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Abstract. Terrestrial ecosystem models can provide major

insights into the responses of Earth’s ecosystems to envi-

ronmental changes and rising levels of atmospheric CO2. To

achieve this goal, biosphere models need mechanistic formu-

lations of the processes that drive the ecosystem functioning

from diurnal to decadal timescales. However, the subsequent

complexity of model equations is associated with unknown

or poorly calibrated parameters that limit the accuracy of

long-term simulations of carbon or water fluxes and their in-

terannual variations. In this study, we develop a data assimi-

lation framework to constrain the parameters of a mechanis-

tic land surface model (ORCHIDEE) with eddy-covariance

observations of CO2 and latent heat fluxes made during the

years 2001–2004 at the temperate beech forest site of Hesse,

in eastern France.

As a first technical issue, we show that for a complex

process-based model such as ORCHIDEE with many (28)

parameters to be retrieved, a Monte Carlo approach (genetic

algorithm, GA) provides more reliable optimal parameter

values than a gradient-based minimization algorithm (vari-

ational scheme). The GA allows the global minimum to be

found more efficiently, whilst the variational scheme often

provides values relative to local minima.

The ORCHIDEE model is then optimized for each year,

and for the whole 2001–2004 period. We first find that a re-

duced (< 10) set of parameters can be tightly constrained by

the eddy-covariance observations, with a typical error reduc-

tion of 90 %. We then show that including contrasted weather

regimes (dry in 2003 and wet in 2002) is necessary to opti-

mize a few specific parameters (like the temperature depen-

dence of the photosynthetic activity).

Furthermore, we find that parameters inverted from 4 years

of flux measurements are successful at enhancing the model

fit to the data on several timescales (from monthly to interan-

nual), resulting in a typical modeling efficiency of 92 % over

the 2001–2004 period (Nash–Sutcliffe coefficient). This sug-

gests that ORCHIDEE is able robustly to predict, after opti-

mization, the fluxes of CO2 and the latent heat of a specific

temperate beech forest (Hesse site). Finally, it is shown that

using only 1 year of data does not produce robust enough

optimized parameter sets in order to simulate properly the

year-to-year flux variability. This emphasizes the need to as-

similate data over several years, including contrasted weather

regimes, to improve the simulated flux interannual variabil-

ity.
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1 Introduction

In the context of global warming and climate change, the in-

teractions between the terrestrial biosphere and the climate

system play a crucial role (Field CB, 2004). Particularly, it

is of fundamental importance to assess precisely the distri-

bution and future evolution of terrestrial CO2 sources and

sinks and their controlling mechanisms. To understand and

predict CO2, water and energy exchanges between the veg-

etation and atmosphere, process-driven land surface mod-

els (LSMs) provide insights into the coupling and feedbacks

of those fluxes with changes in climate, atmospheric com-

position and management practices. To achieve this goal,

LSMs need finely to describe the processes (i.e., photosyn-

thesis, respiration, evapotranspiration, etc.) that regulate the

exchanges between the biosphere and the atmosphere across

a wide range of climate and vegetation types and timescales.

The level of complexity of LSMs usually encapsulates a de-

scription of processes whose timescales range from hours to

centuries and whose spatial coverage can spread from flux

tower footprints to the global scale.

The equations and parameters of LSMs are usually de-

rived from limited observations on the leaf, soil unit, or

plant scales, and are limited to a few plant species, climate

regimes, or soil types. Because of the spatial heterogeneity of

ecosystems and the nonlinear relationship between parame-

ters and fluxes, difficulties arise in upscaling small-scale pro-

cess parametrizations and formulations to larger scales, from

canopies to ecosystems, regions, and global scales (Field

et al., 1995). As a result, major uncertainties remain in mod-

eling the future and global responses of the terrestrial bio-

sphere to changes in the climate and CO2 (Friedlingstein

et al., 2006; Denman et al., 2007).

