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Abstract. Terrestrial biospheric models (TBMs) are used to

extrapolate local observations and process-level understand-

ing of land-atmosphere carbon exchange to larger regions,

and serve as predictive tools for examining carbon-climate

interactions. Understanding the performance of TBMs is thus

crucial to the carbon cycle and climate science communities.

In this study, we present and assess an approach to eval-

uating the spatiotemporal patterns, rather than aggregated

magnitudes, of net ecosystem exchange (NEE) simulated by

TBMs using atmospheric CO2 measurements. The approach

is based on statistical model selection implemented within a

high-resolution atmospheric inverse model. Using synthetic

data experiments, we find that current atmospheric obser-

vations are sensitive to the underlying spatiotemporal flux

variability at sub-biome scales for a large portion of North

America, and that atmospheric observations can therefore be

used to evaluate simulated spatiotemporal flux patterns as

well as to differentiate between multiple competing TBMs.

Experiments using real atmospheric observations and four

prototypical TBMs further confirm the applicability of the

method, and demonstrate that the performance of TBMs in

simulating the spatiotemporal patterns of NEE varies sub-

stantially across seasons, with best performance during the

growing season and more limited skill during transition sea-

sons. This result is consistent with previous work showing

that the ability of TBMs to model flux magnitudes is also

seasonally-dependent. Overall, the proposed approach pro-

vides a new avenue for evaluating TBM performance based

on sub-biome-scale flux patterns, presenting an opportunity

for assessing and informing model development using atmo-

spheric observations.

1 Introduction

A key question in carbon cycle science is how terrestrial car-

bon sinks will evolve within the context of a rapidly changing

climate. Such projections of future carbon-climate interac-

tions largely depend on the accuracy of current terrestrial bio-

spheric models (TBMs), the main tool used to simulate the

processes controlling the biospheric carbon cycle. Thus, un-

derstanding and evaluating the performance of current TBMs

is an essential step toward improving the state of carbon cy-

cle research.

TBM predictions of carbon flux can be directly evalu-

ated against eddy covariance tower measurements at vari-

ous timescales ranging from hourly to interannual (Baker

et al., 2003; Balzarolo et al., 2014; Keenan et al., 2012;

Raczka et al., 2013; Richardson et al., 2012; Sasai et al.,

2005; Schaefer et al., 2012; Schwalm et al., 2010), but the

information provided by flux towers is only representative of

small spatial scales (∼ 1 km2) relative to the scales of inter-

est for global analyses. On the other end of the spectrum,

TBM predictions aggregated to large spatial and/or temporal

scales (e.g., continental/monthly to global/annual) are rou-

tinely intercompared with flux estimates obtained from in-

verse modeling based on observed atmospheric CO2 mixing

ratios (Canadell et al., 2011; Gourdji et al., 2012; Hayes et

al., 2012; McGuire et al., 2012; Turner et al., 2011), but such

large-scale comparisons make it difficult to provide directly

usable information regarding the processes driving carbon

exchange. In addition, differences among TBMs exist across

a full range of spatiotemporal scales, including interannual

variability, the timing of phenology, and the spatiotempo-

ral distribution of biospheric carbon fluxes within regions
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(Gourdji et al., 2012; Huntzinger et al., 2012; Keenan et al.,

2012; Raczka et al., 2013; Richardson et al., 2012; Schaefer

et al., 2012; Schwalm et al., 2010). These differences reflect

the fact that processes controlling carbon-climate feedbacks

are manifested differently across TBMs.

Assessing the spatial and/or temporal variability of carbon

fluxes as a method for evaluating TBMs, therefore, offers

the potential to examine the environmental processes driv-

ing carbon exchange, and hence provides an alternative path

forward in the assessment of TBM predictions. For example,

evaluating the timing of modeled phenology can highlight

issues associated with a model’s representation of Light Use

Efficiency (LUE), temperature response, and GPP response

under various conditions (Richardson et al., 2012; Schwalm

et al., 2010). Examining the interannual variability of TBM

output can identify problems with the representation of inter-

annual variability in spring phenology, soil thaw, snowpack

melt and lagged response to extreme climatic events (Keenan

et al., 2012).

The majority of previous studies examining carbon flux

variability are nevertheless based on spatially and/or tem-

porally aggregated carbon fluxes, however. An evaluation of

flux variability, or flux patterns, at the fine native spatiotem-

poral scales of TBM simulations would make it possible to

target more directly the fine-scale spatiotemporal patterns of

carbon fluxes that have been shown to relate to environmen-

tal/climatic factors directly, such as precipitation, radiation

and nighttime temperature (Beer et al., 2010; Mueller et al.,

2010; Yadav et al., 2010). Such evaluations could therefore

inform model improvements at the process level.

Observations of atmospheric CO2 can potentially be used

to assess such fine-scale spatiotemporal flux patterns. On one

hand, atmospheric CO2 observations are sensitive to fine-

scale net ecosystem exchange (NEE) spatial and temporal

variability (Huntzinger et al., 2011). On the other hand, vari-

ations in atmospheric CO2 measurements are routinely used

in inverse modeling frameworks to infer upwind sources and

sinks of CO2, and recent studies suggest that atmospheric

observations contain information about flux patterns at spa-

tial and temporal resolutions comparable to those of TBMs

run for regional to continental domains (Broquet et al., 2013;

Göckede et al., 2010; Gourdji et al., 2010, 2012). Despite

the uncertainties existing in regional inversions due to uncer-

tainties in atmospheric transport, fossil fuel emissions, fire

disturbance, and boundary conditions, these studies do point

to the possibility of evaluating the spatiotemporal patterns

of fluxes from biospheric models through the use of inverse

models.

