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Abstract. Organic soils are a main source of direct emis-

sions of nitrous oxide (N2O), an important greenhouse gas

(GHG). Observed N2O emissions from organic soils are

highly variable in space and time, which causes high uncer-

tainties in national emission inventories. Those uncertainties

could be reduced when relating the upscaling process to a

priori-identified key drivers by using available N2O obser-

vations from plot scale in empirical approaches. We used

the empirical fuzzy modelling approach MODE to identify

main drivers for N2O and utilize them to predict the spatial

emission pattern of European organic soils. We conducted a

meta-study with a total amount of 659 annual N2O measure-

ments, which was used to derive separate models for differ-

ent land use types. We applied our models to available, spa-

tially explicit input driver maps to upscale N2O emissions

at European level and compared the inventory with recently

published IPCC emission factors. The final statistical mod-

els explained up to 60 % of the N2O variance. Our study re-

sults showed that cropland and grasslands emitted the highest

N2O fluxes 0.98± 1.08 and 0.58± 1.03 g N2O-N m−2 a−1,

respectively. High fluxes from cropland sites were mainly

controlled by low soil pH value and deep-drained ground-

water tables. Grassland hotspot emissions were strongly re-

lated to high amount of N-fertilizer inputs and warmer winter

temperatures. In contrast, N2O fluxes from natural peatlands

were predominantly low (0.07± 0.27 g N2O-N m−2 a−1) and

we found no relationship with the tested drivers. The to-

tal inventory for direct N2O emissions from organic soils in

Europe amount up to 149.5 Gg N2O-N a−1, which also in-

cluded fluxes from forest and peat extraction sites and ex-

ceeds the inventory calculated by IPCC emission factors of

87.4 Gg N2O-N a−1. N2O emissions from organic soils rep-

resent up to 13 % of total European N2O emissions reported

in the European Union (EU) greenhouse gas inventory of

2011 from only 7 % of the EU area. Thereby the model

demonstrated that the major part (85 %) of the inventory
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is induced by anthropogenic management, which shows the

significant reduction potential by rewetting and extensifica-

tion of agriculturally used peat soils.

1 Introduction

Nitrous oxide (N2O) is a natural trace gas with increasing

abundance in the atmosphere and radiation-enforcing proper-

ties. Soil processes are the dominant source of terrestrial N2O

and contribute about 70 % to the total net emission budget of

N2O (Mosier, 1998). Maljanen et al. (2010) showed that N2O

emissions from organic soils in Nordic countries are 4 times

higher in comparison to fluxes from mineral soils. In Europe

about 7 % of the land area is covered by organic soils, of-

ten also called peat soils, according to Montanarella et al.

(2006). The N2O fluxes from natural, waterlogged organic

soils are low. Drainage and cultivation lead to N mineral-

ization from degrading peat, and consequently N2O produc-

tion (Wild et al., 1998; Regina et al., 2004) via nitrification

and denitrification processes (Firestone and Davidson, 1989).

Thus far, large-scale estimates have been based on static

emission factor approaches, which only partly reflect land

use, climate, soil nutrient or drainage status. A regional study

from Estonia found significant land use differences in N2O

emissions from drained organic soils (Mander et al., 2010).

The IPCC recently published new emission factors for dif-

ferent land use types, climate regions and basic soil nutrient

and drainage categories for global application in the IPCC

supplement for national greenhouse gas (GHG) inventories

on wetlands (IPCC, 2013). Application of emission factors in

GHG inventories can lead to high uncertainties (Pouliot et al.,

2012). At present, there are no process-based models of N2O

fluxes for organic soils that could be upscaled or explain the

variability of measured N2O fluxes from European peatlands

better than average emission factors. A successful upscaling

of an empirical model could reduce the uncertainty of emis-

sion budgets by including functional relationships to driving

parameters. Klemedtsson et al. (2005) suggested to model

N2O emissions from peatland forest in Sweden with an em-

pirical relationship to C / N ratio of topsoil, based on obser-

vations from 12 sites. In Great Britain, N2O emissions from

agricultural organic soils were modelled with a regression

to N input, water-filled pore space (WFPS), soil temperature

and land use (Sozanska et al., 2002), based on observations

from 59 sites predominantly from mineral soils. The long ref-

erence lists in the 2013 IPCC supplement suggest that there

are a large amount of N2O observations in the literature that

have not yet been used for model calibration and validation.

While some region- and land-use-specific empirical relation-

ships have been published (Klemedtsson et al., 2005; Mander

et al., 2010), a generic functional relationship between N2O

and environmental and management drivers across land use

categories is missing. This hampers the development of man-

agement strategies at local, national and European scale for

organic soils that reduce anthropogenic N2O emissions. This

study aims to

1. develop generic empirical relationships between human

and natural drivers of N2O applicable across land use

types by means of multi-site calibration with all obser-

vations published until mid-2013 in Europe;

2. determine the N2O budget of organic soils in Europe

and its various sources of uncertainty (model, spatial

driver data);

3. determine spatial hotspots of N2O emissions driven by

land use, other human or natural drivers and priorities

for future observations in high-N2O-risk zones;

4. test whether the new IPCC emission factors are spatially

representative of Europe and quantify potential bias.

2 Material and methods

2.1 Database

The N2O flux synthesis is based on a meta-study of direct

N2O emissions from organic soils. This literature survey con-

tains N2O observations in Europe published until mid-2013.

All incorporated in situ flux measurement studies used the

same gas measurement method – the well-established closed-

chamber technique (Hutchinson and Mosier, 1981). Annual

N2O fluxes were directly taken out of the publications and

all fluxes that fulfil the minimum criteria of 12 measure-

ments per year were included in our analysis. The database

contains the total amount of 659 annual flux measurements

made on 109 sites in temperate and boreal regions in Eu-

rope, spread across the main organic soil regions (Fig. 1). Nu-

merous measurements came from central Europe (Germany,

Netherlands) and from northern European countries like Fin-

land, Sweden and Estonia, whereas the British Isles and east-

ern and southern Europe are under-represented in the dataset.

The number of measurements per site differs from a mini-

mum of 1 annual flux period up to a total amount of 59 annual

fluxes. Most of the sites include flux measurements from dif-

ferent plots that vary in management and environmental con-

ditions. In part, the experimental design was purposely cho-

sen to distinguish between treatments or influences from dif-

ferent sources, e.g. nitrogen fertilizer (Velthof and Oenema,

1995) or water content of topsoil (van Beek et al., 2010).

We extracted diverse environmental and management param-

eters to derive a wide set of parameters that can be tested for

potential relationships to N2O fluxes. The most frequent pa-

rameters are listed in Table 1 with units, parameter ranges

and fraction of coverage in the studies. Missing values for

climate parameters were gap-filled with data from the Eu-

ropean Climate Assessment and Dataset (ECAD), described
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Table 1. List of potential driving parameters for N2O with units, value mean/range and fraction of measurement studies that cover each

parameter. Soil parameters are related to topsoil layer of 100 cm depth and all parameters are calculated as annual average values, with the

exception of precipitation and nitrogen fertilization, which are calculated as annual sums.

Name Description Unit Mean Min Max Fraction

(%)

bd Bulk density g× cm−3 0.34 0.03 1.36 69.2

corg Organic carbon content % 36.11 6.7 57.5 79.8

ntot Total nitrogen content % 1.82 0.3 3.9 71.8

ph pH value – 5.34 3.3 7.63 61

cn Ratio of carbon and nitrogen – 21.29 9 78.17 80.4

pd Thickness of peat layer m 1.61 0.2 10.2 38.7

tair Air temperature ◦C 6.22 –0.23 11.2 83.5

tsoil Soil temperature ◦C 8.8 1.94 11.78 19.1

pp Precipitation mm 645.2 0 1840 81.6

wt Groundwater table m 0.32 –0.62 1.36 82.2

wfps Water-filled pore space % 76.48 41.25 100 13.7

no3 Nitrate concentration kg× ha−1 32.97 0 211.7 13.1

nh4 Ammonia concentration kg× ha−1 28.4 0.33 241 13.1

nmin Mineral nitrogen concentration kg× ha−1 61.37 2.21 241 14.3

nfert Organic and mineral nitrogen fertilization kg× ha−1 43.77 0 713 80.7

in Haylock et al. (2008). All of the database references are

listed in Table 6.

