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1 LPJmL model details
1.1 Original phenology model (LPJmL-OP)

The phenology model in the original LPJmL formulation has three different routines
for summergreen (i.e. temperature-driven deciduous), evergreen (no seasonal
variation) and rain-green (i.e. water-driven deciduous) PFTs (Sitch et al.,, 2003).
Evergreen PFTs have a constant phenology status (Phen = 1). The daily phenology
status of summergreen PFTs depends on growing degree-days (GDD):

AT =T — GDDpye
(S1)
GDD; =GDD;_4 +AT, if AT >0

Where T is the daily air temperature and GDDrase is the minimum temperature
threshold to start counting GDDs. Daily GDD is scaled to the phenology status using a

parameter ramp which is the amount of GDDs to get full leave cover:

GDD/ramp if aphen < aphenax
PhenpeT summergreen = 0 if aphen > aphenpay (S2)
0 if aphen > apheny,;,and AT <0

The daily phenology status is set back to 0 if the accumulated phenology status (aphen)
is larger than a parameter aphenmaxor if aphen is greater than aphenmin and the daily
temperature is below GDDease. The daily accumulated phenology status is calculated

as:



aphen; = aphen;_; + Phen; (S3)
For rain-green PFTs the daily phenology status is calculated dependent on the daily
water availability scaling factor Wscal in LPJmL (Supplement A.2) (Gerten et al., 2004)
and a threshold value (Wscalmin):

1 if Wscal >Wscalpin

S4
0 if Wscal <Wscaly;, 54

Phenpet raingreen = {

The phenology of rain-green PFTs has no smooth behaviour but is a binary switch
between full leave cover and no leaves according to this formulation. For herbaceous
PFTs the same phenology scheme like for summergreen PFTs is used but the
phenology status is only set back to 0 at the end of the phenology year (i.e. on the 14"
day of the year for the northern hemisphere and on the 195" day of the year for the

southern hemisphere).

—— FAPAR=FPC
g 4 —— FAPAR=FPC x(1-Fenow)
—— FAPAR =FPC x (1 =Fgnow) X (1 - Blear)
—— FAPAR =FPC x (Phen— (Phen — Fenow)) % (1 - Biear)
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Figure S 1: Effects on FAPAR in LPJmL for an example grid cell in Siberia.

FAPAR in LPJmL is computed from foliar projective cover (FPC), from snow coverage in the
green canopy (Fsnow), leaf albedo (Pleaf) and phenology status (Phen).

1.2 Water availability scaling factor

The water availability scaling factor Wscal in LPJmL is a ratio between water supply S

and atmospheric water demand D for a dry canopy (Gerten et al., 2004):

Wscal = S (S5)
D



In the LPJmL-GSI phenology model the water availability scaling factor is expressed as
a percentage value:

W =Wscal x100 (S6)
Water supply is dependent on the maximum transpiration Emax under water saturation
and relative soil moisture w: (Gerten et al., 2004):

S = Emax X Wy (87)
Atmospheric water demand D for a dry canopy is calculated from potential
evapotranspiration PET, maximum Priestley-Taylor coefficient amax = 1.391, scaling
canopy conductance gm = 3.26 mm s-1 and potential canopy conductance gpot (Gerten et
al., 2004):

1+ (9m/ 9 pot)

1.3 Albedo

Surface albedo and snow coverage routines have been implemented in LPJmL to use it
as a land surface scheme in a coupled vegetation-climate model (Strengers et al., 2010).
We used this implementation but made the albedo parameters PFT-dependent as
albedo differs between ecosystems (Cescatti et al., 2012). The albedo of a grid cell Albgc
is the area-weighted sum of the vegetation albedo Albveg, bare-soil albedo Albvare and
snow albedo:

Albgc = Albveg + Fpare X (Fsnow * Bsnow + (1= Fsnow) * Bsoil ) (S9)
where Frare and Fsnow are the coverage of bare soil and snow on top of bare soil in a grid
cell and Psoii and Psnow are the soil and snow albedo parameters, respectively. The
parameters Bsoit = 0.4 and Psnow = 0.7 were used as constants (Strengers et al., 2010) and
not further considered in this study. Although soil and snow albedo has clear spatial
and temporal variations which are due to changing moisture contents, an
improvement of these processes is not within the scope of our study. The vegetation

albedo is computed as the albedo of each PFT Albrrr and its corresponding FPC:

PFT =n

A|bveg = ZAIbPFT x FPCpgt (510)
PFT =1



The albedo of a PFT depends on the fraction of the PFT that is completely covered by
snow Fsnow,prr and the albedo of the PFT without snow coverage (Albrrrnosnow) (Strengers

et al., 2010):

Albpet = Fsnow PET % Bsnow + (L= Fsnow, PET ) X AIDPET nosnow (511)
The albedo of a PFT without snow coverage is the sum of leaf, stem/branches and litter

(background) albedo:

AlbpET nosnow = Albieat prT + Albstem prT + Albjitter, PFT (512)
The albedo of green leaves depends on the foliar projective cover, the daily phenology

status and the PFT-dependent leaf albedo parameter:

Albjeas prr = FPCppr x Phenper X Bieat prT (S13)
The albedo of stems and branches depends on the fractional coverage of the ground by

stems and branches (cstem) and a PFT-dependent stem albedo parameter (3stem,prr:

Albsiem, prr = FPCppt x (1 Phenpgr ) x cstemx Sgtem prT (514)

The parameter cstem = 0.7 (Strengers et al., 2010) was used as a constant and not
further considered in this study. The background (i.e. litter) albedo of a PFT depends

additionally on a PFT-dependent litter albedo parameter fiiter,per:

Albjitter prr = FPCppr x (1 Phenppr ) x (1—cstem) x Biiter, prT (S15)

The parameters Bicatrrt, Bstemprr and Piiterprr were implemented as PFT-dependent albedo
parameters which differs from the previous implementation (Strengers et al., 2010).
The fraction of snow in the green part of the canopy that is used to compute FAPAR
(equation 3) depends on the daily phenological status and the fraction of the PFT that is

covered by snow:
Fsnow, gv,PFT = Phenper x Fenow, pFT (S16)

The fraction of the PFT that is covered by snow depends on snow height and the daily

calculated snow water equivalent (Strengers et al., 2010).



2 FAPAR datasets

21 Comparison of the Geoland2 and GIMMS3g FAPAR datasets

We compared the Geoland2 and GIMMS3g FAPAR datasets to assess 1) the agreement
of two newly developed FAPAR products and 2) to evaluate the suitability of these
products for the optimization of FAPAR and phenology-related parameters in LPJmL.
We found important differences between the Geoland2 and GIMMS3g FAPAR datasets
during our analyses. The differences are mostly related to inter-annual variability and

trends.
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Figure S 2: Standard deviation of mean annual FAPAR from the GIMMS3g and GL2 FAPAR
datasets in 1982-2011.
The annual mean FAPAR was calculated for each year from each monthly FAPAR value for
months with monthly mean air temperatures > 0°C. Areas with large differences are
highlighted with circles.