By fusing observations to model structures, data assim-

ilation methods have shown large potential for improving

and constraining biogeochemical models (Wang et al., 2001;

Braswell et al., 2005; Trudinger et al., 2007; Santaren et al.,

2007; Wang et al., 2009; Williams et al., 2009; Kuppel et al.,

2012). Particularly, the time-series measurements from the

FLUXNET network provide valuable information on ex-

changes of CO2, water and energy across a large range of

ecosystems and timescales (Baldocchi et al., 2001; Williams

et al., 2009; Wang et al., 2011). At each site out of the 500

sites of this network, fluxes are measured with the eddy-

covariance method (Aubinet et al., 1999) on a half-hourly

basis and for observation periods that can reach more than

10 years.

Some previous works focused on quantifying how much

information could be retrieved from the observations in

terms of reducing uncertainties in model parameters. The ap-

proach relied on the minimization of a cost function with re-

spect to model parameters. Wang et al. (2001) showed that

about three or four parameters of a rather simplified terres-

trial model could be estimated independently by assimilating

3 weeks of eddy-covariance measurements of CO2 and la-

tent, sensible and ground heat fluxes. Braswell et al. (2005)

used a 10 year record of half-hourly observations of CO2 flux

to study the influence of data frequencies on inverted param-

eters. It was shown that parameters related to processes op-

erating on diurnal and seasonal scales (evapotranspiration,

photosynthesis) were tightly constrained compared to those

related to processes with longer timescales. Santaren et al.

(2007) conducted a similar study, but used a complex mech-

anistic model (ORCHIDEE) with more than 15 parameters to

be optimized. In that study, the data assimilation framework

was also employed to highlight model structural deficiencies

and to improve process understanding.

Performances of parameter optimization schemes have

been investigated in several studies (Richardson and

Hollinger, 2005; Trudinger et al., 2007; Lasslop et al., 2008;

Fox et al., 2009; Ziehn et al., 2012). They could be strongly

affected by the way observation errors are prescribed within

misfit functions (Richardson and Hollinger, 2005; Trudinger

et al., 2007; Lasslop et al., 2008). Contrarily, the choice of

the minimizing method amongst an exhaustive panel (locally

gradient-based or global random search methods, Kalman

filtering) was shown to have smaller influences (Trudinger

et al., 2007; Fox et al., 2009; Ziehn et al., 2012). Recently,

Ziehn et al. (2012) optimized a simplified version of the

process-based BETHY model against atmospheric CO2 ob-

servations. They demonstrated that a gradient-based method

(variational approach) manages to locate the global mini-

mum of their inverse problem similarly to a Monte Carlo

approach based on a metropolis algorithm, but with compu-

tational times several orders of magnitude lower.

Carvalhais et al. (2008) challenged the commonly made

assumption of carbon cycle steady state at ecosystem level

for parameter retrieval, and proposed to optimize parameters

describing the distance from equilibrium of soil carbon and

biomass carbon pools. More recently, data assimilation im-

plementations have been tested in terms of error propaga-

tion, i.e., how information retrieved on optimized parameters

influences carbon flux estimation on various timescales (Fox

et al., 2009). In those studies, models with a moderate level

of complexity were used, and a limited number of parameters

was optimized, typically less than 10.

Several studies have shown that calibrating models on

a certain timescale does not necessarily imply that predic-

tive skills are improved on all timescales (Hui et al., 2003;

Siqueira et al., 2006; Richardson et al., 2007). Particularly, it

is important to assess whether the forecast capability of the

model could be dampened because of model shortcomings

in simulating interannual or long-term processes. One im-

portant test of prognostic ability is to assess the model skills

in simulating the interannual variability (IAV) of ecosystem

carbon fluxes (Hui et al., 2003; Richardson et al., 2007).