2.2 Model development, calibration and validation

Firstly, the N2O fluxes and potential drivers were analysed

by means of univariate statistics. Furthermore we investi-

gated the correlations between fluxes and the correspond-

ing driving parameters to understand interactions and con-

strain parameter combinations. The specified statistical anal-

yses were carried out with the programming language R (R

Development Core Team, 2013). Based on these results we

used an empirical fuzzy logic modelling approach to predict

N2O fluxes based on main driving parameters. This data-

driven fuzzy logic model has been applied to predict and

upscale annual N2O fluxes for agricultural mineral soils in

Germany. The model performance was superior to other em-

pirical approaches and explained up to 72 % of the variabil-

ity in the dataset. (Dechow and Freibauer, 2011). Bardossy

et al. (2003) describe the fuzzy-based modelling as a fast,

transparent and parameter-parsimonious alternative to other

approaches. These techniques are based on the concept of

fuzzy logic, a set theory that extends the binary logic of true

(1) and false (0). It allows for fuzzy sets with truth values in

the range between 0 and 1 (degree of fulfilment) to be had,

and is therefore able to handle partial truth, uncertainties or

so-called fuzziness. The fuzzy sets can be used to classify

factor domains not only by constant crisp sets but also by

different function types (e.g. triangular, quadratic) with vari-

able membership grade over the factor domain. Furthermore

it can be utilized to divide factor spaces into sub-domains

and calculate all possible combinations in fuzzy interference

schemes (FISs) using fuzzy logic algebra. These FISs can

be merged in conditional rule systems to model multivariate

problems. The approach is able to model non-linear relation-

ships and to represent a priori knowledge that limits param-

eter spaces or constrains directions of relationships. Another

advantage of fuzzy sets in comparison to other decision tree

approaches is the smooth transition between different sets

that allows for more accurate modelling of continuous vari-

ables. In this study triangular fuzzy sets for driving parame-

ters of annual N2O fluxes were calibrated using a simulated

annealing technique to optimize corresponding responses for

N2O flux measurements. We use a forward selection algo-

rithm in combination with a sub-dataset, which consists of

drivers that are available at European level, to determine the

best-fitted and regionalizable parameter combinations. The

Nash–Sutcliffe efficiency (NSE) was used for model assess-

ment:

NSE = 1−

n∑
i=1

(
F io −F

i
m

)2
n∑
i=1

(
F io − F̄o

)2 . (1)

The coefficient ranges from −∞ to 1, where the value of

1 corresponds to a perfect match and a value of 0 indi-

cates an accuracy comparable to the mean of the observed

data. The residual variance of the observed fluxes F io and

the modelled fluxes F im must be smaller than the data vari-

ance of the observed fluxes to indicate that the model is a

better predictor than the mean value of the observed data

F o. The NSE coefficient is described as a good indicator

of model prediction performance because it is a combined

measure for scatter and bias (Nash and Sutcliffe, 1970). The
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Figure 1. Overview for measurement sites. Size of points indicates

number of measurements per site. Background map displays peat-

land distribution in Europe with peat cover per square kilometre

from Montanarella et al. (2006).

automaticallyselectedparameter combinations with the high-

est NSE measures above 0 represent the best N2O predic-

tors according to the parameter set and performance indica-

tor used. The NSEcali and NSEcv refer to the NSE coefficient

for the model calibration and the validation, respectively.

Further optimization was performed by setting up model

ensembles (MODE) for final parameter combinations, using

empirical bootstrapping methods with up to 50 individual

models, which reduces over-fitting and achieves better av-

eraged model predictions. We followed the procedures de-

scribed in Dechow and Freibauer (2011).

We validated the model results by a k-fold cross valida-

tion by study sites (Kohavi, 1995). The original dataset was

partitioned into k subsets by study site. A single subsample

was excluded as a validation dataset from the calibration pro-

cess. All remaining k-1 sites were used for model calibration

and could be validated to the independent validation set. This

procedure is repeated k times until each site is used once as a

validation dataset. The study sites subsamples include a dif-

ferent number of annual fluxes, which can contain up to 15 %

of the fluxes from the total dataset. Hence the unequally sized

subsamples can lead to a very strict cross-validation result

in the case of excluding a site with numerous measurements

and high proportion of the total dataset. The calibration was

weighted by number of measurements per site to avoid over-

and under-representation for sites with small and high num-

bers of flux measurements, respectively. We also have to take

into account that the N2O fluxes span over several orders of

magnitude. Hence we applied a logarithmic transformation,

F lo = ln(F io + 0.5), (2)

to linearize the flux range for better optimization perfor-

mance. To generate models useful for upscaling, we consid-

ered only driving parameters that can be regionalized. There-

fore good predictors of N2O fluxes like soil nitrate (NO−3 ),

ammonium (NH+4 ), mineral N content or CN ratio were not

included in the final modelling approach.

2.3 Regionalization

The regionalization describes the application of our validated

fuzzy model on EU-wide available input datasets to derive

consistent N2O emissions for Europe. Spatially explicit up-

scaling of the fuzzy model was realized in a geographic infor-

mation system (GIS). We used the open source GRASS GIS

(Neteler et al., 2012) to process the model input datasets and

predict N2O emissions at the EU level. Therefore we devel-

oped and implemented several GRASS modules to perform

fuzzy logic modelling in this GIS framework. Additionally

we conduct time series analysis of climate and land use data

by using the temporal framework TGRASS (Gebbert and

Pebesma, 2014). The input data at the EU level is predom-

inantly available in raster cell format in Lambert azimuthal

equal area (LAEA) projection, with the finest resolution of

1 km× 1 km gridded data. Hence we selected the LAEA pro-

jection and a resolution of 1 km× 1 km as a common unit to

avoid data loss from transformation processes and raster cell

resampling. The model was applied for peatland areas in Eu-

rope which are based on the organic soil distribution map by

Montanarella et al. (2006). This dataset serves as a basis for

all spatial calculations in this study. The following regional

datasets were used for driving parameters:

– Land use distribution:

– CORINE land cover (CLC) from 2006 (Büttner and

Kosztra, 2007) differentiated into cropland, grass-

land, forest, peat extraction and natural areas.

– Historic Land Dynamics Assessment (HILDA)

(Fuchs et al., 2013) differentiated into cropland,

grassland (which also contains natural areas) and

forest sites for the latest available year: 2010.

– Meteorology: temperature and precipitation from the

ECAD dataset (Haylock et al., 2008). Based on the

daily resolution dataset, we calculated the 30-year

(1982–2012) long-term annual and seasonal (spring,

summer, autumn and winter) minimal, maximal and

mean temperatures and precipitations sums.

– Mean annual water table: there are no spatially ex-

plicit data available for Europe. Mean annual water ta-

ble was therefore represented by land-use-specific fre-

quency distribution functions of observed water table in
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the database. The mean value of the frequency distribu-

tions was used for regionalization, while the distribution

served for uncertainty assessment.

– Soil properties: datasets from the European soil portal

and the Joint Research Centre (JRC) (Panagos et al.,

2012).

– Topsoil acidity (Reuter et al., 2008).