The GL2 FAPAR dataset had a higher inter-annual variability in most regions
especially in northern Russia, central North America, Africa and eastern Australia
(Figure S 2). Despite the different amplitudes of inter-annual variability, the temporal
dynamic of annual aggregated FAPAR values was well correlated in most regions
(Figure S 25). Nevertheless, in some regions like in the North American Tundra, in
parts of the Siberian boreal forest and in the tropical forests the inter-annual temporal

FAPAR dynamic was weakly or even negatively correlated (Figure S 25).
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Figure S 3: Comparison of mean annual FAPAR from different datasets averaged for the extent
of boreal needle-leaved evergreen forests.
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Figure S 4: Monthly quantile regressions between GL2 VGT FAPAR and the GL2 VGT FAPAR
fitted to the quantile 0.95.

Each monthly quantile regression was applied to the GIMMS3g FAPAR dataset to estimate

uncertainties for this dataset. Using 0.95 quantile regressions provides conservative uncertainty

estimates for the GIMMS3g FAPAR dataset.

The temporal dynamics of mean annual FAPAR agreed relatively well between
GIMMS3g FAPAR and GL2 FAPAR in the AVHRR period. The temporal dynamic of
mean annual FAPAR agreed poorly between GIMMS3g and GL2 FAPAR in the VGT
period. Both datasets had higher biases in boreal needle-leaved evergreen forests
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(Figure S 3). An offset between the GL2 AVHRR and GL VGT FAPAR time series in the
overlapping years 1999 and 2000 is evident in all biomes. Additionally, the GL2 VGT
time series shows an abrupt jump from 2002 to 2003 which is probably due to the
sensor change from VGT1 to VGT2 (Horion et al., 2014). Because of these reasons, the
Geoland2 FAPAR dataset cannot be used for a long-term analysis of FAPAR trends

and extremes

2.2 Estimation of uncertainty for the GIMMS3g FAPAR dataset

The GIMMS3g FAPAR dataset was used for parameter optimization. For parameter
optimization it is necessary to consider data uncertainty in multiple data stream cost
functions. Unfortunately, the GIMMS3g dataset has no uncertainty estimates. On the
other hand the GL2 FAPAR dataset has uncertainty estimates but time series are not
well harmonized. Thus we were using the GIMMS3g dataset for parameter
optimization but estimated uncertainties by using regression to the uncertainty of the
GL2 FAPAR dataset (Figure S 4). Therefore we fitted for each month polynomial
quantile regressions to the quantile 0.95 between FAPAR and FAPAR uncertainty from
the GL2 VGT FAPAR dataset. Then we were using these regressions to estimate
uncertainties for the GIMMS3g FAPAR dataset.

3 Land cover

3.1 Creation of an observation-based map of plant functional types

Land cover maps from remote sensing products are not directly comparable with plant
functional types in global vegetation models because they are using different legends
for the description of vegetation (Jung et al., 2006; Poulter et al., 2011). Land cover
classes have to be reclassified into the corresponding PFTs. We were using the
SYNMAP land cover map (Jung et al., 2006), the Koppen-Geiger climate classification
(Kottek et al., 2006) and tree coverage from MODIS (Townshend et al., 2011). We
decided to use the SYNMAP land cover map because it offers fractional land coverage
and synergizes already the GLCC, MODIS and GLC2000 land cover maps (Jung et al.,
2006). PFTs in LPJmL are defined according to biome (tropical, temperate or boreal),

leaf type (needle leaved, broadleaved) and phenology (summergreen, evergreen, rain
-11 -



green). We extracted the biome information from the Koppen-Geiger climate
classification whereas leaf type and phenology were extracted from the SYNMAP land
cover map. The FPC of a PFT was derived from MODIS tree cover.

In a first step, we reclassified the Koppen-Geiger climate classification in to bioclimatic
zones (biomes) that correspond to the definition used in LPJmL (Figure S 5). This
reclassification followed to a large extent the rules of Poulter et al. (2011):

— The climate zone A was reclassified to the tropical biome.

— The climate regions BWh and BSh were reclassified to the tropical biome.

— The climate regions BWk and BSk were reclassified to the temperate biome.

— The climate region Cw was reclassified to the tropical biome.

— The climate regions Cf and Cs were reclassified to the temperate biome.

— The climate regions D and E were reclassified to the boreal biome.

Koeppen-Geiger climate classification Bioclimatic zones

m Af O BWh @ Csb W Dfb O Dsd B ET I B Tropical Temperate B Boreal |
B Am 0O Bwk O Csc @ Dfc O Dwa
O As B Cfa B Cwa B Dfd @ Dwb
O Av B Cfb B Cwb O Dsa B Dwc
@ BSh B Cic B Cwc O Dsb B Dwd
O BSk Csa W Dfa 0O Dsc B EF

Figure S 5: Reclassification of the Koeppen-Geiger climate classification in bioclimatic zones.

In a second step, we created a land cover map with PFT legend by crossing the land
cover information from SYNMAP with the map of biomes following rules for each tree
PFT:

— TrBE: EBF (evergreen broadleaved forest) AND tropical biome

— TrBR: DBF (deciduous broadleaved forest) AND tropical biome

— TeNE: ENF (evergreen needleleaved forest) AND temperate biome

— TeBE: EBF (evergreen broadleaved forest) AND temperate biome

— TeBS: DBF (deciduous broadleaved forest) AND temperate biome

-12-



— BoNE: ENF (evergreen needleleaved forest) AND boreal biome

— BoBS: DBF (deciduous broadleaved forest) AND boreal biome

— BoNS: DNF (deciduous needleleaved forest) AND boreal biome

Although we translated in this step the land cover classes into PFTs, the fractions
represent still fraction of land cover and not FPC. For example, a grid cell can be
covered by 100% forest but this forest contains only 70% trees while the rest is covered
by herbaceous plants. This difference becomes evident by comparing the total coverage
of forest land cover classes from SYNMAP with tree cover from MODIS (Figure S 6).
MODIS tree cover is always lower than forest cover but shows more spatial variability.
In a third step, we need to correct the land cover fraction with tree cover to create a
map of FPC. Thus, we calculated the FPC of each tree PFT by correcting the land cover
fraction of a PFT (LCerrr) with the ratio of fractional tree coverage from MODIS (Frree)

and the total land coverage of all 8 forest PFTs:

Fr
FPCprr =LCpFT X 5er g

(S17)
D LCper
PFT=1

This calculation of FPC differs from the approach of Poulter et al. (2011) who divided

each land cover class in fixed fractions of tree and herbaceous PFTs.
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Figure S 6: Comparison of total forest coverage from SYNMAP and MODIS tree coverage for a
region in eastern Siberia.
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In the last step we need to calculate the FPC of herbaceous PFTs:

FPCherb =1— Frree — LCRarren — LCwater — LCsnow/ Ice (518)

which is the residual area by removing the fractional tree coverage from MODIS and

the land cover fractions of bare soil and rocks, water and permanent snow and ice from

the total grid cell. Thus, grasslands, croplands and shrub lands were assigned to

herbaceous vegetation. Then we divided the herbaceous FPC into the TeH, PoH and

TrH PFTs according to biomes:

— TrH: FPChens AND tropical biome

— Old TeH: FPCrer» AND temperate OR boreal biome

The TeH was further splitted in a new temperate herbaceous and a polar herbaceous

PFT to separate between temperate grasslands and tundra:

— TeH (new): old TeH AND temperate OR boreal biome AND boreal trees < 0.3

— PoH: old TeH AND (boreal biome OR Koeppen-Geiger E climate) AND boreal trees
>0.3

These steps yielded in observation-based maps of foliar projective cover for each PFT

(Figure S 7). As the input data (SYNMAP and MODIS VCF) is based on satellite data

from the years 2000/2001 the retrieved maps reflect the distribution of PFTs for the year

2000.

3.2 Comparison of simulated and observed PFT distributions

We compared the observation-based PFT map with the simulated PFT distribution
from LPJmL-OP for the year 2000. LPJmL with dynamic vegetation simulated usually
too high tree and too low herbaceous cover in all regions (Figure S 8). In the central
tropical forests (Amazon, Congo basin) LPJmL simulated too low cover of TrBE but too
high cover of TrBR. The coverage of BoNE was too low in some regions in North
America and Eastern Siberia. The simulated distribution of BONS did not agree much
with the observed distribution which is almost limited to eastern Siberia. Tree cover
was especially overestimated in regions with only sparse tree cover (Savannahs,
Steppe/boreal forest transition, eastern Siberia). The extent of boreal forest PFTs (BoNE,
BoBS, BoNS) is generally too large with far southward extensions into the Steppe and

northward extensions into the Tundra.
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Figure S 7: Observation-based maps of the foliar projective cover of plant functional types.
Agricultural areas are included in the TrH and TeH PFTs.

As expected, the prescription of the observed PFT maps into LPJmL generally
improved the representation of the observed PFT distributions (Figure S 8). The spatial
patterns of PFT distributions were highly correlated and the bias in comparison to the
observed distribution was clearly reduced in comparison with the model run with
dynamic vegetation. The PFT distribution of the LPJmL model run with prescribed
land cover does not perfectly agree with the observed PFT distribution which is due to
the applied prescription approach. Tree PFTs can have a lower FPC in LPJmL than the
prescribed FPC value because the trees are still growing or because mortality reduced
the FPC. This effect especially happened in the BONE PFT where fire reduced the FPC
in large regions in Canada and eastern Siberia (Figure S 8). Herbaceous PFTs can have
a higher FPC than the observed FPC value because these PFTs were allowed to
establish the entire grid cell (except the fraction that is barren, water or permanent
snow/ice in the observations). This happened for example when fires burnt tree PFTs

and herbaceous PFTs succeeded afterwards in LPJmL. This is the reason for the

-15-



overestimation of herbaceous coverage in large regions in Canada and eastern Siberia

where the BoNE PFT was underestimated (Figure S 8). In summary, the prescription of

land cover improved the representation of observed spatial patterns of PFTs in LPJmL.

Differences to the observed PFT distribution are due to the desired ability of LPJmL to

represent important processes of vegetation dynamics like mortality processes.
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Figure S 8: Comparison between simulated and observed PFT distributions for the year 2000.
The maps are difference maps between simulated FPC values from LPJmL-OP and observed
FPC values. The scatter plots show observed FPC values on the x-axis and simulated FPC
values on the y-axis. Left: LPJmL-OP with dynamic vegetation and prescribed burnt areas.
Right: LPJmL-OP with prescribed land cover and prescribed burnt areas.
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4 Model parameter optimization

4.1

This section documents the LPJmL parameters that were addressed in this study. The
parameters and their use in the model are described in Table S 1. The information
sources from which prior parameter values were extracted for each optimization
experiment are shown in Figure S 9. Tables S 2-5 list prior and posterior parameter

values of each optimization experiment according to the logical flow of optimization

experiments indicated in Figure S 9.

Parameter definitions and values

Sitch et al. 2003 || Strengers et al. 2011 || MODIS || Stockii et al. 2011 |

| arbitrary |

GSI par. for cold
and light functions

GSI par. for heat
and water functions

|

v 3

a, | | OP par. sfc
J— * _ LPJmL-OP |
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i PFT-level i
| | optimization :
i No plausible | |
i parameters | !

LPJmL-GSI
» GSl.prior | Table S4
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Figure S 9: Information sources for prior and posterior parameter sets and overview of model

Grey boxes indicate model parameters or parameter sets. White boxes are information sources

optimization experiments.

for parameters. Yellow boxes are optimization experiments.
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Table S 1: Description of LPJmL model parameters that were addressed in this study.

Para- Alternative name Use Description Unit
meter
Photo- Leaf-to-canopy scaling parameter
a, ALPHAA svnthesis (amount of radiation absorbed at leaf- -
y level in comparison to total canopy)
Albedo,
Breat ALBEDO_LEAF EAPAR Albedo of green leaves -
Bstem ALBEDO STEM Albedo Albedo of stems and branches -
Biitter ALBEDO LITTER Albedo Albedo of litter -
FPC, Light extinction coefficient in Lambert-
K LIGHTEXTCOEFF  £apAR  Beer relationship -
sfc SNOWCANOPYFRA Albedo, Maximum fraction of snow in the )
C FAPAR green canopy
Original Minimum value of the water
Wscaly,in,  MINWSCAL 9 availability scaling factor for leaf onset -
phenology in rain green PFTs
Original Minimum daily temperature to start o
GDDyase  GDDBASE phenology  counting growing degree days C
Original Number of growing degree days to
ramp RAMP hé;nolo reach full leave cover in °C
P 9y summergreen PFTs
Original Minimum accumulated phenology
apheny,, APHEN_MIN he?nolo state to allow senescence if -
P 9y temperature < GDDBASE
Original Maximum accumulated phenology
aphenn,c  APHEN_MAX 9 state. Phenology is set back to 0 if -
phenology : .
this value is passed.
. GSl Slope of cold temperature limiting o
Shmin TMIN_SL phenology logistic function for phenology 1°C
GSlI Inflection point of cold temperature o
baseimin TMIN_BASE phenology limiting logistic function for phenology C
GsI Change rate of actual to previous day
Timin TMIN_TAU henolo cold temperature limiting function -
P 9 value for phenology
_ GSI Slope of light limiting logistic function 1/(W/
Slignt LIGHT_SL phenology  for phenology mg)
. GSI Inflection point of light limiting logistic 2
basejgn  LIGHT_BASE phenology  function for phenology Wim
GsI Change rate of actual to previous day
Tiight LIGHT _TAU light limiting function value for -
phenology phenology
Shyater WATER_SL GSI Slope of water limiting logistic function 1%
phenology for phenology
GSl Inflection point of water limiting o
basewser  WATER_BASE phenology logistic function for phenology %
GsI Change rate of actual to previous day
Twater WATER_TAU water limiting function value for -
phenology phenology
GSI Slope of heat limiting logistic function o
Slhear TMAX_SL phenology  for phenology c
GSl Inflection point of heat limiting logistic .
basenea TMAX_BASE phenology function for phenology C
GsI Change rate of actual to previous day
Theat TMAX_TAU heat limiting function value for -
phenology