With this goal in mind, what is needed is an atmospheric-

inversion-based method that can use variations in atmo-

spheric CO2 to assess the spatiotemporal patterns of surface

carbon fluxes simulated by TBMs. The purpose of this pa-

per is to present, evaluate, and demonstrate the application

of such an approach, applied here to the evaluation of the

1◦× 1◦ and 3-hourly spatiotemporal variability of NEE sim-

Figure 1. North American biomes, modified from Olson (2001), as

defined for the case studies; white triangles indicate the locations of

atmospheric CO2 measurement towers used in the analysis.

ulated by TBMs using atmospheric CO2 measurements. This

fine-scale variability is evaluated here within each month and

biome over North America, thus providing a way to evaluate

the seasonal and biome-specific differences in model perfor-

mance. The distinguishing feature of the proposed approach

is that it targets the evaluation of flux patterns at fine scales,

rather than flux magnitudes at aggregated scales, thereby pro-

viding a closer link to process-based understanding of TBM

performance. The approach is first evaluated with a series

of synthetic data experiments where the underlying flux pat-

terns affecting the atmospheric CO2 signals are known. The

application of this approach is further tested and demon-

strated using actual atmospheric measurements and a pro-

totypical small set of extensively studied TBM simulations

from the North American Carbon Program (NACP) Regional

Interim Synthesis (RIS) effort (Huntzinger et al., 2012).

2 Data description

2.1 Atmospheric CO2 measurements

We use continuous, high-precision atmospheric CO2 concen-

tration measurements from 35 towers for the year 2008 to

evaluate the simulated NEE spatiotemporal variability over

North American land. Figure 1 shows the location of these

towers along with the geographic coverage of seven North

American biomes as modified from Olson et al. (2001). A

majority of towers are located in Temperate Broadleaf and

Mixed Forests, Temperate Grasslands, Savannas and Shrub-

lands, Temperate Coniferous Forests and Boreal Forests and

Taiga, while very few towers are located in the other biomes

(Tundra, Desserts and Xeric Shrublands, and Tropical and

Subtropical biomes). This distribution of towers is expected

to affect the sensitivity of atmospheric CO2 data to NEE

within those biomes. The year 2008 is used as it includes
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the expansion of continuous measurement locations from the

Mid-Continent Intensive (MCI) project (Miles et al., 2012;

Ogle et al., 2006). Atmospheric CO2 measurements are pro-

cessed and averaged to 3-hourly intervals as described in

Gourdji et al. (2012). Data from all hours of the day are used

for tall towers with a height over 300 m, while afternoon data

are used for most short towers (lower than 100 m), and night-

time data are used for sites with complex topography (e.g.,

Niwot Ridge – NWR), as detailed in Shiga et al. (2014). We

further remove data that are strongly influenced by only a

few 1◦×1 ◦ grid cells, in order to exclude data that are likely

subject to systematic transport model errors (Göckede et al.,

2010; Gourdji et al., 2012; Peters et al., 2007). The resulting

total number of observations is n = 28 717.

To remove the effect of boundary conditions, we

pre-subtract the GLOBALVIEW-CO2 boundary condition

(GLOBALVIEW-CO2, 2010) from atmospheric measure-

ments as in Gourdji et al. (2012). We further remove the

impact of fossil fuel emissions by pre-subtracting concen-

trations modeled based on the VULCAN-ODIAC fossil fuel

emissions inventory (Shiga et al., 2014).

2.2 Sensitivity footprints from atmospheric transport

model

The sensitivity of the available atmospheric observations to

underlying CO2 fluxes (in units of ppmv (µmol m−2s−1)−1)

is quantified as described in Gourdji et al. (2012). In brief,

footprints are derived from the Stochastic Time-Inverted La-

grangian Transport (STILT) model (Lin et al., 2003), driven

by meteorological fields from the Weather Research and

Forecast (WRF) model (Skamarock and Klemp, 2008). The

STILT transport model has been used and examined exten-

sively at regional and continental scales (Chatterjee et al.,

2012; Gourdji et al., 2010, 2012; Huntzinger et al., 2011;

Kort et al., 2008; McKain et al., 2012). Footprints are also

used to generate synthetic observational time series based on

TBM flux simulations.

2.3 Terrestrial Biospheric Models (TBMs)

We use simulations from four TBMs to evaluate the proposed

approach, namely CASA-GFED (van der Werf et al., 2006),

SiB3 (Baker et al., 2008), ORCHIDEE (Krinner et al., 2005)

and VEGAS2 (Zeng et al., 2005), using the runs submitted

to the NACP RIS activity. These four models were selected

for analysis because of the availability of 3-hourly NEE flux

output. While CASA-GFED and VEGAS2 have a coarser na-

tive temporal resolution, their NEE fluxes have been down-

scaled to a 3-hourly resolution as described in Huntzinger

et al. (2011). Our evaluation is based on the overall NEE

simulated by each TBM, although model definitions of NEE

differ: CASA-GFED includes fire disturbance, while other

models do not; ORCHIDEE excludes crop harvest, while

others do not. A comparison and summary of these simu-

lations can be found in Table S1 in the Supplement. Fur-

ther details on the NACP RIS simulations can be found in

Huntzinger et al. (2012).

