter depth separates deep ecoregions (MCB-OS and SCB-OS)

from shallow ecoregions in continental shelf waters of these

basins (MCB-T, MCB-C, and SCB-C). Cyclonic gyres in the

MCB and SCB and a southward current along the western

coast (Ibrayev et al., 2010) are important factors in further

structuring MCB-C and SCB-C, while differences in climate

between the eastern and western parts of both MCB-C and

SCB-C were not captured in the current classification.
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Figure 9. Seasonal cycle of Chl a concentrations from January 2003

to December 2010 in the 10 ecoregions. Panels (a) NCB-RO, (b)

NCB-WS, (c) NCB-UF, (d) NCB-ES, (e) NCB-T, (f) MCB-T, (g)

MCB-C, (h) MCB-OS, (i) SCB-C, and (j) SCB-OS. The red line

represents the median of annual mean climatological Chl a in each

ecoregion. The period when Chl a values are above the median was

defined as the bloom phase. The dashed lines depict the duration of

bloom in each ecoregion. The dashed blue line represents the spatial

standard deviation of Chl a in each ecoregion. Grey filling denotes

the spatial variability within an ecoregion.

4.2 Biological validation of CS ecoregions

Chl a is one of the few biological parameters that can

currently be detected by satellite observations. The overall

agreement between spatial distribution of Chl a in the CS

and patterns captured in our classification indicates a biolog-

ical significance of our ecoregions in terms of phytoplank-

ton biomass and productivity (Gregr and Bodtker, 2007). We

further detected significant differences in the seasonal vari-

ability in Chl a between ecoregions (date of bloom initi-

ation, bloom duration and amplitude). Such differences in

Chl a seasonality have previously been documented for the

CS on the basin scale (e.g., Kopelevich et al., 2004; Nezlin,

2005). The spring phytoplankton bloom in the NCB can be

explained by the increase in temperature and light in April

and May, in combination with the inflow of nutrient-rich wa-

ters after the ice melt, and spring floods of the Volga River

between May and June (Kosarev, 2005). In the MCB and

SCB, the increase in phytoplankton biomass during summer,

i.e., when a deep thermocline limits phytoplankton growth in
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Figure 10. Dendrogram of the similarity between ecoregions based

on the available (a) pelagic and (b) benthic species composition

data. Labels along the x axis represent the ecoregions.

these regions (Tuzhilkin and Kosarev, 2005) has previously

been explained by the increase in the biomass of the inva-

sive jellyfish, M. leidyi with increasing SST (Kideys et al.,

2008; see Shiganova et al., 2004 for a spatiotemporal dis-

tribution map of M. leidyi in the CS). This jellyfish causes

phytoplankton biomass to increase during summer through a

trophic cascade effect, with M. leidyi releasing phytoplank-

ton from the grazing pressure of zooplankton (Kideys et al.,

2008). Conversely, the decrease in jellyfish biomass during

winter relieves zooplankton from its intensive grazing pres-

sure, resulting in low phytoplankton biomass.

Since the invasion of this jellyfish, first detected in the

CS in 1999, anomalous algal blooms (AABs) have been a

common feature in satellite-based Chl a images in the late

summer and the early fall in the SCB (Kopelevich et al.,

2004, 2008; Nezlin, 2005). Although we have not used any

data of the jellyfish distribution in our classification, the area

where AABs are frequently reported has been separated in

our classification (SCB-OS). This may indicate that the phys-

ical forcing used for defining our ecoregions also controls

jellyfish distribution patterns.

Hypothesizing that ecologically different regions support

different species assemblages, we used a very simple data

set to show that individual ecoregions exhibit differences in

species composition. Despite the inevitable deficiency in our

species data (see Sects. 2.3.1 and 4.3 below), our study gives

a first indication that environmental (bottom-up) factors may

influence species distribution and community structure pat-

terns in the CS. Other studies in different ocean regions, such

as those presented by Bredin et al. (2001) in the Bay of Fundy

and Verfaillie et al. (2009) in the Belgian part of the North

Sea, have demonstrated similar results. The observed differ-

ences in community structure provide some first evidence for

the value of our physical classification approach for applica-

tion in ecosystem management and conservation, especially

in the areas where biological data are scarce.

4.3 Caveats of our approach

In analogy to persistent large-scale ecological patterns in

terrestrial ecosystems (Bailey, 1996), we hypothesized that

there are persistent ecological patterns in the oceans that can
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be summarized in a classification based on annual mean and

seasonal climatologies. Our static classification method, sim-

ilarly to the approach presented by Longhurst (1998) for his

classification of the pelagic realm of the World Ocean, has

been criticized for its inability to reflect the highly dynamic

nature of the oceans (Hardman-Mountford et al., 2008). Dy-

namic methods for delineation of ecological units in the

oceans have been developed to address this issue (e.g., De-

vred et al., 2007; Gregr and Bodtker, 2007; Kavanaugh et

al., 2013). The classification approach presented in this pa-

per provides a description of the large-scale patterns of the

CS ecosystem, which may be useful for many administra-

tive purposes, such as longer-term monitoring and policy

development (Spalding et al., 2012), management reporting

and socioeconomic statistics (Hoepffner and Dowell, 2005).

However, for shorter-term and local applications, seasonal or

even realtime classification methods, like those presented by

Devred et al. (2007) and Gregr and Bodtker (2007), may re-

sult in a more detailed characterization.