– Organic carbon content of topsoil (Jones et al.,

2005).

– Bulk density of topsoil (Tiktak et al., 2002). The

European soil portal provides gridded averages,

which mix mineral and organic soils. Consequently,

bulk density neither adequately reflects organic

soils nor the dependence of bulk density on land

use and peat degradation status. As for mean an-

nual water table, land-use-specific frequency distri-

bution functions of bulk density were used for re-

gionalization.

– Nitrogen fertilization based on Hutchings et al. (2012).

The sum of Europe-wide annual N2O emissions represents

the emissions from cropland, grassland, forest, peat extrac-

tion and natural sites on organic soils. Besides the fuzzy

model approach, land-use-stratified emission factors can also

be utilized to predict annual emission budgets. Emission fac-

tors were derived from the N2O flux synthesis as mean per

land use type and compared to the IPCC emission factors

from the wetland supplement (IPCC, 2013). We used the

good practice guidance of the IPCC tier 1 approach to calcu-

late the European inventory of N2O emissions from managed

organic soils. The IPCC tier 1 approach stratifies land use

classes by drainage, peat type and climate zone. The delin-

eation between the temperate and boreal zone can be derived

from the IPCC definition applied to climate data. Drainage

and peat type, however, are not available in a spatially ex-

plicit way. We therefore applied the default of nutrient-poor

conditions in boreal forests, nutrient-rich conditions in tem-

perate forests, and deep drainage in temperate grasslands.

Spatial resolution and land use definitions produce signifi-

cant uncertainty in the regionalization of N2O emissions. The

uncertainty in land use classifications was assessed by testing

the sensitivity of the European N2O inventory to the choice

of the land use map, represented by the two Europe-wide spa-

tially explicit map products CORINE and HILDA. The gen-

eral land use distribution on organic soils can be separated

into the forestry-dominated boreal zone, the agricultural tem-

perate zone and the main natural peatland areas in the sub-

arctic northern parts of Europe. N2O emission hotspots were

identified on the map together with related ranges of drivers

separately for each land-use-specific model. In order to lo-

cate N2O emission hotspots in Europe, we computed the flux

distributions by land use category from the N2O emission

map and defined the fluxes above the 90th quantile as hotspot

emissions for the particular land use category.

2.4 Uncertainty analysis

N2O emissions can vary largely in space and time and the

capabilities to model these variation are restricted to the size

of the sample dataset and the data quality. Therefore it is im-

portant to propagate the uncertainties during the modelling

process in order to be able to estimate the overall accuracy of

the model result. For several ecosystems the confidence inter-

val limits of IPCC emission factors for N2O emissions from

peat soils are greater than the mean values. The modelling

approach aims to reduce this variability by using explana-

tory parameters to predict N2O fluxes. Uncertainty analy-

sis comprised uncertainties in input parameters and in the

model. The model uncertainty was calculated by means of a

fuzzy rule-based uncertainty estimation (details in Dechow

and Freibauer (2011)). It can be described as the standard

deviation σf, which is derived from the rule-specific normal-

like uncertainty distributions in Eq. (3):

σ 2
f =

n∑
i=1

DOFiσ
2
ri

n∑
i=1

DOFi

(3)

where DOFi is the degree of fulfilment and σri is the stan-

dard deviation of a normal-like uncertainty distribution of

rule i. The rule specific uncertainty was estimated by using

results from the cross validation over study sites as a refer-

ence to calculate the model uncertainty. The input parameter

uncertainties were estimated by Monte Carlo simulation with

parameter variabilities taken from available databases. The

combination of input and model uncertainty results in the

overall uncertainty estimation, which was applied pixel-wise

for uncertainty analysis at the EU level. The resulting map

contains average and standard deviation values for a normal-

like distribution function of N2O emissions for each raster

cell.

The N2O emission budget is the sum of all raster cell val-

ues that are located within a defined area. The correspond-

ing uncertainty of the inventory can be calculated by error

propagation. Spatially explicit modelling introduces autocor-

relation into the calculation of GHG emission inventories

and their uncertainty estimation. Without consideration of

the spatial covariance we would underestimate the real un-

certainty. This is a methodical problem that we solved by

considering the covariance in the error propagation equation

to improve the uncertainty estimation:

σb =

√√√√ n∑
i=1

σ 2
fi
+ 2

n−1∑
i=1

n∑
j=i+1

covij , (4)

where σi,j is the standard deviation of a raster cell, indexed

by i, and covij is the corresponding covariance between all
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Figure 2. Box plots for N2O fluxes (a) and mean annual groundwa-

ter table (b) for five different land use categories (cropland, grass-

land, peat extraction, forest and natural sites). N2O fluxes are shown

without outliers and n indicates the number of measurement per cat-

egory.

raster cell values, indexed by i and j . We approximated the

covariances between raster cells as a function of distance

and calculated the corresponding covariance matrix to apply

Eq. (4) to the raster map.

3 Results and discussion

3.1 Statistical analysis

The N2O fluxes were log-normal-distributed with predom-

inantly minor fluxes between −0.1 and 0.1 and few high

peaks up to 8.11 g N2O-N m−2 a−1 from grasslands in the

Netherlands (Koops et al., 1997). We found significant dif-

ferences in flux data between land use categories; these are

shown in Fig. 2. In general the highest fluxes occurred on

cropland and grassland sites, whereas natural and rewetted

organic soils feature low emissions on average. Fluxes from

forest sites were on average lower than the emissions from

cropland and grasslands, but included some high outliers of

up to 6.06 g N2O-N m−2 a−1 from Slovenia (Danevčič et al.,

2010). The peat extractions sites were only represented by

35 annual flux measurements, which indicated an average

flux of 0.47 g N2O-N m−2 a−1 for active and abandoned ex-

traction sites. Table 2 lists the correlation coefficients for

N2O fluxes and main driving parameters. The mean annual

groundwater tables for different land use categories were

correlated to N2O fluxes with a correlation coefficient of

r = 0.32 (p < 0.05). In addition, Fig. 3a shows that high

N2O fluxes occurred in the range of mean groundwater ta-

ble of 0.2 to 0.9 m below the surface. The groundwater table

has been found to be a driving parameter for N2O in sev-

Figure 3. The scatter plots show (a) the N2O flux relationship to

mean annual groundwater table, (b) the relationship between N fer-

tilization and N2O fluxes for crop- and grassland with significant

(P < 0.001) linear relationship for grassland (r2
= 0.26), (c) the

N2O fluxes plotted against the C / N ratios, and (d) pH values in re-

lation to these C / N ratios including the fitted non-linear function

(ph= 15 cn−0.36) (r2
= 0.5).

eral other studies (Martikainen et al., 1993; Regina et al.,

1996; van Beek et al., 2010). Drainage increases emissions

of N2O, in particular for nutrient-rich organic soils and fer-

tilized and grazed grassland. The seasonal fluctuations of

the water table could explain more variability of N2O emis-

sions, but this information was only available for a small

fraction of the dataset. Therefore we were restricted to the

use of only the mean annual water table in our analysis. The

N-fertilization amount was also correlated with N2O fluxes

(r = 0.43, p < 0.05). Figure 3b suggests that this relation-

ship is especially strong for emissions from grasslands. The

N2O fluxes plotted against the C / N ratio indicated a ratio

threshold at approximately 30–35 below which high fluxes

occur in the dataset (see Fig. 3c). This result provides evi-

dence and supports the findings of Klemedtsson et al. (2005)

that the C / N ratio can be a strong predictor of N2O emis-

sions from organic soils. Peat mineralization releases carbon

as CO2, while nitrogen preferentially remains in the soil. Ni-

trogen fertilization has a similar net effect, and thus both pro-

cesses reduce the soil C / N ratio. Therefore the C / N ratio

can be utilized as an indicator of soil processes and condi-

tions that trigger N2O emissions. Figure 3d shows that low

pH values were related to high C / N ratios and vice versa.