3 Regression framework linking atmospheric CO2

to NEE

The overall goal of the proposed approach is to evaluate the

spatiotemporal variability of NEE as simulated by various

TBMs using atmospheric CO2 measurements. Such an ap-

proach must be based on an inverse model that can infer

NEE from atmospheric CO2 measurements. It must also in-

clude a statistical model selection component to evaluate the

degree to which NEE patterns predicted by TBMs are use-

ful in explaining the observed atmospheric CO2 variability.

Rather than quantifying the magnitude of NEE, the primary

goal here is to evaluate the spatiotemporal NEE patterns (at

a 1◦× 1◦ and 3-hourly resolution) within specific biomes

of North America and for specific months. The approach

presented here builds on the geostatistical inverse modeling

(GIM) framework (Gourdji et al., 2010, 2012; Michalak et

al., 2004), but is presented here in the form of a regression

analysis to simplify the presentation and to emphasize the

model selection aspect of the proposed approach.

To this end, we first formulate a multi-linear regression

framework that relates atmospheric observations to NEE spa-

tiotemporal variability. Statistical model selection is then ap-

plied to determine whether, when, and where the spatiotem-

poral variability of simulated NEE is consistent with that ev-

ident from variability in atmospheric CO2. Here, the NEE

spatiotemporal variability is defined at a 1◦×1◦ spatial and

3-hourly temporal resolution, and the TBMs are evaluated

within specific biome-month combinations. Figure 2 shows

the distribution of NEE in one specific biome-month combi-

nation (i.e., Boreal Forests and Taiga in July) as an example.

To link atmospheric measurement to surface fluxes, we

first define the observed atmospheric CO2 concentrations,

with the influence of boundary conditions and fossil fuel

emissions pre-subtracted, as

z=Hs+ ε, (1)

where z is an n×1 vector of atmospheric CO2 observations, s

is an m×1 vector of the underlying NEE fluxes at 1◦×1 ◦ and

3-hourly resolution, H (n× m) are the sensitivity footprints,

namely a Jacobian matrix representing the sensitivity of each

observation to each underlying flux (i.e.,
∂zi

∂sj
) as quantified

using an atmospheric transport model (see Sect. 2.2), and

ε (n× 1) is the model-data mismatch term that represents

any discrepancies between observed (z) and modeled (Hs)

CO2 mixing ratios. The model-data mismatch term encom-

passes the influence of errors in the boundary conditions, er-

rors in the fossil fuel inventory, representation errors, aggre-

gation errors, transport model errors, and measurement er-

rors. These errors are assumed to have zero mean and to be
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uncorrelated across measurements, with their variances rep-

resented by a diagonal covariance matrix R (n× n). The di-

mensions of the matrices and vectors are based on the total

number of observations, n = 28 717, and the total number

of fluxes at a 1◦×1 ◦ (2635 such grid cells within the do-

main used here) and 3-hourly resolution (366 × 8 = 2928)

such periods within the span of the 1-year inversion), m =

2635 × 2928= 7 715 280.

The spatiotemporal NEE distribution of s is represented as

a linear model of NEE as predicted by various TBMs within

specific biome-month combinations:

s = Xβ + ξ , (2)

where X is an m×p matrix with each column represent-

ing NEE 1◦×1 ◦ 3-hourly spatiotemporal variability within

a specific biome-month combination from a specific TBM,

such that a given column is populated by the modeled NEE

from a given TBM for a given biome-month for those rows

(i.e., elements of s) corresponding to that specific biome-

month combination, while the remainder of the column is

filled with zeros. These individual columns of X are thus pre-

dictor variables for the dependent variable s. With 7 biomes

(Fig. 1) and 12 months, there are a total of 84 possible predic-

tor variables per TBM (i.e., p ≤ 84 for one TBM). The p×1

vector β represents the drift coefficient describing the rela-

tionship between X and s, and Xβ together thus represents

a statistical model of the trend of NEE. The m× 1 vector ξ

represents the portion of the variability of s that cannot be ex-

plained by the predictor variables in X, and these deviations

are modeled as having a mean of zero and a covariance ma-

trix Q (m × m) that represents how the flux deviations from

the model of the trend (i.e., s−Xβ) are correlated in time

and space.

Combining these two equations, we represent the atmo-

spheric observations z in terms of the NEE predictor vari-

ables X:

z=HXβ +Hξ + ε, (3)

where z is seen to have a spatiotemporally variable mean

HXβ and, assuming independence between ξ and ε, a resid-

ual covariance of

6 =HQHT
+R, (4)

where “T” is the matrix transpose operation. From a statis-

tical standpoint, our goal then becomes to select a subset of

TBM biome-month combinations that captures a substantial

portion of the CO2 variability observed in z. This constitutes

a classical statistical model selection problem, in which we

examine which predictor variables (candidate columns in X)

are useful in explaining the atmospheric CO2 measurements

(z).