We developed an objective classification approach in

which physical input variables were selected based on sta-

tistical analyses. To be able to capture as many potential en-

vironmental patterns as possible (Verfaillie et al., 2009), we

initially compiled a wide range of abiotic variables, known to

be important for phytoplankton growth (Fig. 2). Finally, we

used an independent set of these variables for ecological par-

titioning of the CS. Despite the objective criteria applied here

for the selection of input variables (see Sect. 2.2.2), we in-

evitably had to make subjective choices due to methodologi-

cal constraints: the desired level of independency between in-

put variables had to be specified, and representatives of each

cluster/set of dependent variables had to be selected. In order

to test the sensitivity of our results to the choice between de-

pendent variables, we performed several sensitivity studies.

The tests showed minor effects of this subjective selection

on the final classification output of the CS (see Sect. 3.2). In-

vestigating the sensitivity of classification to different levels

of independence between environmental input variables was

beyond the scope of the current study and should be consid-

ered in future studies.

In this study, we mainly used remotely sensed physical

and biogeochemical input variables for our classification. In

addition to the factors investigated here, other factors have

been shown to exert a significant influence on the CS ecosys-

tem composition but could not be included in this analy-

sis. These factors include human activities, such as pollution

and overfishing (Kopelevich et al., 2004; Zonn, 2005), and

other endogenous and exogenous natural factors, such as cli-

mate change, sea level fluctuations, mud volcanoes (Zonn,

2005) and especially the invasion of M. leidyi and other

top-down effects (Shiganova et al., 2001). Since Chl a is a

proxy for the cumulative effects of both bottom-up and top-

down controls, a classification of the CS based on Chl a only

may yield ecoregions with a higher biological relevance than

those obtained here based on physical parameters (Hardman-

Mountford et al., 2008). Since we were interested in mech-

anistic relationships between physical forcing and biological

response, we did not use Chl a as an input variable here for

the classification.

Our ecoregion validation in terms of their biological com-

position confirmed to some extent the validity of the assump-

tion of bottom-up control on species distribution patterns and

ecosystem structure. However, due to the limited availability

of in situ data, our biological validation of the ecoregions re-

mains qualitative at best. The data we used comprises only

a few species and predates 2002, thus not allowing us to ex-

amine the effects of recent changes in community composi-

tion due to the effects of invasive species and food-web in-

teractions between native and non-native species (Shiganova

et al., 2011), pollution and other anthropogenic and natural

influences. To our knowledge, the species distribution data

used here is the only currently available set of habitat maps

that covers the entire CS. A comprehensive data synthesis

for relevant marine organisms inhabiting the CS, along with

in situ Chl a concentrations is urgently required (e.g., as in

Buitenhuis et al., 2013) and would be essential to further val-

idate ecoregions based on the classification of physical vari-

ables. Such a compilation of data would be required in or-

der to quantify the relative importance of invasive species as

well as top-down and bottom-up factors for ecosystem struc-

ture and functioning in the CS. While our current approach

does not incorporate top-down effects (i.e., grazing rates and

relationships between predator and prey biomass), climate is

likely to drive at least some aspects of lower trophic level dy-

namics (Day and Roff, 2000; Platt et al., 2005). The compar-

ison of our ecoregions with remotely sensed plankton func-

tional groups based on satellite observations (Raitsos et al.,

2008; Zwirglmaier et al., 2008; Brewin et al., 2010; Hirata et

al., 2011; Alvain et al., 2012) would be of particular interest,

as few primary producers could be included in our valida-

tion due to the lack or poor spatial coverage of in situ data.

However, none of the algorithms used to derive phytoplank-

ton composition from satellite imagery have been validated

in the CS. At present, the characterization of zooplankton and

higher trophic level biomass and distribution patterns still re-

lies on in situ measurements in routine monitoring programs,

which are both costly, time-consuming and provide limited

spatial coverage. Thus, the quantitative examination of top-

down effects would profit from further systematic long-term

ecosystem surveys.

5 Conclusions

In this paper, the Caspian Sea was partitioned into 10 dis-

tinct ecoregions with similar annual mean climatologies and

seasonal amplitudes of physical oceanographic variables us-

ing a neural network approach. The biological relevance

of these ecoregions was verified using long-term satellite-

derived Chl a concentrations and a limited set of species

www.biogeosciences.net/11/6451/2014/ Biogeosciences, 11, 6451–6470, 2014



6466 F. Fendereski et al.: Biogeographic classification of the Caspian Sea

distribution data. The results of the current research can pro-

vide policy makers and ecosystem managers with a general

picture of the different major ecosystems of the CS surface

waters on the annual scale. Researchers may benefit from

these results in applications ranging from ecosystem con-

servation and in the definition of marine protected areas to

sampling area selection and/or ecosystem modeling. The ap-

proach developed in this paper is flexible in terms of input

variables and spatial and temporal resolution, as well as in

terms of the extent of the study area and the set of observa-

tional data records. Thus, the method can be employed using

updated data sets for improving the ecological classification

of the CS, but it can also be applied to study finer spatiotem-

poral dynamics such as interannual, seasonal or diel dynam-

ics, or even to monitor the CS ecosystem in realtime.
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Appendix A

Table A1. Acronyms.

CS Caspian Sea

SCB South Caspian Basin

MCB Middle Caspian Basin

NCB North Caspian Basin

SCB-C South Caspian Basin Coastal

SCB-OS South Caspian Basin Offshore

MCB-C Middle Caspian Basin Coastal

MCB-OS Middle Caspian Basin Offshore

MCB-T Middle Caspian Basin Transition

NCB-T North Caspian Basin Transition

NCB-RO North Caspian Basin River Outflows

NCB-WS North Caspian Basin Western Shelf

NCB-ES North Caspian Basin Easternmost Shelf

NCB-UF North Caspian Basin Ural Furrow
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