The collected site data revealed a non-linear relationship be-

tween pH values and corresponding soil C / N ratios. Due to

unavailable data for C / N ratios at the European level, the soil

Biogeosciences, 11, 6595–6612, 2014 www.biogeosciences.net/11/6595/2014/
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Table 2. Correlation matrix of N2O fluxes and potential driving parameters for the available dataset from organic soils in Europe. The

parameter names are described in Table 1.

N2O bd corg ntot ph cn pd tair tsoil pp wt wfps nmin nfert

N2O 1.00 0.17 −0.10∗ 0.07 −0.05 −0.19 −0.14∗ 0.06 0.07 0.11∗∗ 0.32 −0.30 0.10 0.43

bd 1.00 −0.80 −0.39 0.37 −0.48 −0.32 0.34 −0.08 −0.17 0.46 0.07 −0.04 0.25

corg 1.00 0.38 −0.50 0.59 0.27 −0.32 −0.08 0.15 −0.31 −0.12 −0.12 −0.13∗∗

ntot 1.00 0.14∗ −0.40 0.34 0.04 0.11 −0.04 −0.21 0.07 0.26∗ 0.16

ph 1.00 −0.64 −0.31 0.06 0.22∗ −0.30 0.29 −0.03 0.29∗∗ 0.19

cn 1.00 0.02 −0.22 −0.18 0.15 −0.20 −0.19 −0.36 −0.18

pd 1.00 0.17∗∗ 0.29∗ 0.10 −0.39 −0.06 −0.20 −0.22

tair 1.00 0.77 0.02 −0.11∗ −0.01 0.15 0.16

tsoil 1.00 0.44 0.15 −0.26 0.27 0.07

pp 1.00 −0.13∗∗ −0.14 0.24∗ 0.01

wt 1.00 −0.39 0.08 0.17

wfps 1.00 0.10 −0.01

nmin 1.00 0.10

nfert 1.00

Level of significance: ∗∗ significant at P ≤ 0.01, ∗ significant at P ≤ 0.05.

pH relationship to C / N ratios was used as partial proxy for

C / N ratio in the regionalization. There is a general trend that

managed organic soils with low C / N ratio occur on fertile,

minerotrophic peat soils with higher pH values while high

C / N ratios are found in nutrient-poor ombrotrophic peat-

lands. Nevertheless, the wide scatter of pH values for a given

C / N ratio indicates more complex spatial patterns, and pH

also has an independent direct influence on N2O formation

(see below). Several other studies found evidence for climate

influence at particular peatland sites or regions (Dobbie et al.,

1999; Sozanska et al., 2002; Lohila et al., 2010), which can

be confirmed in the following land-use-stratified models.

3.2 Model calibration and validation

3.2.1 Complete dataset

We applied the fuzzy logic model approach for the entire

flux dataset, which results in the best-fitted model ensemble

(NSEcv = 0.12) for four covariates (bulk density, ground-

water table, mean winter temperate and annual precipita-

tion). The stochastic variability within the data prevents the

generic model approach from predicting the measured fluxes

accurately. Thus validation results were unsatisfactory and

we investigated further improvements using data partition-

ing with categorical parameters such as land use category,

peat type and climate zone. The peat-type-stratified dataset,

separated into bog, fen and shallow peat soils, results in im-

proved model fits for each peat type. Peat type, however, can-

not be regionalized due to the lack of European spatially ex-

plicit maps. In contrast to Freibauer and Kaltschmitt (2003),

where N2O fluxes from temperate and sub-boreal climates

on mineral soils showed different mean and maximum emis-

sions, we found no significant differences between climate

zones for N2O fluxes on organic soils. Hence the data par-

titioning by climate zones had no improving effect on the

model performance. We achieved the best model results for

land use stratification and separately developed fuzzy logic

models for cropland, grassland, forest and extraction sites.

Therefore each land use model has a different number and

range of observations, as well as different covariates. Table 3

gives an overview for the land-use-specific N2O flux data and

corresponding model performances.

3.2.2 Cropland

The best-fitted cropland model has a model efficiency of

NSE= 0.63 and was calibrated for three parameters – topsoil

pH, the mean groundwater table and the annual precipitation

amount. These model covariates were validated for 40 ob-

servations from 20 sites on which all three model parameter

were available in our dataset. The range of N2O fluxes from

the cropland sub-dataset (−0.02, 3.70) in g N2O-N m−2 a−1

was comparable to the range of the complete cropland dataset

(−0.02, 6.10). Only a few extremely high fluxes were ex-

cluded, and so the mean values are equivalent. Using this

sub-dataset, we were able to achieve the best model fit of

NSEcv = 0.41 in terms of an independent cross validation

(compare Fig. 4).

As has been mentioned in Sect. 3.1, the topsoil pH of crop-

lands was not only correlated to N2O emissions (r =−0.53,

p < 0.001) but also significantly to the C / N ratio (r =−0.68,

p < 0.001). Mørkved et al. (2007) suggested the soil pH to

be a strong controlling factor for N2O fluxes because it af-

fects the N2O production processes of both denitrification

and nitrification. Additionally they stated that low-pH soils

have higher N2O / N2 production ratios and thus higher po-

tential N2O emissions. The described effect is also observ-

able for fluxes from croplands on organic soils. Weslien et al.

(2009) also found a strong negative correlation of soil pH and

N2O emissions in their data. They argued that the dinitrogen
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Table 3. List of calibrated and validated N2O fuzzy logic models

with covariates that are described in Table 1 (Parameters), number

of flux measurements (Nflux) and model performances of calibra-

tion (NSEcali) and cross validation (NSEcv) for different land use

categories, respectively.

Land use Parameters Nflux NSEcali NSEcv

Crop wt, ph, pp 40 0.63 0.41

Grass nfert, tair winter, 96 0.68 0.58

pp autumn

Forest wt, ph, tair 60 0.66 0.25

Extraction bd, pp, tair winter 21 0.89 0.28

Natural – 132 – –

oxide reductase is inhibited by acidic pH and can thus en-

hance N2O emissions (Firestone and Davidson, 1989; Skiba

and Smith, 1993). This result is supported by the findings of

Liu et al. (2010), who found a strong negative correlation be-

tween the N2O / N2 product ratio of denitrification and soil

pH.

The second important parameter in the model, the ground-

water table, is well known as a proxy for oxygen availabil-

ity in topsoil and can therefore significantly control the N2O

production processes (Regina et al., 1996; van Beek et al.,

2010). We found a correlation between N2O and groundwa-

ter table in the cropland dataset which confirmed this signif-

icance (r = 0.31, p < 0.05). The model indicates that deep

drainage induces higher fluxes of N2O. In contrast to Fig. 3a,

which includes all land use categories, the model structure

for the relationship of groundwater table and N2O fluxes for

croplands only was linear and not in the form of a hump-

shaped, non-linear curve. The sub-dataset for croplands in-

dicated a linear increase in N2O fluxes with deep drainage.

Furthermore, precipitation emerged as the third model com-

ponent. Precipitation increases the WFPS in topsoil and can

trigger N2O flux peaks immediately after the rain events

(Dobbie et al., 1999; Dobbie and Smith, 2003). High annual

precipitation amounts can increase the probability of such

N2O peak flux events in drained agriculturally used organic

soils.