A widely applied approach for statistical model selec-

tion is the Bayesian Information Criterion (BIC) (Schwarz,

1978). BIC takes into account both the goodness of fit, i.e.,

the residual sum of squares (RSS), and the number of auxil-

iary variables (k) in each candidate model, and can be used

to compare non-nested candidate models. BIC has also been

adapted for use with spatiotemporally autocorrelated residu-

als (Hoeting et al., 2006; Mueller et al., 2010) and within the

context of atmospheric inversions where atmospheric obser-

vations are used to inform underlying surface fluxes (Gour-

dji et al., 2012), making it ideal for the application presented

here. The standard expression for BIC is

BIC= ln |6| +RSS︸ ︷︷ ︸
log likelihood

+ k ln(n)︸ ︷︷ ︸
penalty term

(5)

where RSS represents the residual sums of squares of a given

candidate model Xc, 6 is the n× n covariance matrix of the

residuals (Eq. 4), | | denotes the matrix determinant, and k

is the number of parameters in a particular candidate model.

For the specific application presented here (Eq. 1–4), and fac-

toring out the unknown drift coefficients, β and RSS become

as in Gourdji et al. (2012):

β =
(
(HXc)

T6−1 (HXc)
)−1

(HXc)
T6−1z (6)

RSS=
[
zT
(
6−1
−6−1 (HXc)

(
(HXc)

T6−1

(HXc)
)−1

(HXc)
T6−1

)
z
]

(7)

The specific covariance parameters needed to define Q and

R, which are needed to define 6, vary between experiments,

and are obtained as described in the Supplement.

Model selection built on this framework aims to identify

the “best” model of the trend based on a tradeoff between

model size and the model’s power in explaining the varia-

tions in observed atmospheric CO2. Here, the “best” model

is specially defined as one with the minimum BIC value, pro-

viding an optimal balance between model complexity and

model fit. To identify this model, BIC is compared across

all possible combinations of predictor variables (i.e., 84 NEE

biome-months per TBM). Due to the large number of candi-

date predictor variables considered here, we implement the

branch-and-bound algorithm of Yadav et al. (2013) to in-

crease computational efficiency.

The final selected subset of TBM biome-months repre-

sents those biomes and months within which a given TBM

exhibits spatiotemporal variability that explains a substantial

portion of the variability observed in the observations z (see

Eq. 3). For a given TBM biome-month distribution to be “se-

lected” as part of the “best” model of the trend, therefore,

(1) the available atmospheric observations must be sensitive

to the spatiotemporal variability of fluxes within that biome-

month (as represented by H); i.e., the information contained

in atmospheric data sufficiently constrains the spatiotemporal

variability within that biome-month, and (2) the variability

within a particular biome-month as represented by a partic-

ular TBM must explain a sufficient portion of the variability
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Figure 2. Illustration of the 1◦×1 ◦ and 3-hourly spatiotemporal variability of NEE simulated by CASA-GFED for Boreal Forests and Taiga

in July. A vector including these 1◦×1 ◦ and 3-hourly fluxes corresponds to one ancillary variable (i.e., one column) in X.

in the atmospheric observations to offset the penalty term in

Eq. (5), i.e., the reduction in RSS must outweigh the penalty

term. On the contrary, if a given TBM biome-month distri-

bution is “not selected”, then either (1) or (2) as given above

is not satisfied, i.e., either that atmospheric observations are

not sensitive to the NEE variability within that biome-month,

or that the NEE variability as represented in the model is in-

consistent with atmospheric observations. In other words, se-

lecting or not selecting a TBM biome-month combination di-

rectly reflects on the performance of the TBM in that biome

and month, as long as we have fulfilled the requirement in

(1) above. If the condition in (1) is not met, we are not able

to use the model selection results to examine model perfor-

mance, due to the insufficient coverage of the network. We

henceforth refer to the TBM biome-month combinations in-

cluded in the final selected subset as the “selected” combi-

nations or elements, or alternately as the TBM biome-month

combinations “identified” using the atmospheric data.

4 Synthetic data and real data experiments

In this section, we describe the design of a series of Syn-

thetic Data (SD) experiments (Fig. 3) in which the under-

lying fluxes are prescribed, to assess the sensitivity of at-

mospheric CO2 measurements to NEE flux spatiotemporal

patterns within all biome-month combinations, and identify

when and where results from the proposed approach reliably

reflect model performance in simulating NEE spatiotemporal

variability. We further introduce two Real Data (RD) experi-

ments as a proof-of-concept demonstration of our approach.

In those RD experiments, we use actual atmospheric CO2

measurements to evaluate the spatiotemporal variability of

NEE as simulated by four prototypical TBMs (Sect. 2.3).

In the SD experiments, synthetic atmospheric observations

(z) are generated as described in Eq. (1) using fluxes (sTBM)

that include NEE as simulated by one of the TBMs and,

in some cases, spatiotemporally-correlated flux residuals (ξ)

and model-data mismatch errors (ε), i.e., z=H(sTBM+ ξ)+

ε. The superset of candidate ancillary variables (Fig. 3, X)

includes NEE from one or more TBMs. TBMs included in

Figure 3. Illustration of Synthetic Data (SD) case studies as de-

scribed in Sect. 4.

sTBM and X are henceforth denoted as the “truth” and the

“candidate(s)”, respectively.

The first SD case study, SD-one-∅∅ (Fig. 3), is designed

to investigate whether, when, and where the information con-

tained in current atmospheric data enables the identification

of the correct candidate TBM for a case where it is the only

TBM considered in the model selection, where this TBM

fully represents the variability in the synthetic atmospheric

observations (ξ = 0), and where no model-data mismatch er-

rors are included in the simulation (ε = 0). Given that, in

this case, the candidate TBM explains all of the variability

in the synthetic atmospheric observations, it should always

be selected if the atmospheric data are sufficiently sensitive

to NEE across all biome-months; hence, biome-months for

which the TBM is not selected are ones to which the atmo-

spheric CO2 observations are not sufficiently sensitive to off-

set the penalty term in Eq. (5).