phenology
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Table S 2: Prior parameter values of LPJmL-OP (OP.prior).
The values in brackets are ranges of uniform parameter distributions that were used during
optimization. Note: * The parameter GDDbase was changed to 0°C. This value gave better
agreements between simulated and observed seasonal FAPAR dynamics than the original value
of 5°C. Nevertheless, GDDbase was not included in optimization experiments because this
parameter is highly correlated with the parameter ramp.

TrBE  TrBR  TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

05 05 05 05 05 05 05 05 05 05
O (0.1- (0.1- (01- (0.1- (01- (0.1- (01- (0.1- (0.1-  (0.1-
09) 09) 09 09 09) 09 09 09 09 0.9

015 015 015 0.15 016 014 015 012 0.14 0.15
Beat  (0.1-  (0.1-  (0.06- (0.09- (0.086 (0.05- (0.09- (0.1- (0.072 (0.09-
02) 0.2) 023) 023 -023) 023) 021) 015 -0.22) 0.21)

015 015 013 015 013 014 014 013
Beem  (0.018 (0.073 (O- (0.029 (0.038 (0- (0.059 (0.052 -- -
-0.29) -0.23) 0.31) -0.28) -0.23) 0.31) -023) -0.32)

015 0.14 013 0.15 014 013 014 012 014 013
Biew  (0.018 (0.058 (0.047 (0.044 (0.085 (0.035 (0.078 (0.088 (0.027 (0.02-
-0.29) -0.27) -0.21) -029) -0.2) -0.26) -0.22) -0.23) -0.38) 0.28)

0.4 0.4 0.4 0.4 04 04 0.4 0.4 0.4 0.4
sfc ©.1- (©.41- (01- (01- (01- (01- (01- (0.1- (0.1-  (0.1-
09) 09) 09 09 09) 09 09 09 09 0.9

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

k (0.1- (.- (©.1- (01- (01- (01- (01- (01- (0.1-  (0.1-
09) 09 09 09 09 09 09 09) 09) 009
GDDba . - . . 0* . 0* 0* 0* 0*
Wscal 0.3
min - o1 — - - - - - — —
300 200 200 100 100
Ramp - - - - (0- - (0- (0- (0- (0-
1000) 1000) 1000) 1000) 1000)
aphen _ _ _ 1001- 1001- 1001- _
min 600) 600)  600)
aphen 210 210 210
- - - - - - - (- - -
max 600) 600)  600)
4.2 Genetic optimization algorithm

We were using a genetic optimization algorithm to minimize the cost function J(d) by
optimizing the scaled parameter vector d. The GENOUD  algorithm (genetic
optimization using derivatives) (Mebane and Sekhon, 2011) combines global genetic
optimization search with local gradient-based search algorithms. In genetic
optimization algorithms, each model parameter is called a gene and each parameter set
is called an individual. The fitness of this individual is the cost of the model against the
observations. At the beginning of the optimization, a first generation of individuals is
initialized by random sampling of parameter sets within the prescribed parameter
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ranges. After the calculation of the cost of all individuals of the first generation, a next
generation is generated by cloning the best individuals, by mutating the genes or by
crossing different individuals (Mebane and Sekhon, 2011). This results after some
generations in a set of individuals with highest fitness, i.e. parameter sets with
minimized cost. Within the GENOUD algorithm we were using also the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) gradient search algorithm (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) to find an optimum parameter set. An
optimized parameter set of the BFGS algorithm is used as individual in the next
generation. The BFGS gradient search algorithm was first applied on the best
individual of the second last generation to avoid a too fast convergence of the
optimization algorithm towards a local optimum. For grid cell-based optimization
experiments we were applying the GENOUD algorithm with at least 20 generations
and a population size of 1000 individuals per generation, i.e. at least 20000 single
model runs. For PFT-level optimization experiments we were applying the GENOUD
algorithm with at least 15 generations and a population size of at least 700 individuals

per generation, i.e. at least 10500 single model runs.

Table S 3: Posterior parameter values for LPJmL-OP based on grid cell-level optimization
experiments (OP.gc).
Parameters written in ifalics were derived as the median value of the single grid cell
optimization experiments whereas all other parameters were derived from prior parameter
sources. For the parameter ramp no plausible parameter was found. The parameter GDDbase
was changed to 0 but not included in the optimization.

TrBE  TrBR  TeNE TeBE TeBS BoNE BoBS BoNS TeH TrH

Oa 0.6 0.56 0.38 041 0.38 0.28 0.34 0.27 0.32 0.39

Brear 0.13 0.1 0.06 0.1 0.16 0.05 0.18 0.11 0.08 0.15

Bstem 0.15 0.07 0.13 0.15 0.04 0.14 0.06 0.05 -

Biitter 0.15 0.06 0.13 0.15 0.09 0.13 0.08 0.09 0.1 0.14

sfc 0.4 04 0.1 04 04 0.1 0.15 0.18 04 04

k 036 073 041 044 074 071 051 0.88 039 _ 0.46
SDDba - . . - 0 - 0 0 0 0
Wscal - 085  -- - - - - - - -
Ramp - - - 300 - 200 200 100 100
aphen - - . 10 - 0 10 @ - -
aphen - - - 2019 1816 1057 _ -
e 7 2 8
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Table S 4: Prior parameter values for LPJmL-GSI (GSL.prior).
Parameters marked with * were identified as insensitive and were not included in the
optimization. The values in brackets are ranges of uniform parameter distributions that were
used during optimization. The values for the first 6 parameters were derived from the single
grid-cell optimization experiments of LPJmL-OP (Table S 3).