The expected role of N fertilizer, i.e. as a N2O emission

amplifier on croplands (Velthof and Oenema, 1995; Skiba

et al., 1998), could not be confirmed in our modelling ap-

proach. Both the statistical analysis, shown in Fig. 3b, and the

fuzzy modelling approach found no significant relationship

of N2O fluxes and N fertilization. Organic soils under crop-

lands had C / N ratios below 30 and are likely strong sources

of nitrogen from peat mineralization. Assuming a soil carbon

loss from mineralized peat of 7.9 tCha−1 a−1, as suggested

by the IPCC (IPCC, 2013, Table 2.1), it would result in a

mean N mineralization of approximately 424.7 kgha−1 a−1

for cropland sites in our database with average C / N ratios of

18.6± 5.8. This exceeds the maximum amount of N fertilizer

(288.8 kgha−1) that has been applied to cropland sites. The

Figure 4. Fuzzy model performance for calibration and cross vali-

dation of N2O fluxes from cropland on organic soils. The modelled

fluxes (x axis) represent the mean flux rates from a model ensemble

of 50 individually bootstrapped models. The cross validation was

performed by excluding one site per iteration.

Figure 5. Fuzzy model results for calibration and cross validation

for N2O fluxes from grassland on organic soils. The modelled fluxes

(x axis) represent the mean flux rates from a model ensemble of

50 individually bootstrapped models. The cross validation was per-

formed by excluding one site per iteration.

estimated mean N mineralization suggests that, independent

of fertilizer application, sufficient substrate for N2O produc-

tion is available and that the N2O production is not limited by

external N input. All high fluxes from croplands were mea-

sured on deeply drained sites, which is also reflected in the

regionalization by using the groundwater distribution with

a mean water table of 0.58 m below surface. In summary,

sensitivity analysis shows that the cropland model predicts

the highest emissions on sites with a combination of deep

drainage, a soil pH around 4.0 and a high amount of annual

precipitation, whereas the lowest emissions occur for soils

with higher pH values and water table near the surface, re-

gardless of rainfall.

3.2.3 Grassland

Grasslands are the best-observed land use category, repre-

sented by 217 annual flux measurements. The automatic cali-

bration results in a fuzzy model with three parameters, which

can explain about 68 % of the variability in the flux data

(NSE = 0.68). The parameters are nitrogen fertilizer amount,
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Figure 6. Fuzzy model results for calibration and cross validation

for N2O fluxes from forest sites on organic soils. The modelled

fluxes (x axis) represent the mean flux rates from a model ensemble

of 50 individually bootstrapped models. The cross validation was

performed by excluding one site per iteration.

mean winter temperature and precipitation in autumn. The

required parameter combination is available for 96 observa-

tions from 44 sites that cover the N2O flux range of (−0.03,

4.10) with a higher mean (x̄ = 0.67) than the complete

grassland dataset (x̄ = 0.58 g N2O-N m−2 a−1). The cross

validation could reproduce nearly 60 % of the variability in

the data (NSEcv = 0.58) (Fig. 5). In agreement with the sta-

tistical analysis (Fig. 3b), we also found the significant rela-

tionship of N2O fluxes and N fertilization for the grasslands

fuzzy model approach. The amount of N fertilization was

directly correlated (r = 0.54, p < 0.05) to the fluxes from

grassland sites, whereas no relationship was found for crop-

lands. In fact, the N-fertilization amount was the most im-

portant model parameter. The importance of N fertilization

has been recognized in several other studies on organic soils

(Velthof and Oenema, 1995; Skiba et al., 1998). The differ-

ent responses for grassland and cropland have also been ob-

served and modelled for N2O fluxes from mineral soils (De-

chow and Freibauer, 2011). Furthermore different sensitiv-

ities to N fertilization on temperate and sub-boreal agricul-

tural mineral soils are discussed in Freibauer and Kaltschmitt

(2003) and Roelandt et al. (2005).

In addition to the management influence, the mean winter

air temperature is also correlated to N2O fluxes (r = 0.40,

p < 0.05) and was identified as a second important model pa-

rameter. The emissions increased with rising winter air tem-

peratures up to maximum values approximately around 0 ◦C.

This relation of N2O fluxes to mean temperatures in winter

months (December, January and February) can be a proxy

for the amount of released emissions due to freeze–thaw cy-

cles as described in Freibauer and Kaltschmitt (2003) and

Jungkunst et al. (2006). Although the interaction of param-

eters, e.g. air temperature, WFPS and snow cover, that can

induce freeze–thaw cycles is complex and highly variable,

the model successfully worked with winter temperature as

a simple input parameter. This is especially useful with re-

gard to model upscaling attempts, because the temperature,

Figure 7. Fuzzy model results for calibration and cross validation

for N2O fluxes from peat extraction sites on organic soils. The mod-

elled fluxes (x axis) represent the mean flux rates from a model

ensemble of 50 individually bootstrapped models. The cross valida-

tion was performed by excluding one site per iteration.

as well as the winter temperature only, is easily available at

the European level.

Autumn precipitation emerged as the third model com-

ponent. We observed a positive correlation (r = 0.50,

p < 0.05) between the rainfall amount in autumn months

(September, October and November) and the N2O fluxes on

grassland sites. As stated before, precipitation can increase

the WFPS in topsoil and trigger N2O fluxes (Dobbie et al.,

1999). This strong statistical relation between autumn pre-

cipitation and N2O has not been described before for or-

ganic grasslands, but agrees with evidence in mineral crop-

lands Dechow and Freibauer (2011). High precipitation in

autumn leaves wet soils in winter, which is a precondition

for freeze–thaw peaks of N2O emissions. In summary, grass-

lands N2O fluxes are sensitive to N fertilization and sea-

sonal precipitation and temperatures. Highest emissions are

expected for intensively managed grasslands with high N in-

put, which are controlled by winter temperature and rainfall

events in autumn.

3.2.4 Forest

The measured forest N2O fluxes in the dataset (n = 170)

are dominantly located in boreal (61 %) and sub-boreal re-

gions (22 %), whereas temperate forest sites make up only

a small percentage (17 %). These climatic regions have dif-

ferent mean N2O emissions 0.51, 0.33 and 0.26 in g N2O-

N m−2 a−1 for temperate, sub-boreal and boreal climates, re-

spectively. However the range within the climatic regions are

comparable and no significant difference between mean N2O

fluxes is recognizable. The best-fitted forest model consisted

of three parameters: mean groundwater table, topsoil pH and

the annual mean air temperature with a model efficiency of

NSE= 0.66. The corresponding sub-dataset consisted of 60

observations from 38 sites that cover the N2O flux range of

(0.01, 6.06) in g N2O-N m−2 a−1, which is almost identical

to the complete forest dataset. The cross validation left sig-

nificant variability unexplained (NSEcv= 0.25). Clearly, the
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Figure 8. European N2O fluxes for 1 km× 1 km raster grid cells calculated with the fuzzy logic model approach (left) and the corresponding

pixel-wise model uncertainty as standard deviations (right) for organic soils in g N2O-N m−2 a−1. The land use classification is based on

CORINE land cover.

validation dataset is too small to robustly describe general

relationships.

Topsoil pH turned out as most important driver with higher

N2O emissions for pH values lower than 5.5. In forests we

also observed C / N ratios below 30 under acid conditions.

Therefore the stated relationship between pH and C / N ex-

hibits too much variation to get utilized. Nevertheless, the

soil pH can be selected directly as driver for N2O emissions

because it explains a major part of the variability. The re-

sponse of N2O in organic soils under forests thus resembles

the response under cropland.

The mean annual groundwater table was modelled as a

hump-shaped function, similar to Fig. 3a, and predicted the

highest N2O fluxes in a drainage range from 0.4 to 0.8 m

below ground. Martikainen et al. (1993) and Regina et al.

(1996) stated that lowering the water table in boreal peat-

lands increases the N2O fluxes from soils, especially more in

minerotrophic than in ombrotrophic sites. The presented for-

est model can reproduce this effect, due to the combination

of groundwater table and pH value, which can be utilized as

a proxy for nutrient supply.