The second and third SD case studies, SD-one-∅ε and

SD-one-ξε(Fig. 3), are analogous to SD-one-∅∅, but in-

clude model-data mismatch errors (ε 6= 0, denoted by ε)

and/or spatially correlated flux residuals (ξ 6= 0, denoted by

ξ ). These case studies are designed to test the degree to

which current atmospheric observations can inform the spa-

tiotemporal variability of NEE in cases with realistic model-

data mismatch errors and/or where the candidate TBM only

www.biogeosciences.net/11/6985/2014/ Biogeosciences, 11, 6985–6997, 2014
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represents a portion of the true underlying NEE variability. In

these case studies, noise (ε) is added to observations, gener-

ated as a random vector of independent normally-distributed

values with variances corresponding to the diagonal elements

of R, which are inferred from the RD-all-ξε experiment (de-

scribed below), and a mean of 0. In addition, for SD-one-

ξε, the flux signal from the TBMs is augmented with ad-

ditional spatially-correlated fluxes (ξ ) generated as a random

vector of normally distributed values with a covariance struc-

ture equal to that inferred from the RD-all-ξε experiment

(described below). The details of the model-data mismatch

errors and flux residuals are summarized in the Supplement.

The final SD case study, SD-all-ξε, builds on SD-one-ξε

(Fig. 3), but is designed to test whether the correct TBM can

be identified when all four TBMs are used as candidate vari-

ables. This case study therefore explores whether current at-

mospheric observations can be used to differentiate between

candidate TBMs. No constraints are placed on the model se-

lection, such that more than one TBM can be selected for the

same biome-month, but only the dominant TBM (i.e., the one

with the largest β, Eq. 6) is discussed in analyzing this case.

Finally, two RD case studies, RD-one-ξε and RD-all-ξε,

are defined analogously to SD-one-ξε and SD-all-ξε, respec-

tively, to test the applicability of our approach further by

examining the actual performance of the four prototypical

TBMs based on available atmospheric observations. The ob-

servations (z) here are the actual atmospheric measurements,

which by definition include model-data mismatch errors, and

the flux residuals are also inherently present, as no TBM

is expected to reflect the true underlying fluxes perfectly.

In each RD-one-ξε experiment, one of the four prototypi-

cal TBMs is used as the candidate TBM in order to assess

individual TBM performance. In RD-all-ξε, all four TBMs

are included, analogously to SD-all-ξε, to identify the TBM

(if any) that best represents the spatiotemporal variability of

NEE within a given biome-month, based on the information

provided by the atmospheric measurements.

5 Sensitivity of atmospheric observations to NEE

spatiotemporal variability and evaluation of the

proposed approach

The SD-one-∅∅ experiment examines the sensitivity of at-

mospheric observations to underlying flux variability, and

evaluates the proposed approach under idealized conditions

where the true flux field is perfectly represented by the candi-

date TBM model, and where no model-data mismatch errors

are included in the synthetic atmospheric observations.

Results indicate that the candidate TBM is selected for

over 90 % of all biome-months (Fig. 4, top row), demon-

strating that atmospheric observations are sensitive to NEE

spatiotemporal variability, and that the proposed approach

leverages this sensitivity to correctly identify the TBM model

as being representative of the flux variability within the vast

majority of biomes and months. The only notable exception

is for the Tundra biome, for which, other than during the

height of the growing season, the atmospheric data do not

provide a sufficient constraint on the flux variability, due to

the poor data coverage and the weak biospheric signal. Be-

cause this biome is expected to play an important role in the

future global carbon cycle and climate (Belshe et al., 2013;

Ping et al., 2008; Schuur et al., 2009; Tarnocai et al., 2009),

and large uncertainties remain in quantifying its role in car-

bon cycling (McGuire et al., 2012), this result highlights the

need for strategic placement of additional CO2 monitoring

stations in the vicinity of this biome to constrain its carbon

flux distribution.

The SD-one-∅ε and SD-one-ξε case studies examine the

degree to which the presence of model-data mismatch errors

and additional flux variability not represented by the candi-

date TBM limit the information content of available observa-

tions, and the ability of the proposed approach to identify the

consistency between the true underlying NEE patterns and

those simulated by TBMs.

Results of SD-one-∅ε show that including realistic model-

data mismatch errors decreases the information content of

atmospheric observations to the point where a TBM that in

reality represents the full spatiotemporal flux variability is

not selected for many months and TBMs within the Trop-

ical and Subtropical biome, as well as the desert and xeric

shrublands biome, in addition to the Tundra biome that was

not well constrained even under idealized conditions (Fig. 4,

middle row). The identification of a TBM as correctly rep-

resenting the flux patterns also becomes more challenging

during winter and spring within the Boreal Forests and Taiga

biomes, and the Temperate Coniferous Forests biome (Fig. 4,

middle row), especially when VEGAS2 is used as the true

flux distribution. This result is related to the fact that the

magnitude and the spatiotemporal variability of NEE sim-

ulated by VEGAS2 within those biome-months are much

smaller than for other TBMs. For example, the standard de-

viation of NEE simulated by VEGAS2 is less than half of

that of other TBMs. Overall, the inclusion of realistic model-

data mismatch, combined with the coverage of the monitor-

ing network, makes the identification of TBMs that represent

the spatiotemporal variability of fluxes within biomes unre-

liable for three of the seven biomes considered here, namely

the Tundra, Tropical and Subtropical, and Desert and Xeric

Shrublands biomes. Subsequent analyses therefore focus on

the remaining four better-constrained biomes, namely the (i)

Boreal Forests and Taiga, (ii) Temperate coniferous forests,

(iii) Temperate Grasslands, Savannas, and Shrublands, and

(iv) Temperate Broadleaf and Mixed Forests biomes.