TrBE TrBR TeNE TeBE TeBS BoNE BoBS BoNS TrH ;5';
06 056 038 041 038 028 034 027 039 0.32
O (0.2- (01- (0.23- (0.1- (0.15- (0.16- (0.15- (0.16- (0.21- (0.1-

08) 09) 049) 09) 06) 057) 061) 055 0.83) 0.83)

0.13 0.1 0.06 0.1 0.16 0.05 0.18 0.11 0.15 0.08
Bieat (0.1- (0.05- (0.01- (0.09- (0.13- (0.01- (0.09- (0.1- (0.09- (0.072
0.2) 0.2) 023) 023 019 023 021) 0.14) 0.21) -0.22)

015 007 013 015 004 014 006 0.05
Bsem  (0.018 (0.06- (O- (0.029 (0.038 (0- (0.059 (0.04- -- -
-0.29) 0.23) 031) -028) -0.23) 031) -0.23) 0.32)

015 006 013 015 009 013 008 009 0.14 01
Biewr  (0.054 (0.058 (0.047 (0.044 (0.085 (0.035 (0.078 (0.088 (0.02- (0.027
-0.29) -0.27) -0.21) -0.29) -0.2) -0.26) -0.22) -0.23) 0.28) -0.38)

0.1 04 01 0.15 0.4
sfc 04*  04*  (0.01- 04* (0.1- (0.01- (0.1- 0.18* 0.4*  (0.1-
0.9) 0.9) 09 0.9 0.9)
036 0.73 041 044 074 071 051 088 046 039
k (0.2- (01- (01- (0.1- (01- (0.1- (01- (0.1- (0.1-  (0.1-
09) 09) 09 09 09 09 09 09 09 009
0.24 024 024 024 024 024 024 024 024
smn  (0.1-  0.24* (01- (0.1- (01- (0.1- (0.1- (0.1- (0.1-  (0.1-
2) 2) 2) 2) 2) 2) 2) 2) 2)
basemi 8.8 88  -33(- -06(- 74  37(- 22  4(6- 88  0.7(-
\ (0-16) (0-16) 66) 3-1) (59) 66) (05 6) (0-16) 3-5)
Twm  0.2°  02* 02* 02 02* 02° 02 02° 02 02*
024 024 024 024 024 0.24
Sheat ~ (0.01- (0.01- (0.01- (0.01- (0.01- 0.24* 0.24* 0.24* (0.01- 0.24*
3) 3) 3) 3) 3) 3)

35 35 35 35 35 35 35 35 35 35

basen. 55, (25. (25 (25- (25- (25 (25- (25  (25- (25
at 45)  45)  45)  45)  45)  45)  45)  45)  45)  45)
0.2 0.2 0.2 0.2
Tt (0.01- 02  (0.01- 02* 02¢ 02* (001- 02 (0.01- 02*
0.9) 0.9) 0.9) 0.9)

57 02 10 41
shgn  (0.05- 23* 20  (0.05- 58  14*  (0.05- 95*  (0.05- 23
157) 40) 220) 130)
base, (1125 62(1- 73(1- 23(1- (1525’ 57 (1- (1563 (115??0_ (110_4 67 (1-
ht o00) 200)  200) 50) 555y 100) 554y gy  1s0)  180)
0.2 02 02
T (0.01- 02* 02 02° 02 02* 02 02 (0.01- (0.01-

0.9) 0.9) 009)
5 5 5 5 5 5
Shoer  (01-  (01- 5 5* 01- 5 01- 5 01-  (0.1-
10)  10) 10) 10) 10)  10)
basews 20 (1- 20(1- 20(1- 20(1- 20(1- 20(1- 20(1- 20(1- 20 (1- 20 (I-
o 99) 99) 99) 99) 99) 99) 99) 99) 99) 99
08 08 08 08
Twe  (0.01- (0.01- 08 08 08 08 08 08  (0.01- (0.01-
0.99)  0.99) 0.99) 0.99)
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Table S 5: Final parameters for LPJmL-GSI.
Parameters written in italics were derived from PFT-level optimization experiments (GSI.pft)

whereas all other parameters were derived from prior parameter sources as described in Figure
So.

Bo Bo Bo

TrBE TrBR TeNE TeBE TeBS NE BS NS TrH TeH  PoH
a, 063 052 044 045 061 022 041 034 040 032 043
Brear 013 012 012 012 018 010 016 012 024 0.18 0.07

Bstem 010 010 004 004 004 006 006 004 015 0.15 0.15

Biiter 010 010 005 010 014 001 000 0.01 012 0.07 0.03

k 052 074 047 070 060 044 041 066 050 050 0.50

Slimin 101 024 022 055 026 010 022 015 091 031 0.13

basewmn, 830 766 -7.81 -0.63 13.69 -752 205 -417 6.42 498 279

Ttmin 020 020 020 020 020 020 020 020 020 0.01 0.20
Slheat 186 163 183 098 174 024 174 024 147 024 024
basepet 38.64 38.64 3526 41.12 4151 27.32 4151 4460 29.16 32.04 26.12
Theat 020 020 020 020 020 020 020 020 020 020 0.20

Sliight 7717 23.00 20.00 18.83 58.00 14.00 58.00 95.00 64.23 23.00 23.00

basejg: 55.53 13.01 4.87 39.32 59.78 3.04 59.78 130.1 69.90 75.94 50.00

Tiight 052 020 020 020 020 020 020 020 040 022 0.38

Slwater 514 797 500 500 524 500 524 500 010 052 0.88

baseua 500 2221 861 882 2096 0.01 2096 234 4172 53.07 1.00
er

Twater 044 013 080 080 080 080 080 080 017 0.01 094

4.3 Parameter sensitivities and uncertainties

To explore the sensitivity and uncertainty of LPJmL-GSI parameters after PFT-level
optimizations, we computed the likelihood L and Akaikes Information Criterion AIC
from the cost ] of each individual (i.e. parameter set d) of the genetic optimization:

L =g J(d) (S19)
AIC =2xn-2xlog(L) (S20)
Where n is the number of parameters. The optimum parameter set has the highest
likelihood and the lowest AIC. Then, we selected only these individuals with an AIC
difference dAIC of <2 in comparison to the best parameter set:

dAIC = AIC — AlCpest (521)
Parameter sets or model formulations with an AIC difference < 2 are usually
considered as equally plausible like the best parameter set (Burnham and Anderson,
2002, p.70). The relationship between likelihood and the value of each parameter

provides both a qualitative insight in the uncertainty of parameters as expressed by the
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parameter range and in the parameter sensitivity as expressed by the maximum

likelihood at each parameter value.

4.4 Supplementary results and discussion on optimization

performance

The optimization of LPJmL-OP and LPJmL-GSI resulted in a significant reduction of
the cost in comparison to the respective prior models although there were differences
between plant functional types (Figure S 10). LPJmL-OP with prior parameters had
high costs especially in herbaceous PFTs (TrH and TeH) and in the boreal needle-
leaved summer green PFT (BoNS). The optimization of single grid cells in LPJmL-OP
resulted in a significant reduction of the cost in all PFTs (p < 0.01, Wilcoxon rank-sum
test) despite the polar herbaceous and tropical herbaceous PFTs. The global prior
parameter set of LPJmL-GSI resulted in a significant lower cost than the grid cell-level
optimized parameter sets of LPJmL-OP in TrH, TeBS, BoNS and PoH PFTs. The
optimization of single grid cells in LPJmL-GSI resulted in a significant reduction of the
cost in all PFTs except BoONS and PoH. PFT-level optimizations of LPJmL-GSI resulted
in a significant lower cost than the LPJmL-GSI prior parameter set in all PFTs except
TeBE, BoNS and PoH. PFT-level optimizations of LPJmL-GSI resulted in a significant
lower cost than the standard LPJmL-OP prior parameter set in all PFTs except TeNE.
These results demonstrate an improved overall performance of optimized model
parameter sets over prior model parameter sets and of LPJmL-GSI over LPJmL-OP
regarding a cost that is defined based on 30 years of monthly FAPAR, mean annual
GPP and 10 years of monthly vegetation albedo.