Mean annual air temperature was identified as a third

model parameter with increasing N2O emissions in warmer

regions. In general the model predicts lower N2O fluxes

from forest sites in comparison to crop- and grassland sites

and only a few hotspot emissions appeared under drained,

nutrient-rich and warm conditions.

3.2.5 Peat extraction

N2O flux data were only represented by 35 observations from

20 different peat extraction sites. The N2O fluxes from ex-

traction sites ranged from −0.01 to 3.69 with a mean of

0.47 g N2O-N m−2 a−1. The fuzzy logic model calibration

achieved the best performance (NSE= 0.89) with three pa-

rameters: the topsoil bulk density, the annual precipitation

and the winter temperature. The required parameters were

available for 21 observations from 12 sites with a similar

mean and range for N2O fluxes in comparison to the com-

plete peat extraction dataset. The best-fitted model achieved

a model performance of NSEcv= 0.28. Comparable to the

forest model validation, the dataset is also too small to ro-

bustly describe general relationships for extraction sites. The

bulk density of topsoils was strongly correlated (r = 0.9,

p < 0.05) to N2O fluxes from extraction sites, with high-

est N2O emissions from compacted sites. The range of bulk

densities from extraction sites covered loosely packed natural

peat densities as well as densities of high compaction, which

indicate strong peat degradation. This wide range of bulk

densities could be related to variations in management in-

tensity on extraction sites. The N2O response to winter tem-

perature and annual precipitation agrees with patterns found

for croplands and grasslands. The limited data availability

for peat extraction sites can provoke a systematic bias and

thus restrict the model upscaling accuracy. On the other hand,
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peat extraction sites comprise only a small percentage of land

area and have relatively low flux rates in comparison to other

land use categories, e.g. cropland, grassland or forest. There-

fore the impact on the European N2O emission budget is very

small.

3.2.6 Natural peatland

Natural, pristine peatlands are characterized by wet condi-

tions and peat growth. In these ecosystems the groundwa-

ter table is the limiting factor for N2O emissions, because

waterlogged soils generally have a low amount of oxygen

available, which decreases the N2O production rate (Fire-

stone and Davidson, 1989). We have 132 observations from

64 different sites with a mean flux of 0.07 g N2O-N m−2 a−1

in a range of−0.43 to 0.45 in our database. We also included

rewetted peatlands that exhibit the majority of the sparsely

occurring higher fluxes. Some of these restored sites are still

in a transitional phase after recent restoration, and shallow

drainage persists in some rewetted sites. These human influ-

ences could explain outlier N2O emissions. We were not able

to find a significant statistical relationship between gathered

driving parameters and N2O fluxes. The automatic calibra-

tion of the fuzzy model also could not identify a parameter

combination that has a greater explanatory power than the

mean flux. Therefore we used the mean value of N2O fluxes

for calculating emission budgets in further model applica-

tions. In general the N2O fluxes from natural organic soils are

very low, and even consumption can occur in wet, nitrogen-

poor soils (Chapuis-Lardy et al., 2007). Hence the contribu-

tion to the European N2O emission budget is comparatively

small. The IPCC wetland supplement even reported zero

fluxes of N2O for natural peatlands (IPCC, 2013). Nonethe-

less, fluxes from natural peatlands represent the background

N2O emissions that are expected from peatland areas without

any anthropogenic management and therefore could provide

useful information for estimating human influence.

3.3 Uncertainties

The quality of the spatial datasets for the regionalization adds

an unknown bias. The pixel information in the soil map con-

tains aggregated data, which may not be representative of the

peat soils. Bulk density data in the European soil map were

in the range of mineral soils and thus considered implausi-

ble and inadequate for regionalization. The pH range of the

European soil map agreed with the pH range in the obser-

vational dataset, but it remains unclear whether agricultural

practices such as liming have been considered and whether

the pH values given in the soil map are representative of the

land uses on the peat soils.

A sensitivity analysis of the fuzzy models showed that

driving parameter uncertainty dominated over model uncer-

tainty except for the forest model. Our approach to estimate

the driving parameters mean water table and bulk density,

which are unavailable at the European level, is not necessar-

ily spatially representative of Europe. The water table con-

stitutes the major source of uncertainty and likely bias in the

European N2O inventory. Improvements in the spatial rep-

resentation of water table annual mean values as those by

Bechtold et al. (2014) and seasonal fluctuations would also

strongly enhance inventory accuracy.

3.4 Hotspots of N2O emissions

Figure 8 shows the European N2O emission map of organic

soils with pixel-wise uncertainties derived by regionalization

of the models presented in Sect. 3.2. For all land use types,

computed distributions were positively skewed.

3.4.1 Regions

N2O emission hotspots from croplands (1.8–2.43 g N2O-

N m−2 a−1) were located in northern Denmark, Poland, Es-

tonia and southern Finland. All hotspot regions were related

to low soil pH< 4.7, which seems to be the main driving

parameter for cropland N2O emissions at continental scale.

N2O emissions from croplands are generally highest and also

have the highest N2O hotspots of all land use categories. Ap-

proximately 35 % of N2O emissions from cropland exceeded

the maximum grassland and 87 % exceeded the maximum

forest emissions.

The grassland emission hotspots (0.54–1.64 g N2O-N m−2

a−1) were predominantly located in the Netherlands, Ger-

many, Ireland and in the Baltic states. These hotspots were

linked to high N-fertilization rates larger than 250 kgha−1,

warmer winter temperatures above 0 ◦C and more than 160

mm rainfall in autumn.

Forests had a relatively small span in N2O emissions

and low peak emissions (0.59–0.8 g N2O-N m−2 a−1), which

only reached one-third of the cropland maximum and half

of the grassland maximum, respectively. The highest flux

rates were scattered all over European forest sites on peat-

lands and were related to pH values lower than 5 similar to

the pattern of cropland N2O hotspots. In addition, the forest

N2O emissions increased especially for annual mean temper-

atures above 6 ◦C, which coincides with a higher fraction of

minerotrophic peat soils.

The hotspot emissions from extraction sites

(0.78–0.87 g N2O-N m−2 a−1) were in the same range

as forest hotspots and were evenly distributed across Fin-

land and the Baltic states. They were driven by annual

precipitation above 500 mm and winter temperatures around

0 ◦C.

Natural sites were represented with the mean N2O flux of

0.07 g N2O-N m−2 a−1 from natural sites in the database and

therefore set as constant across Europe.
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Table 4. N2O emission budget for European peatlands from different approaches: fuzzy logic model (Fuzzy), average emission factors of flux

data from this study (Average) and IPCC emission factor approach (IPCC) are shown as mean and 95 % confidence interval of the budgets

in Gg N2O-N a−1. The land use categories are based on CLC 2006 (top) and HILDA 2010 (bottom).

Fuzzy Average IPCC

Land use Mean 95 % Conf. int. Mean 95 % Conf. int. Mean 95 % Conf. int.