The fact that the FLUXNET observations provide infor-

mation from hourly to interannual timescales allows the in-

vestigation of potential time dependencies of parameters,

thus highlighting missing processes that should be included
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in the models on specific timescales. Reichstein (2003) found

that for a rather simple photosynthetic model applied to

Mediterranean summer dry ecosystems, parameters should

vary seasonally to match observed CO2 and water fluxes.

Similarly, Wang et al. (2007) showed that, for deciduous

forests, the photosynthetic parameterization of their model

should integrate seasonal variations related to leaf phenol-

ogy in order to obtain realistic patterns of CO2, water and

energy fluxes. More recently, and in order to search for re-

lationships between carbon fluxes and climate, Groenendijk

et al. (2009) optimized a simple vegetation model with only

five parameters and investigated the weekly variability of in-

verted values with respect to different climate regions and

vegetation types. Few studies have specifically investigated

the equations and parameter generalities across time and spa-

tial scales of complex process-based models. Kuppel et al.

(2012) analyzed the ability of a process-based terrestrial bio-

sphere model (ORCHIDEE) to reproduce carbon and water

fluxes across an ensemble of FLUXNET sites corresponding

to a particular ecosystem (temperate deciduous broadleaf for-

est), but left apart a detailed study of the model performances

across temporal scales.

In this work, we use the same ORCHIDEE model, but

we focus on the temporal scale and study the temporal skill

of the equations in reproducing seasonal and year-to-year

CO2 and water flux variations at a particular deciduous for-

est site. To tackle this scientific question, we also investigate

in a preliminary step the potential of two different optimiza-

tion approaches, comparing a gradient-based scheme and a

Monte Carlo (genetic algorithm) scheme, to infer the opti-

mal parameters of the process-based model. We use eddy-

covariance measurements (daily mean of CO2 and latent heat

fluxes) in a beech forest in France (Hesse) for 4 years (2001–

2004) characterized by different weather regimes. More

specifically, we investigate the following questions:

– How does a gradient-based method perform compared

to a more systematic search of the optimal parameters

based on a genetic algorithm (GA)?

– Does the assimilation of 1 year or 4 years of data en-

hance the model fit to observations equally?

– Are the model equations generic enough to simu-

late seasonal and year-to-year variations of the CO2

and water fluxes, and particularly the extreme years

(e.g., the summer drought of 2003)?

– Does the information gained from parameter optimiza-

tion indicate anything new about modeling carbon and

water fluxes in deciduous forests?

After a description of the methods (Sect. 2), performances

of the gradient-based and GA algorithms are compared

(Sect. 3.1). We then optimize the model with daily means

of eddy-covariance NEE and water fluxes observed at the

Hesse tower site over the 2001–2004 period. Through cross-

validation experiments, we assess the predictive skills of the

model when optimized with each different year and with

the whole period of data (Sect. 3.2). A posteriori parame-

ter values, errors and correlations are analyzed in order to

quantify the contribution of the data assimilation framework

in terms of parameter calibration and process understand-

ing (Sect. 3.3). Particularly, we investigate to what extent

optimized values may have been biased to compensate for

model structural deficiencies. Finally, the temporal skill of

the model is studied through its ability to reproduce vari-

ations in the NEE from monthly to interannual timescales

(Sect. 4.3).

2 Material and methods

2.1 Eddy-covariance flux data

The beech forest of Hesse is located in northeastern France

(48◦ N, 7◦ E). It is a fenced experimental plot where many

studies have been carried out (see the references in Granier

et al., 2008). In 2005, it was a nearly homogeneous plan-

tation of 40 year old European beech (Fagus sylvatica L.)

whose mean height was 16.2 m. Located on a high-fertility

site, this young forest, which underwent thinning in 1995,

1999 and at the end of 2004, is growing relatively quickly,

and thus acts on an annual basis as a net carbon sink (aver-

age NEE equals−550 g C m−2 yr−1 over 2001–2004). Long-

term mean annual values of temperature and rainfall are, re-

spectively, 8.8 ◦C and 900 mm.