SD-one-ξε is the most realistic single-TBM synthetic data

experiment, as it includes not only model-data mismatch er-

rors, but also variability in the spatiotemporal flux distribu-

tion that is not represented by the candidate TBM. Results

for the better-constrained biomes indicate that the ability to

identify a model as correctly representing a portion of the
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Figure 4. Average numbers of months within each season for which the candidate TBM is selected for the SD-one-∅∅, SD-one-∅ε and

SD-one-ξε case studies (Fig. 3). Grey shading in SD-one-ξε represents biomes that were determined to be not sufficiently well constrained

by available atmospheric data. DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September,

October, November. The criteria for grey areas include (1) no models being selected in one season, or (2) the overall model selection being

less than 50 % in a year.

true flux variability deteriorates in the winter months for the

Boreal Forests and Taiga, but remains largely unchanged in

the other biomes (Fig. 4, bottom row). For the winter in the

Boreal Forests and Taiga biome, the TBM is only identified

when the fluxes are based on SiB3, likely because this TBM

has a stronger flux signal in this biome during the winter rela-

tive to the other TBMs, thereby overcoming the confounding

impacts of model-data mismatch errors and additional flux

variability unexplained by the TBM.

Results of SD-one-ξε indicate that under realistic condi-

tions, the proposed approach is able to correctly identify a

TBM that represents a portion of the true underlying flux

variability within four of the seven biomes considered here,

given the monitoring network used here. The magnitude of

the model data mismatch used here was derived from the

real-data experiments (RD-one-ξε), and includes the impact

of errors in the transport model, boundary conditions, fossil

fuel emissions, and fire emissions, as well as measurement

and aggregation errors. Therefore, results suggest that con-

clusions over the four considered biomes are robust in spite

of the influences of those uncertainties. We acknowledge that

the errors applied here do not fully address the complexity of

uncertainties in the real world, as we assume that errors to

be independent and follow a Gaussian distribution. However,

the results presented here, together with evidence from the

literature (e.g., Gourdji et al., 2012; Pillai et al., 2012), sup-

port the ability to infer flux patterns despite the many sources

of uncertainty in regional inversions.

The final SD case, SD-all-ξε, is designed to explore

whether atmospheric observations can be used to differen-

tiate among several competing TBMs to identify the TBM

that best represents the underlying flux variability. Results

indicate that across the majority of the examined biomes,

months, and TBMs, the proposed approach combined with

the available atmospheric data are able to discriminate

among models for a similar fraction of TBM-biome-month

combination (Fig. 5) as when only the “correct” TBM was

offered as a candidate model (SD-one-ξε, Fig. 4, bottom

row). One noticeable difference, however, occurs during the

growing season in the Boreal Forests and Taiga, when VE-

GAS2 or CASA-GFED is used to represent a substantial

portion of the true flux variability. In these cases, the other

of these two models is often identified in the model selec-

tion procedure. This is not surprising, because these two

models yield fluxes that are highly spatiotemporally corre-

lated to one another (Fig. 6), and because biospheric signals

simulated by VEGAS2 are particularly weak (Huntzinger et

al., 2011). Overall, therefore, for the four better-constrained

biomes, the information content of the atmospheric data is

sufficient to identify a TBM that represents a substantial por-

tion of the true underlying variability using the proposed

approach, even when multiple competing TBMs are avail-

able. In other words, atmospheric observations can be used

to differentiate among competing TBMs. The exception, not

surprisingly, is when the competing TBMs have fluxes that

are highly correlated (R > 0.8), which, for the four TBMs
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Figure 5. Average numbers of months within each season for which the candidate TBM is selected for the SD-all-ξε case study (Fig. 3).

Grey shading represents biomes that were determined to be not sufficiently well constrained by available atmospheric data. DJF: December,

January, February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November.

Figure 6. The correlation coefficient of NEE spatiotemporal series as simulated by different TBMs throughout 2008 for the four biomes

better constrained by available atmospheric observations. TGSS: Temperate Grasslands, Savannas, Shrublands; Bore: Boreal Forests and

Taiga; TCoF: Temperate Coniferous Forests; TBMF: Temperate Broadleaf and Mixed Forests.

examined here, occurs most often over the Boreal Forests and

Taiga and Temperate Coniferous Forests biomes (where bio-

spheric signals are relatively weak and atmospheric data are

less sensitive), for the VEGAS2 and CASA-GFED, as well

as the SiB3 and ORCHIDEE model pairs (Fig. 6).

