

Dr. Nicholas R. Bates
Senior Research Scientist
Bermuda Institute of Ocean Sciences (BIOS), 17 Biological Station Lane, Ferry Reach, GE01, Bermuda
email: nick.bates@bios.edu; phone: (441) 297-1880 x209
December 02, 2013

Editors
Biogeosciences

Re: Submission of manuscript bg-2013-605

To the Editors

We have submitted the following paper to *Biogeosciences*, entitled "Sea-ice melt CO₂-carbonate chemistry in the western Arctic Ocean: Meltwater contributions to air-sea CO₂ gas exchange, mixed layer properties and rates of net community production under sea ice" (bg-2013-605), by N.R. Bates, R. Garley, K.E. Frey, K.L. Shake and J.T. Mathis.

The paper reports on recent observations of the sea-ice melt water CO₂-carbonate chemistry of sea-ice melt pond water in the western Arctic Ocean. The melt pond, and co-located mixed layer biogeochemistry data was collected at nineteen sea-ice stations between 2010 and 2011 (northern Chukchi Sea and southern Canada Basin) during the NASA sponsored ICESCAPE project. The paper is primarily focused on the CO₂-carbonate chemistry of above-ice melt ponds, meltwater-influenced interface between sea-ice and mixed layer. We report the dissolved inorganic carbon and total alkalinity (and associated $p\text{CO}_2$, pH and saturation states aragonite ($\Omega_{\text{aragonite}}$)). Meltwater CO₂-carbonate chemistry is highly variable, ranging from acidic (pH of ~6) to alkaline (pH of ~10), and $p\text{CO}_2$ ranged from very low to 1500 ppm. As a context for the paper, it should be noted that very few studies have been conducted on sea-ice CO₂-carbonate chemistry, and even fewer on melt pond water.

We also discuss the potential role of meltwater for air-sea CO₂ gas exchange, and how meltwater complicates the determination of the rates of net community production (NCP) in the mixed layer beneath sea-ice. Melt ponds, transient seasonal phenomena as they are, potentially contribute to the complex drivers of air-sea CO₂ gas exchange in the Arctic Ocean and recent changes in CO₂ fluxes (e.g., see relevant papers by Bates et al., 2006; Bates and Mathis, 2009; Cai et al., 2010; Schuster et al., 2013; Manizza et al., 2013). Melt pond chemistry also contributes substantively to determination of NCP, and contributes to enhancement/amelioration of ocean acidification in the Arctic Ocean (e.g., in the western Arctic; see relevant papers by Orr et al., 2005; Steinacher et al., 2010; Bates et al., 2009; 2013).

The paper is not under consideration elsewhere. The first author was primarily responsible for writing of the manuscript and data synthesis and interpretation.

Yours truly

Dr. Nicholas R. Bates

Associate Director of Research and Senior Research Scientist