Model optimization experiments resulted in a significant reduction of the annual GPP
bias of LPJmL in comparison to the MTE data-oriented GPP product (Figure S 11).
LPJmL-OP with prior parameters underestimated mean annual GPP in the TrBE PFT
(median Pbias -13%) and overestimated mean annual GPP in all other PFTs (up to
123% median Pbias in TeH). Grid cell-level optimization experiments of LPJmL-OP
resulted in a significant reduction of the GPP bias in all PFTs except in the PoH PFT.
Especially in the TrBE, TrBR, TrH, TeNE, TeBE, TeBS and BoBS PFTs the bias of mean

annual GPP of LPJmL was removed almost completely (i.e. Pbias within 5%). The
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LPJmL-GSI prior parameter set had significant lower biases of mean annual GPP than
the prior parameter set of LPJmL-OP. This was because the median of each parameter
from the OP.gc experiments was used as prior parameter for LPJmL-GSI. Grid cell-
level optimization experiments of LPJmL-GSI resulted in significant reductions of the
bias in mean annual GPP in most PFTs despite PFTs where the LPJmL-GSI prior
parameter set resulted already in GPP biases close to 0 (i.e. TrH, TeBE and PoH). PFT-
level optimization experiments of LPJmL-GSI resulted in significant lower biases of
mean annual GPP than the prior parameter set of LPJmL-OP in all PFTs except PoH.
These results demonstrate that through the applied model optimization biases in mean
annual GPP were significantly reduced in all PFTs (except PoH) in LPJmL-OP as well
as in LPJmL-GSI.

(a) a b . d € (b) Legend

& ,bc,t> Significance flag
Maximum

120

3. Quartile
Median

100
I

1. Quartile
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Point symbols:
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T T T T T T T T T T T T T ) TrH
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Figure S 10: Distribution of the cost for several grid cells in prior model runs and optimization

experiments grouped by plant functional types and biomes.
(a) Cost for LPJmL-OP with default parameters (a, OP.prior), after grid cell-level optimizations
(b, OP.gc), cost for LPJmL-GSI with prior parameters (c, GSLprior), after grid cell-level
optimizations (d, GSI.gc) and after PFT-level optimizations (e, GSI.pft). Biomes are Tr (tropical),
Te (temperate) and Bo (boreal/polar). (b) Legend for the plot. Each distribution is plotted
according to usual boxplot statistics. The point symbols indicate the plant functional type. The
significance flag on top of each distribution shows if a distribution is significant different (p <
0.01) to the corresponding distribution of the same PFT in another optimization experiment.
The significance is based on the Wilcoxon rank-sum test. For example “acd” indicates a
significant difference to the main categories a (OP.prior), ¢ (GSLprior) and d (GSlL.gc) but no
significant difference to b (OP.gc) and e (GSL.pft).
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Figure S 11: Distribution of the percent bias between LPJmL and MTE mean annual GPP (1982-
2011) for several grid cells in prior model runs and optimization experiments grouped by plant
functional types and biomes.

See Figure S 10 for a further explanation of this figure.

We were not able to remove the GPP bias and to reduce the cost of LPJmL-OP and of
LPJmL-GSI in the PoH PFT (tundra) in optimization experiments because of
inconsistencies between the FAPAR and GPP datasets or in the LPJmL formulation.
Although a complete removal of the GPP bias is in principle possible by adjusting the
aa parameter, this would result in a too low FPC of the PoH PFT. Such a low FPC
cannot explain the relatively high peak FAPAR values that are seen in the GIMMS3g
FAPAR dataset in Tundra regions. It is not possible to explain the low mean annual
MTE GPP and the relatively high GIMMS3g peak FAPAR with the current LPJmL
model structure in tundra regions. The reasons for this mismatch can be caused by
inconsistencies between the GPP and FAPAR datasets or by an insufficient model
formulation. The MTE data-oriented GPP product has been upscaled from FLUXNET

eddy covariance measurements (Jung et al., 2011). Nevertheless, not many eddy
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covariance measurement sites cover tundra regions with mean annual air temperatures
< 0°C. Thus, the MTE GPP estimates are not well supported by measurements in
tundra regions. But also the FAPAR dataset might be more uncertain in tundra regions
than in other parts of the globe. Optical remote sensing in high-latitude regions is
usually performed under high-sun zenith angles. Radiation can penetrate deeper into
vegetation under high-sun zenith angles which results in higher FAPAR (Tao et al,,
2009; Walter-Shea et al., 1998). Thus, the high FAPAR values in the GIMMS3g FAPAR
dataset might be caused by satellite observations under high-sun zenith angles. Finally,
the inconsistencies between GPP and FAPAR might be also caused by an inappropriate
representation of tundra plant communities in LPJmL. The PoH PFT in LPJmL was
derived from a grass PFT but does not include shrubs or the large functional diversity
of mosses and lichen that are the dominant plant communities in tundra ecosystems
(Porada et al., 2013). We currently cannot decide if the inconsistency between FAPAR
and GPP in our optimization of productivity and FAPAR parameters in tundra regions
is more caused by the specific properties of the datasets or by an insufficient model
structure.

All optimization experiments resulted in reasonable albedo biases of LPJmL-OP and
LPJmL-GSI in comparison with monthly MODIS albedo time series (Figure S 12).
LPJmL-OP with prior parameters overestimated growing season albedo in all PFTs.
Grid cell-level optimization experiments of LPJmL-OP resulted in significant
reductions of the bias in growing season albedo in TrBE, TeNE, TeBE, TeBS, BoNE, and
BoNS PFTs but not in TrBR, TrH, TeH, BoBS and PoH PFTs. The bias in growing
season albedo of the latter PFTs was significantly reduced with the LPJmL-GSI prior
parameter set. The optimization of LPJmL-GSI for single grid cells significantly
reduced the bias in growing season albedo in comparison to the LPJmL-GSI prior
parameter set in all PFTs except in the TeH, BoNS and PoH PFTs. These results
demonstrate that model optimizations experiments kept growing season albedo within

reasonable ranges in comparison to MODIS albedo.
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Figure S 12: Distribution of the percent bias between LPJmL and MODIS monthly growing
season albedo (2000-2011) for several grid cells in prior model runs and optimization
experiments grouped by plant functional types and biomes.
See Figure S 10 for a further explanation of this figure.