6 Demonstration of the proposed approach using

atmospheric observations

The results presented in Sect. 5 confirm that, given the cov-

erage of atmospheric data available in 2008, the proposed

approach is able to identify TBMs representing a substan-

tial portion of the underlying NEE spatiotemporal variabil-

ity over four better-constrained biomes of North America

throughout most of the year. In this section, by focusing on

the RD experiment results, we demonstrate the application of

the proposed approach using “real” data, by evaluating four

prototypical TBMs participating in the NACP RIS.

6.1 Performance of TBMs in simulating the

spatiotemporal variability of NEE

The RD-one-ξε case study includes four experiments, each

evaluating one prototypical TBM. As a general indication

of individual TBM performance across biomes and months,

we sum the number of candidate TBMs selected across the

four RD-one-ξε cases (Fig. 7). We find that the capabil-

ity of TBMs to simulate the NEE spatiotemporal variabil-

ity varies strongly across biomes and seasons. TBMs are

most frequently identified over the Temperate Broadleaf and

Mixed Forests biome (7 out of 12 months, with at least one

TBM identified), and least frequently identified over the Bo-

real Forests and Taiga biome (3 out of 12 months, with

at least one TBM identified). Across seasons, TBMs are

most frequently identified during the growing season (May–

September, 15 out of 20 biome-months, with at least one

TBM identified). TBMs are least frequently identified dur-

ing transition seasons (March–April and October–November,

with 2 out of 16 biome-months, with at least one TBM iden-

tified), likely reflecting known challenges of TBMs in repre-

senting the seasonal cycle of phenology (Richardson et al.,

2012; Schaefer et al., 2012; Schwalm et al., 2010). Specifi-

cally, during October–November, none of the TBMs is iden-

tified as representing the flux spatiotemporal variability in

any of the biomes, in agreement with the finding in Gourdji

et al. (2012) that carbon fluxes simulated by over 70 % of the

NACP RIS TBMs are outside the 95 % confidence intervals

of atmospheric inversion estimates in October.

Of all 48 biome-months examined, none of the four TBMs

are identified as substantially representing the spatiotemporal
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Figure 7. Number of TBMs that are selected for each biome-month in the RD-one-ξε case study. Grey shading represents biomes that were

determined to be not sufficiently well constrained by available atmospheric data.

variability within 27 biome-months, and only one TBM

is identified in 5 additional biome-months (Fig. 7). Mul-

tiple TBMs are identified as representing a portion of the

spatiotemporal variability within the remaining 16 biome-

months (Fig. 7). Interestingly, SiB3 and ORCHIDEE are se-

lected in almost all of these 16 biome-months, suggesting

that they both have the potential to explain a substantial por-

tion of the observed variability in atmospheric CO2. This is

consistent with the similarity in NEE spatiotemporal series

between SiB3 and ORCHIDEE shown in Fig. 6.

The RD-all-ξε case study identifies the TBM that best

represents the underlying flux variability (Fig. 8). Out of 27

biome-months for which no individual TBM was selected in

the RD-one-ξε experiments, 5 biome-months lead to mod-

els being selected when more than one model can be used

in combination, with the dominant TBM being ORCHIDEE

over the Temperate Coniferous Forests biome in April and

May and the Temperate Broadleaf and Mixed Forests in

February, SiB3 over the Boreal Forests and Taiga in August,

and VEGAS2 over the Temperate Grasslands, Savannas and

Shrublands in December.

Overall, SiB3 and ORCHIDEE are selected as the dom-

inant TBM in explaining the flux variability as observed

through the atmospheric CO2 measurements, more often than

VEGAS2 and CASA-GFED (Fig. 8). SiB3 appears most

representative of flux patterns over boreal biomes, whereas

ORCHIDEE is most representative over temperate biomes.

Although SiB3 is selected most often (13 biome-months),

followed by ORCHIDEE (10 biome-months), none of the

TBMs is consistently better than the others across all biomes

and seasons.

6.2 Evaluation of the TBMs and the proposed approach

within the context of earlier studies

To further evaluate the performance of, and added value pro-

vided by, the proposed approach, we assess the RD-one-ξε

results within the context of the existing literature to deter-

mine whether (1) results are consistent with the literature

wherever they are comparable, and whether (2) the proposed

approach can provide insights that go beyond those provided

by other model evaluation strategies.

Many of our findings are consistent with early work an-

alyzing the examined TBMs within the framework of the

NACP RIS. For example, we find distinctive seasonal dif-

ferences in TBM performance in simulating NEE (Figs. 7

and 8), consistent with the previously noted model misrepre-

sentation of phenology seasonality based on site-level mea-

surements (Richardson et al., 2012; Schaefer et al., 2012;

Schwalm et al., 2010). In addition, we find that models per-

form better for Temperate Broadleaf and Mixed Forests, and

that SiB3 appears to be more consistent with observations
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Figure 8. The TBM that explains the most variability in atmospheric measurements for a given biome-month, as identified by the RD-all-ξε

experiment. Grey shading represents biomes that were determined to be not sufficiently well constrained by available atmospheric data.

than other models, both of which are consistent with the

existing literature evaluating NACP RIS models (Raczka et

al., 2013; Schwalm et al., 2010). The consistency between

our results and existing literature further supports the per-

formance of the proposed approach. It also implies that, al-

though the approach proposed here is subject to many of the

same uncertainties in fossil fuel emissions, fire disturbance,

boundary conditions and transport models that affect all re-

gional inversions, the main conclusions regarding TBM per-

formance for the four major biomes examined here are quite

robust.

The proposed approach also provides the opportunity to

draw conclusions that go beyond the current literature. We

present two examples here.