Fluxes and meteorology are measured in situ and on a 30-

min basis by using the standardized CARBO-EUROFLUX

protocol (Aubinet et al., 1999). We use hereinafter observa-

tions that were made at the HESSE site from 2001 to 2004.

Within this period, less than 5 % of the net CO2 flux (NEE)

and latent heat flux (LE) data were missing, and observa-

tional gaps mostly occurred during December 2001, Febru-

ary and December 2004, where periods with no data lasted

around 10 days. We use original data that were neither cor-

rected for low-turbulence conditions, nor gap filled, nor par-

titioned (Reichstein et al., 2005; Papale et al., 2006). Data

corrections only accounted for inner canopy CO2 storage.

NEE and to a lesser extent LE fluxes showed high year-

to-year variability related to soil water deficit duration and

growing season length (Granier et al., 2008). Years 2001 and

2002 were, respectively, moderately dry and wet, whereas

2003 and 2004 were exceptionally dry (respectively, 124 and

100 days of soil water deficit). Moreover, during the summer

of 2003 (June to August), mean monthly temperatures were

the highest ever observed in this area. Finally, the growing

season length (GSL) varied significantly during this period,

with an amplitude of 50 days, mostly because of different

senescence dates.
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2.2 The ORCHIDEE land surface model

The ORCHIDEE (ORganizing Carbon and Hydrology In

Dynamic Ecosystems) biogeochemical ecosystem model is a

mechanistic land surface model that simulates the exchanges

of carbon dioxide, water and heat fluxes within the soil–

vegetation system and with the atmosphere; variations in wa-

ter and carbon pools are predicted variables. Model processes

are computed on a wide range of timescales: from 30 min

(e.g., photosynthesis, evapotranspiration, etc.) to thousands

of years (e.g., passive soil carbon pool decomposition) (Krin-

ner et al., 2005). ORCHIDEE has been applied in a number

of site-level (Krinner et al., 2005) and regional CO2 budget

studies forced by climate data (Jung et al., 2007), as well as

for future projections of the carbon–climate system, coupled

to an atmospheric model (Cadule et al., 2010).

The model contains a biophysical module dealing

with photosynthesis and energy balance calculations every

30 min, a carbon dynamics module dealing with the alloca-

tion of assimilates, autotrophic respiration components, on-

set and senescence of foliar development, mortality and soil

organic matter decomposition in a daily time step. A com-

plete description of ORCHIDEE can be found in Krinner et

al. (2005). The main parameters optimized in this study are

defined in Table 1, and the associated model equations are

defined in Appendix A. The choice of a subset list amongst

the total number of ORCHIDEE parameters is explained in

Sect. 2.3.4.

As in most land surface models (LSMs) dealing with bio-

geochemical processes, the vegetation is described in OR-

CHIDEE by plant functional types (PFT), with 13 different

PFT over the globe. Distinct PFT follow the same set of gov-

erning equations, but with different parameter values, except

for the calculation of the growing season onset and termi-

nation (phenology), which involves PFT-specific equations

(Botta et al., 2000). The Hesse forest is described here by

a single PFT called “temperate deciduous”, in the absence

of understory vegetation at the forest site. Soil fractions of

sand, loam and clay are 0.08, 0.698 and 0.222, respectively

(Quentin et al., 2001).

In the following, we applied the model in a “grid-point”

mode, forced by 30 min gap-filled meteorological measure-

ments made on the top of the flux tower (Krinner et al., 2005).

Forcing variables are air temperature, rainfall and snowfall

rates, air-specific humidity, wind speed, pressure, and short-

wave and longwave incoming radiations.

Biomass and soil carbon pools are initialized to steady-

state equilibrium from a spin-up run of the model, i.e., a

5000 year model run using climate forcing data from years

2001 to 2004 repeated in a cyclical way. This ensures an

annual net carbon flux close to zero in a multi-year aver-

age period. This strong assumption is partly released through

the optimization of a scaling factor of the soil carbon pools

(Ksoil C, Eq. A17) to match the observed carbon sink asso-

ciated with this growing forest (see Sect. 4.2 and Carvalhais

et al., 2008).