4.5 Supplementary results and discussion on parameter variability

The optimization of the leaf albedo parameter P resulted in values that differed
especially between broadleaved and needle-leaved evergreen PFTs (Figure S 13).
Needle-leaved evergreen PFTs (TeNE and BoNE) had in all optimization experiments
the lowest Pleat parameter values while the broad-leaved summergreen PFTs (TeBS and
BoBS) had the highest Piar parameter values. After the PFT-level optimization of
LPJmL-GSI herbaceous PFTs had high Pt parameters. The leaf albedo parameter ieat
was sensitive in all PFTs (Figure 5 of the main text). The optimization resulted in many
PFTs in leaf and litter albedo parameters that were close to the boundaries of the prior
parameter ranges. This indicates missing environmental controls on surface albedo.
The albedo routines of LPJmL need to be further improved to account for moisture-
driven changes in surface albedo. Such improved albedo routines would allow a more

accurate and constrained estimation of albedo parameters. Because of these current
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limitations in the LPJmL albedo routines, albedo simulations in regions or time periods

with low vegetation cover need to be assessed with care.

a b [ d e
© _
o
© | " N
o ‘ . o
g ® < A®O AOA Tl ;. ) G
I : i X R A
s : i | : :
<o : ' A0 : 5
: : o |: N oA
: : ! A p SRR o
o~ pii i § TE A
S il
© o o © o W ® @ % o N o o, ™ 9,
© o PR o oM. o % P o° . oY v " o O o b oM o -
S > O 0 o 4 o O o O u
“ o
NN U & o & OF & I
o

[ [ [ [ [ [ | [ [ | [ [ [ L [
Tr Te Bo Tr Te Bo Tr Te Bo Tr Te Bo Tr Te Bo

OP.prior OP.gc GSl.prior GSl.gc GSl.pft

Figure S 13: Prior and optimized values for the parameter aa (fraction of radiation absorbed at
leaf level relative to canopy level) grouped by plant functional types and biomes.
The distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents
the spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure S 10 for a further explanation of this figure.

The light extinction coefficient k had a large spatial variability in all PFTs and in both
grid cell-level optimization experiments of LPJmL-OP and LPJmL-GSI (Figure S 15).
The spatial variability was lower after grid cell-level optimization experiments of
LPJmL-GSI than after grid cell-level optimization experiments of LPJmL-OP. The
largest variability was found in evergreen PFTs (TrBE, TeBE, TeNE and BoNE). This
result demonstrates that unique or PFT-dependent light extinction coefficient
parameter values are not meaningful. Moreover, the spatial variability of the light
extinction coefficient needs to be analyzed more detailed and perhaps replaced by a

more advanced representation of canopy architecture.
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Figure S 14: Prior and optimized values for the parameter Pleaf (leaf albedo) grouped by plant
functional types and biomes.
The distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents
the spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure S 10 for a further explanation of this figure.

The highest values of the light extinction coefficient were found in the BoNS PFT. This
was caused by an overestimation of tree mortality in years with simulated low
productivity. Trees are killed in LPJmL as a result of negative net primary production
which reduces FPC and results in a lower peak FAPAR in the following year. Having
occurred more often in the simulated time period, it can explain why FAPAR is
underestimated in some years. To remove these biases, the light extinction coefficient
was optimized towards higher values in the BoONS PFT to reach FAPAR values that are
closer to the observed FAPAR values after low-productivity years. However, such high
values for the light extinction coefficient would overestimate tree cover and FAPAR
under average conditions and when LPJmL is applied with dynamic vegetation. The
approach to simulate tree mortality in LPJmL needs further improvement by, e.g.,
considering for example reserve carbon pools that helps the plants to endure low

productivity conditions (Galvez et al., 2011).
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Figure S 15: Prior and optimized values for the parameter k (light extinction coefficient)
grouped by plant functional types and biomes.
The distribution of the parameter in the optimization experiments OP.gc and GSI.gc represents
the spatial variability of the parameter from different grid cell-level optimization experiments.
See Figure S 10 for a further explanation of this figure.

We computed correlations between posterior parameter values for the four most
important phenology parameters of LPJmL-GSI (TMIN_BASE, LIGHT_BASE,
WATER_BASE and TMAX_BASE) (Figure S 16). Most correlations were low to
moderate (maximum r = 0.69). Interestingly, the correlation between the TMIN_BASE
and WATER_BASE parameters was low in PFTs that experience strong permafrost
dynamics (BoNS r = 0.2, PoH r = -0.28). This indicates that the water and cold
temperature limiting in boreal and arctic regions were only weakly correlated. Indeed,
our results showed that water availability affected phenology mostly in early spring
whereas cold temperature affected phenology during the entire year in boreal and
arctic regions (Figure 9 of the main text). These results emphasize the ability to
disentangle effects of seasonal air temperature and soil moisture on phenology in

boreal and arctic regions.
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Figure S 16: Correlations between posterior parameters for the four limiting functions for
phenology in LPJmL-GSI grouped per PFT.
Correlation matrices were computed based on all “best” individuals (i.e. parameters sets) from
PFT-level optimization experiments (GSLpft). “Best” individuals have an AIC difference of
dAIC < 2 in comparison to the individual with the lowest AIC, i.e. they are equally plausible.
Numbers are Pearson correlation coefficients. Lines in the scatter plots are LOWESS smoothing
lines (locally-weighted polynomial regression).
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5 Global model evaluation

5.1 Supplementary results and discussion on carbon stocks and fluxes

LPJmL-GSI estimated global total carbon fluxes and stocks closer to data-oriented
estimates than LPJmL-OP-prior and LPJmL-OP-gc (Table S 6). All three LPJmL model
versions overestimated global total GPP although LPJmL-GSI was close to the upper
uncertainty estimate of the data-oriented GPP estimate. Estimates of ecosystem
respiration from LPJmL were clearly larger than the data-oriented estimates. Although
LPJmL simulated global total fire carbon emissions within the magnitude of
independent estimates (van der Werf et al., 2010), LPJmL-OP-gc had higher and
LPJmL-GSI had lower fire carbon emissions despite the use of observed burnt areas in
the SPITFIRE fire module. Data-oriented estimates of global total biomass have a large
uncertainty. All three version of LPJmL were within these uncertainties. LPJmL-GSI
estimated global total biomass the closest to the data-oriented estimates. From Table S
6 it is obvious that LPJmL with the model settings as in (Schaphoff et al., 2013) (i.e.
without the BoNS and PoH PFTs and with simulated fire activity) resulted in global
total GPP and ecosystem respiration that were even closer to the data-oriented
estimates. This is mostly because LPJmL simulates larger burnt areas than seen in the
observations and thus higher fire emissions but lower GPP and ecosystem respiration.