Crop 71.734 63.903 79.565 42.443 33.113 51.730 56.417 35.586 78.116

Grass 7.848 2.856 12.841 15.687 12.036 19.365 22.780 13.080 31.180

Forest 64.005 37.980 90.031 42.157 26.730 57.583 8.196 0.524 15.612

Extraction 0.099 −0.045 0.240 0.134 0.050 0.218 0.009 −0.001 0.018

Natural 5.795 2.078 9.513 5.795 2.041 9.469 0.000 0.000 0.000

Sum 149.482 93.718 205.246 106.216 68.701 143.732 87.402 53.980 120.824

Crop 40.446 36.282 44.609 22.512 17.563 27.438 29.924 18.875 41.433

Grass 29.103 12.530 45.675 53.768 41.253 66.376 82.143 43.971 116.158

Forest 63.115 36.031 90.199 45.814 29.050 62.579 9.070 0.524 17.334

Sum 132.663 76.899 188.428 122.095 84.579 159.610 121.137 72.515 169.758

Table 5. Overview of land use areas on organic soils in Europe and

corresponding implied emission factors (iEF) for the Fuzzy logic

model (Fuzzy), the average emission factors of flux data from this

study (Average) and IPCC emission factor approach (IPCC). The

land areas are shown in km2 for CLC 2006 (top) and HILDA 2010

(bottom), respectively. The emission factors are derived from the

mean N2O flux budget divided by particular land use class area and

are displayed in g N2O-N m−2 a−1.

Land use Area Fuzzy Average IPCC

iEF iEF iEF

Crop 43 397.84 1.653 0.978 1.300

Grass 27,046.10 0.290 0.580 0.842

Forest 132 986.80 0.421 0.317 0.062

Extraction 283.35 0.349 0.473 0.032

Natural 81 626.15 0.071 0.071 0

Crop 23 018.50 1.757 0.978 1.300

Grass 92 703.48 0.314 0.580 0.842

Forest 144 525.03 0.410 0.317 0.062

3.4.2 Evidence

The hotspot locations of N2O fluxes from cropland sites can

be confirmed by measurements in the database from Den-

mark (Petersen et al., 2012), southern Finland and Germany.

Observed N2O fluxes of up to 6.11 g N2O-N m−2 a−1 from

soils with low pH between 4.0 and 5.5 support the model re-

sults. Unfortunately, the modelled hotspot regions in Poland

cannot be validated with observations.

Grassland emission hotspots in the Netherlands and Ger-

many have been observed in several studies (Velthof and

Oenema, 1995; van Beek et al., 2010; Wild et al., 1998) and

are well represented in our dataset. In general the grassland

model (Sect. 3.2.3) and the spatial patterns show a strong

signal from anthropogenically induced emissions which is

slightly modified by seasonal climate conditions. The con-

trasts between croplands and grasslands have not been de-

scribed before on organic soils but agree with N2O responses

described for mineral soils at national and European level

(Jungkunst et al., 2006; Dechow and Freibauer, 2011).

In forests, the highest forest N2O flux measurements were

found in boreal peatlands in Finland and Sweden (Klemedts-

son et al., 1997; Weslien et al., 2009), as well as in a forest

in Slovenia (Danevčič et al., 2010), which exceeds the high-

est fluxes by the forest model. Remarkably, all of these N2O

hotspot fluxes are also related to a low soil pH of under 4.7

and C / N ratios below 20, which is consistent with the rela-

tion of N2O fluxes, pH values and C / N ratios for the whole

dataset in Fig. 3d.

In extraction sites, N2O emission hotspots occurred in the

Baltic region. These were of the same magnitude as the high-

est flux data from extraction sites observed in Estonia (Salm

et al., 2011).

3.4.3 Variability

The cropland model hotspot uncertainties ranged from 0.90

up to 1.01 and were comparable to the grassland uncertainties

(0.92–1.07 g N2O-N m−2 a−1) for hotspot emissions. In both

land use types, modelled N2O flux rates clearly exceed the

uncertainty range. The N2O emission pattern from croplands

and grasslands can thus be considered robust. This finding

gives important information regarding where to focus N2O

mitigation since croplands and grasslands represent the main

source of N2O emissions per area and for the total European

emission inventory (see Sect. 3.5).

In contrast, the highest forest and peat extraction fluxes

had higher uncertainties (1.31–1.51) and (0.96–1.38 g N2O-

N m−2 a−1) than modelled N2O flux rates. The high
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Table 6. List of sites with number of flux measurements and references that are included in the presented meta-study.

Name Number Number Start date End date Reference

of sites of fluxes

Aardlapalu 1 2 2009-01-01 2010-12-31 Salm et al. (2011)

Ahlenmoor 6 17 2008-01-01 2011-12-31 Beetz et al. (2013),

+ unpublished data

Alkkia 1 1 2003-05-01 2004-04-30 Mäkiranta et al. (2007)

Apukka 1 6 2001-01-01 2002-12-31 Regina et al. (2004)

Asa 4 6 2000-01-01 2001-12-31 Arnold et al. (2005)

Benediktbeuern 6 6 2005-01-01 2005-12-31 unpublished data

Bodin 5 8 2003-01-01 2003-12-31 Kløve et al. (2010)

Bodo 3 8 2003-01-01 2004-12-31 Grønlund et al. (2006)

Central Finland 12 35 1991-01-01 1992-12-31 Regina et al. (1996)

Donaumoos 7 7 1994-01-01 1999-12-31 Wild et al. (1998)

Donauried 5 5 2004-01-01 2004-12-31 unpublished data

Dümmer 6 16 2008-01-01 2011-12-31 unpublished data

Dummerstorf 5 6 2010-01-01 2011-12-31 unpublished data

Falköping 9 9 1995-01-01 1997-12-31 Weslien et al. (2009),

Klemedtsson et al. (2009)

Falla 1 1 2008-01-01 2009-12-31 Strömgren et al. (2014)

Finland 50 69 2007-01-01 2008-12-31 Ojanen et al. (2010)

Flanders Moss 4 4 2009-01-01 2009-12-31 Yamulki et al. (2013)

Flugebo 1 1 2008-01-01 2008-12-31 Strömgren et al. (2014)

Freising 29 50 2007-01-01 2012-12-31 Eickenscheidt et al. (2013),

Eickenscheidt et al. (2014),

+ unpublished data

Fyodorovskoye 1 3 2009-01-01 2011-12-31 unpublished data

Graben-Neudorf 5 10 2010-01-01 2011-12-31 Peichl-Brak (2013)

Grosses Moor 6 12 2011-01-01 2012-12-31 Leiber-Sauheitl et al. (2014),

+ unpublished data

Gullhult 1 1 2008-01-01 2008-12-31 Strömgren et al. (2014)

Gumnitz 2 10 1995-01-01 1999-12-31 Augustin et al. (1998)

Halolanmaeki 5 6 1996-01-01 1997-12-31 Maljanen et al. (2003)

Harz 2 2 2002-01-01 2002-12-31 Tauchnitz et al. (2008)

Heinrichswalde 6 18 1995-01-01 1999-12-31 ZALF unpublished data

Hiiesoo 1 4 2009-01-01 2009-12-31 Salm et al. (2011)

Ilomantsi 2 5 1991-01-01 1992-12-31 Nykanen et al. (1995)

Jokioinen 1 9 2000-01-01 2002-12-31 Regina et al. (2004)

Kannus 15 47 2000-01-01 2007-12-31 Maljanen et al. (2012)

Kasesoo 1 3 2009-01-01 2009-12-31 Salm et al. (2011)

Kendlmühlfilze 13 13 1999-01-01 1999-12-31 Drösler (2005),

+ unpublished data

Kuresoo 1 5 2009-01-01 2009-12-31 Salm et al. (2011)

Kuuma 1 9 2000-01-01 2002-12-31 Regina et al. (2004)

Lakkasuo 2 16 1991-01-01 1992-12-31 Laine et al. (1996)

Linnansuo 2 8 2004-01-01 2007-12-31 Hyvönen et al. (2009)

Ljubljana Marsh 2 4 2005-01-01 2005-12-31 Danevčič et al. (2010)

Lompolojaenkkae 1 3 2006-01-01 2008-12-31 Lohila et al. (2010)

Mooseurach 18 33 2007-01-01 2011-12-31 unpublished data

Mørke 1 3 2008-01-01 2008-12-31 Petersen et al. (2012)

Nørreå 1 1 2009-01-01 2009-12-31 unpublished data

Orramossen 1 1 2008-01-01 2008-12-31 Strömgren et al. (2014)

Paulinenaue 17 59 1995-01-01 2011-12-31 Augustin et al. (1998),

Bell et al. (2012),

Rees et al. (2013),

+ unpublished data
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Table 6. Continued.