First, results indicate that model capability in simulating

the spatiotemporal variability (i.e., patterns) of NEE varies

strongly with seasons, with greater skill during the growing

season than during the transition seasons. In other words,

even within specific biomes and months, the variability of

NEE is better represented during the growing season. This

seasonal variability in model performance may be due to sea-

sonal differences in the dominant environmental drivers con-

trolling the spatiotemporal variability of NEE. For example,

Mueller et al. (2010) found that the environmental drivers

controlling NEE in a hardwood forest vary across seasons,

with radiation, nighttime temperature and vegetative radia-

tion indices (e.g., the fraction of photosynthetically active ra-

diation fPAR) dominating during the growing, non-growing

and leaf-out seasons, respectively. We hypothesize that the

seasonal differences in model performance are likely related

to the models’ ability to represent the seasonally-varying in-

fluence of such environmental drivers. Because the NEE spa-

tiotemporal variability is directly related to environmental

processes and drivers (Beer et al., 2010; Mueller et al., 2010;

Yadav et al., 2012; Gourdji et al., 2012), the proposed ap-

proach provides a close link between model performance and

environmental processes.

Second, we find that SiB3 and ORCHIDEE are identified

more often as representing the spatiotemporal flux variability

than VEGAS2 and CASA-GFED. Given that the simulated

NEE spatiotemporal variability is more similar between SiB3

and ORCHIDEE, and between VEGAS2 and CASA-GFED,

relative to across these two model pairs (Fig. 6), this find-

ing suggests that aspects of the model internal structure com-

mon within the pairs likely contribute to similarities in simu-

lated flux patterns and associated performance. Such features

include (1) SiB3 and ORCHIDEE using Enzyme Kinetic

(EK) models, while CASA-GFED2 and VEGAS use Light

Use Efficiency (LUE) models to formulate their photosyn-

thesis processes, (2) the native model time step of SiB3 and

ORCHIDEE being shorter than a day, while that of CASA-

GFED and VEGAS2 varies from daily to monthly, and (3)
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SiB3 and ORCHIDEE having substantially more plant func-

tional types than CASA-GFED and VEGAS2. Although it

is not possible to draw definite conclusions about the links

between model structure and model performance in simulat-

ing flux patterns due to the small number of TBMs examined

here and the lack of a uniform simulation protocol, a future

application of this approach to a larger ensemble of models

following a uniform protocol would make it possible to ex-

plore these connection in more detail.

7 Concluding remarks

In this paper, we present, evaluate and demonstrate a statis-

tical approach based on GIM and BIC to evaluate the spa-

tiotemporal variability of NEE as simulated by TBMs against

atmospheric CO2 concentration measurements from 35 tow-

ers in North America in 2008. We demonstrate the applica-

bility of this approach by evaluating four prototypical TBMs

participating in the NACP RIS.

We first design a series of synthetic data experiments in

which the underlying fluxes are prescribed, to test the pro-

posed approach and examine whether, when, and where at-

mospheric measurements are sensitive to, and hence can con-

strain, the spatiotemporal variability simulated by different

TBMs. We find that due to the poor data coverage and weaker

biospheric signals, current atmospheric observations cannot

be used to reliably assess the flux spatiotemporal variabil-

ity in the Tundra, Desert and Xeric Shrublands, and Tropi-

cal and Subtropical biomes. The remaining four biomes (i.e.,

Temperate Broadleaf and Mixed Forests, Temperate Grass-

lands, Savannas and Shrublands, Boreal Forests and Taiga,

and Temperate Coniferous Forest), however, are found to be

sufficiently well constrained by atmospheric data. Over these

four biomes, the synthetic data experiments suggest that the

proposed model selection approach, combined with the avail-

able atmospheric data, is able to identify the TBMs that rep-

resent a substantial portion of the underlying flux variabil-

ity, as well as to differentiate between multiple competing

TBMs.

We further test and demonstrate the application of the ap-

proach by evaluating the performance of four prototypical

TBMs that have been extensively assessed in the literature

using actual atmospheric observations. We find that conclu-

sions about model performance are consistent with the exist-

ing literature for cases where results are comparable, further

supporting the applicability of our approach. Those results

include (1) TBMs representing fluxes best during the grow-

ing season (May–September) and least consistently with at-

mospheric observations during the transition seasons, espe-

cially in October and November, and (2) TBMs appearing

to perform best over the Temperate Broadleaf and Mixed

Forests biome. The experiments performed here also lead to

new conclusions about the examined TBMs. For example,

results show that SiB3 and ORCHIDEE appear to represent

the flux variability within individual biomes and months bet-

ter relative to CASA-GFED and VEGAS2. In addition, this

approach has the potential to link model performance with

environmental processes, making it possible to test the hy-

pothesis that seasonal differences in TBM performance re-

flect models’ ability to represent the seasonal variability in

the dominant environmental controls on fluxes.

The comparison conducted here only includes four TBMs,

and is intended primarily as a demonstration of the proposed

approach. Furthermore, these four TBMs were not run using

a uniform experimental protocol (Huntzinger et al., 2012),

precluding any conclusive results about linkages between

model performance and model structure. Applying the ap-

proach presented here to a larger ensemble of models, ideally

following a uniform simulation protocol, therefore represents

a logical next step.

The Supplement related to this article is available online

at doi:10.5194/bg-11-6985-2014-supplement.
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