Although no information about temporal variations in GPP were used in optimization
experiments, the mean seasonal cycle of GPP from LPJmL-GSI and LPJmL-OP-gc
agreed better with the MTE data estimate than the mean seasonal GPP cycle from
LPJmL-OP-prior especially in temperate and boreal PFTs and tropical grasslands
(Figure S 17). GPP simulated by LPJmL-OP-prior increased too early and too fast in
spring and decreased too late in autumn in TeNE, TeBS, BoNE, BoBS and TeH PFTs
compared to the MTE estimate. These wrong dynamics improved after parameter
optimization in both LPJmL-OP-gc and LPJmL-GSI. Additionally, LPJmL-GSI agreed
better with the data estimate than LPJmL-OP-gc in TeNE, TeBS, TrH, PoH, TrML and
TeML. These results demonstrate that the new GSI-based phenology model improved
not only FAPAR seasonality but also GPP seasonality especially in temperate forests

and in tropical to polar grasslands.
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Table S 6: Global total carbon fluxes and stocks from data-oriented estimates and from LPJmL
simulations.

LPJmL-OP-Standard and LPJmL-GSI-Standard are LPJmL model runs with settings as in
(Schaphoff et al., 2013), i.e. without the use of the BoNS and PoH PFTs and with using
simulated fires instead of prescribed observed burnt areas. Data sources: 1) (Beer et al.,, 2010;
Jung et al., 2011), 2) (van der Werf et al., 2010), 3) (Carvalhais et al., 2014; Saatchi et al., 2011;

Thurner et al., 2014), 4) (Carvalhais et al., 2014).

Gross . Soil
. Ecosystem Fire carbon . .
primary R . Biomass organic
; respiration  emissions
production (PgC a-1) (PgC a-1) (PgC) carbon
(PgC a-1) g g (PgC)
Data estimate 124.7" 100-110” 2.0% 451.2% 2460%
Data lower 110.7" 208.8% 1990
uncertainty
Data upper 138.3" 695.9% 2984
uncertainty
LPJmL settings as in this study:
LPJmL-OP-prior 161.3 150.7 1.93 674.1 2723
LPJmL-OP-gc 153.8 143.9 2.45 581.1 2503
LPJmL-GSI 145.8 141.4 1.65 546.4 2508
LPJmL settings as in Schaphoff et al. (2013):
LPJmL-OP-Standard 138.9 125.8 3.48 597.8 2101
LPJmL-GSI-Standard 120.4 115.1 3.23 582.1 1392
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Figure S 17: Comparison of the mean seasonal GPP cycle (averaged over 1982-2011) from MTE

and LPJmL spatially averaged for regions with the same dominant PFT.
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Figure S 18: Comparison of patterns of mean annual total gross primary production from

LPJmL and the data-oriented MTE estimate for the period 1982-2011.
(a) Difference in mean annual total GPP between MTE and LPJmL-OP-prior. (b) Difference in
mean annual total GPP between MTE and LPJmL-GSI. (c) Global spatial-averaged gradients of
mean annual GPP against mean annual temperature. Dashed lines are dry areas with mean
annual P/PET < 15 and solid lines are wet areas with mean annual P/PET >= 15. The red area
represents the uncertainty of the data-oriented GPP estimate expressed as the inter-quartile
range of the MTE ensemble.
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Figure S 19: Comparison of biomass from data-oriented estimates (Thurner and Saatchi
datasets) and from LPJmL (averaged 2009-2011). See Figure S 18 for further explanations.
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5.2 Supplementary figures on evapotranspiration
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Figure S 20: Latitudinal gradients of evapotranspiration with its components.
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Figure S 21: Mean seasonal cycle (1982-2011) of ET, evaporation, interception and transpiration
spatially averaged for PFTs.

Numbers on top of each plot are correlation coefficients between each LPJmL model run and

MTE (for ET) and between LPJmL model runs and LPJmL-OP-prior, respectively. The

significance of the correlation is indicated as point symbol: *** (p < 0.001), ** (p < 0.01), * (p <

0.05), . (p<0.1).
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5.3 Supplementary figures on evaluation of FAPAR

a) LPJmL-OP-prior — GIMMS3g c) Area-averaged mean annual FAPAR
against mean annual temperature
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Figure S 22: Comparison of mean annual FAPAR from LPJmL and remote sensing datasets.
See Figure S 18 for further explanations.

Cor monthly FAPAR
GIMMS3g ~ GL2 VGT GIMMS3g ~ LPJmL-OP-prior GIMMS3g ~ LPJmL-OP-gc

Figure S 23: Correlation coefficients between monthly FAPAR time series from GIMMS3g, GL2
VGT datasets and LPJmL model simulations.
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Figure S 24: Comparison of the mean seasonal FAPAR cycle from GIMMS3g, GL2 VGT and
LPJmL spatially averaged for regions with the same dominant PFT.
The PFTs for which time series were averaged are shown in Figure 3. Numbers in the figures
are correlation coefficients between GIMMS3g and the corresponding time series from GL2
VGT or from LPJmL simulations. The significance of the correlation is indicated as point
symbol: *** (p <0.001), ** (p < 0.01), * (p < 0.05), . (p <0.1).

Cor annual FAPAR

GIMMS3g ~ GL2 VGT GIMMS3g ~ LPJmL-OP-prior GIMMS3g ~ LPJmL-OP-gc

Figure S 25: Correlation coefficients between annual FAPAR time series from GIMMS3g, GL2
VGT datasets and LPJmL model simulations.
Mean annual FAPAR was averaged from monthly FAPAR values with air temperatures > 0°C.
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Extrapolation capabilities of LPJmL-GSI
Correlation between monthly GIMMS3g and LPJmL-GSI FAPAR (1982-2011)
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Figure S 26: Extrapolation capabilities of LPJmL-GSI in terms of monthly FAPAR dynamics.
(a) Correlation coefficient between monthly FAPAR time series from LPJmL-GSI and GIMMS3g
(1982-2011). Areas without vegetation, with more than 50% agricultural use, or without data are
excluded (white). (b) The map shows the distance between each 0.5° grid cell and the closest
grid cell that was used in a PFT-level optimization experiment of LPJmL-GSI (GSLpft). (c)
Scatterplot between the correlation coefficient from (a) and the distance from (b) coloured by
the Koppen-Geiger climate type of each grid cell. Lines are smoothing splines fitted to the
quantile 0.5 of the correlation coefficient for each climate type. Star symbols indicate the p-value
of a Wilcoxon rank-sum test if the correlation coefficients of distant grid cells (between 600 and
800 km, indicated by vertical dashed lines) are significant lower than of close grid cells (< 200
km). (d) Scatterplot between the correlation coefficient from (a) and the difference in mean
annual temperature between each grid cell and the corresponding closest grid cell. Star symbols
indicate the p-value of a Wilcoxon rank-sum test if the correlation coefficients of warmer grid
cells (between +3 and +5°C) are significant lower than of grid cells with similar temperature (+
1°C).
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