Name Number Number Start date End date Reference

of sites of fluxes

Puhatu 1 3 2009-01-01 2009-12-31 Salm et al. (2011)

Reeiwijk 1 3 2006-01-01 2008-12-31 Kroon et al. (2010)

Rovaniemi 1 6 2001-01-01 2002-12-31 Regina et al. (2004)

Sangla 1 1 2009-01-01 2009-12-31 Salm et al. (2011)

Sernitz 2 4 1998-01-01 1999-12-31 ZALF unpublished data

Skjern 1 2 2008-01-01 2008-12-31 Petersen et al. (2012)

Spreewald 4 8 2010-01-01 2011-12-31 unpublished data

St. Vildmose 1 3 2008-01-01 2008-12-31 Petersen et al. (2012)

Valgeraba 1 4 2009-01-01 2009-12-31 Salm et al. (2011)

Vesijako 8 8 2003-01-01 2003-12-31 Minkkinen unpublished data

Westermoor 8 16 2010-01-01 2011-12-31 Beyer and Höper (2014),

+ unpublished data

Wildmoos 2 4 2001-01-01 2002-12-31 Jungkunst and Fiedler (2005)

Zarnekow 5 21 2005-01-01 2011-12-31 unpublished data

Zegveld 6 27 1992-01-01 2007-12-31 Velthof et al. (1996),

Koops et al. (1997),

van Beek et al. (2010)

uncertainty in the distribution functions of water table and

bulk density contributes most to the total uncertainty estima-

tion. The large forest areas in the boreal zone had the highest

relative uncertainty but low N2O flux rates (Fig. 8).

The uncertainty of fluxes from natural sites was calculated

by using the standard deviation (0.27 g N2O-N m−2 a−1) of

the distribution for all available N2O fluxes from natural

sites.

3.5 European N2O budget for organic soils

The European N2O budget from organic soils has been calcu-

lated by the fuzzy model, the average emission factors (EFs)

derived from the European observations and the IPCC ap-

proach. The budgets of these three approaches range between

149.5 and 87.4 Gg N2O -N a−1 for the CLC land use data and

between 132.7 and 121.1 Gg N2O -N a−1 for HILDA land use

data (Table 4). The 95 % confidence intervals (Table 4) indi-

cate no distinct differences between the three flux estimates.

The total N2O budget from organic soils is remarkably robust

despite large differences in assumptions, underlying data and

land use representation.

Only the fuzzy model is spatially explicit. The emission-

factor-based approaches assume that the observational ba-

sis is representative so that the mean observed flux repre-

sents the land use class. This assumption is obviously inad-

equate for N2O emissions from organic soils in Europe be-

cause the mean N2O emission by land use class calculated

from the fuzzy model implied emission factor (IEF) devi-

ates from the average EF of the underlying observations (Ta-

ble 5). Clearly, forests and croplands with high N2O emis-

sions and unfertilized grasslands with low N2O emissions

are under-represented in European observations. Robust in-

ventories should therefore strive for a good representation of

driving parameters, in particular soil pH and N fertilization,

which determine the high N2O emissions from cropland and

grassland.

The IPCC EFs strongly disagree with the two Europe-

based IEFs. For forests, the low IPCC EF for boreal nutrient-

poor forests seems too low for Europe, because if it is re-

placed with the EF for boreal nutrient-rich forests, then the

forest N2O budget becomes similar to the results of the fuzzy

model. The IPCC EF for cropland is between the fuzzy

model IEF and the average EF. Additional measurements

in the undersampled hotspot regions are, however, neces-

sary in order to interpret these differences. The IPCC EF for

grassland exceeds the Europe-based IEFs, but comes close

if a reasonable fraction of shallow drained grassland is in-

cluded. The IPCC EF for extraction sites is at the low end

of European observations. This strongly points to missing

hotspot observations in the worldwide IPCC database, which

are partly included as unpublished data in our database. We

conclude that the IPCC EF for extraction sites is not repre-

sentative of Europe, while the EFs for forests, croplands and

grasslands seem to match when the land stratification of nu-

trient status and drainage level is known.

The areas by land use class vary between CLC and HILDA

due to differences in classification methods. Whereas forest

areas represent approximately 50 % of total peatland area in

both classifications, crop- and grassland areas greatly differ

due to different classifications. Natural and extraction sites

are only available for the CLC land cover dataset. The land

use differences provoke proportional differences in N2O bud-

gets for croplands and grasslands. Nonetheless, the IEF de-

rived from the spatially explicit fuzzy model remains rela-
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tively stable, and so the fuzzy model can be considered to

yield robust IEFs independent of land use definitions. These

IEFs would also qualify as national or Europe-wide tier 2

approach for GHG inventories. N2O emissions from organic

soils represent up to 13 % of total European N2O emissions

reported in the EU GHG inventory of 2011 (European Com-

mission, 2013) from only 7 % of the EU area. N2O emissions

from croplands alone on organic soils contribute 13 to 17 %

to the direct N2O emissions from agricultural used soils (Eu-

ropean Commission, 2013).

3.6 Anthropogenic N2O emissions

Clearly, the N2O budget of organic soils is dominated by

emissions from managed land use systems, in particular

cropland and grassland. The natural background emission

can be estimated by assuming that the total area of organic

soils in Europe would be in pristine, natural condition. This

natural baseline emission budget would amount to 21.53

(7.58–35.16) Gg N2O-N a−1. The difference between these

baseline emissions and the emission budget with realistic

land use can be interpreted as the anthropogenic part of the

N2O emissions budget. Accordingly, the anthropogenic con-

tribution to N2O emissions amounts to 80 to 85 % of the total

European N2O budget.

4 Conclusions

We have compiled an extensive European dataset of N2O ob-

servations on organic soils, made a fuzzy model-based anal-

ysis of anthropogenic and natural drivers, and presented the

first European spatially explicit N2O budget from organic

soils. The total budget was consistent with inventories based

on static emission factors provided that the emission factors

were applied in a way that was representative of region- and

land-use-specific emissions.

N2O emissions from organic soils are dominantly driven

by human management, in particular the water table. Soil

properties such as C / N ratio, pH and bulk density modify

the response strength of organic soils to human management.

Climatic parameters such as seasonal or annual temperature

and precipitation only have a secondary role in N2O emis-

sions.

Organic soils in Europe emit more N2O than suggested

by the IPCC default methodology. Less than 100 000 km2

of agriculturally used organic soils emit about 80 Gg N2O-

N a−1, equivalent to 20 % of European direct soil N2O emis-

sions from agriculture.

Acid croplands such as in Denmark or Poland, and inten-

sively fertilized grasslands such as in the Netherlands or Ger-

many were identified as the strongest hotspots. The hotspots

from acid croplands are backed by only a few measurements

and require further investigations.

Drainage is a main driver for N2O emissions, and there-

fore the groundwater table has been integrated into the model

although it was not available for upscaling. This created ad-

ditional uncertainty in the calculated regionalized N2O bud-

get but also highlights that the largest source of uncertainty

does not come from the N2O observations but from the un-

certainty in spatial driver data. Improved spatial information

on water table is critical for reducing uncertainty in invento-

ries and targeting GHG mitigation measures. The sensitivity

of N2O emissions on mean annual water table across land

use classes indicates that water table management is one of

the most effective ways to mitigate N2O emissions from land

use of organic soils.
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