2.3 Parameter optimization procedure

The methodology that we use in this study to optimize the

ORCHIDEE parameters relies on a Bayesian framework

(Tarantola, 1987): (1) we select a set of parameters to opti-

mize, and a range of variation for each parameter; (2) assum-

ing Gaussian probability density functions (PDF) to describe

data and parameter distributions, we define a cost function

that embodies a measure of the data–model misfit and prior

information on the parameters; (3) we test the performances

of a genetic algorithm and a gradient-based one to minimize

the cost function, i.e., to locate the optimal parameter set

within the parameter space; and (4) we assess errors and cor-

relations in optimized parameters.

2.3.1 Cost function

Assuming that the probability density functions of the er-

rors in measurement, model structure and model parameters

are Gaussian, the optimal parameters correspond to the min-

imum of the cost function J (x) (Tarantola, 1987):

J (x)= (Y −M(x))tR−1(Y −M(x))+ (x− xp)
tB−1(x− xp) (1)

x is the vector of parameters to be optimized, xp the vector

of prior parameter values, Y is the vector of observations,

and M(x) the vector of model outputs. The error covariance

matrices R and B describe the prior variances/covariances

in observations and parameters, respectively. The first term

of J (x) represents the weighted data–model squared devi-

ations (referred to in the text below as JOBS, Sect. 3.2.1).

The second term, which is inherent to Bayesian approaches,

represents the mismatch between optimized and prior values

weighted by the prior uncertainties in parameters (diagonal

matrix B, Table 1). Although we acknowledge that obser-

vation and parameter errors do not strictly follow Gaussian

distributions, we have used such a hypothesis to simplify the

Bayesian optimization problem, which becomes equivalent

to a least squares minimization and thus analytically solv-

able by minimizing a cost function like Eq. (1) (Tarantola,

1987).

The temporal resolution of M(x) and Y corresponds to

daily averages. We choose daily means in order to assess the

ability of the ORCHIDEE model to reproduce observed CO2

and latent heat flux variability on daily, weekly, seasonal, and

interannual timescales, and not the hourly timescale. Because

of data gaps, daily means have been calculated only when

more than 80 % of the half-hourly data were available.

R, the data error covariance matrix, should include both

data uncertainties (diagonal elements) and their correlations

(non-diagonal elements). However, the latter are difficult to

assess properly, and we thus neglect them. Data uncertainties

(R diagonal elements) are chosen in such a way that NEE and

Biogeosciences, 11, 7137–7158, 2014 www.biogeosciences.net/11/7137/2014/
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Table 1. Parameter names with their description and corresponding model equations (Appendix A), ranges of variation, a priori values and

uncertainties of the parameters.

Parameter Description Prior Min Max σprior

Photosynthesis

Vcmax_opt Maximum carboxylation rate (µmolm−2 s−1) (Eq. A5) 55 27 110 33.2

gsslope Slope of the Ball–Berry relationship between assimilation and

stomatal conductance (Eq. A2)

9 0 12 4.8

cTopt Optimal temperature for photosynthesis (◦C) (Eq. A11) 26 6 46 16

cTmin Minimal critical temperature for photosynthesis (◦C) (Eq. A9) −2 −7 3 4

cTmax Maximal critical temperature for photosynthesis (◦C) (Eq. A10) 38 18 58 16

Stomatal response to water availability

Fstressh Adjust the soil water content threshold beyond which stomata

close because of hydric stress (Eq. A6).

6 0.8 10 3.7

Kwroot Root profile that determines the soil water availability (Eq. A7) 0.8 0.2 3 1.12

Phenology

Kpheno_crit Parameter controlling the start of the growing season (Eq. A30) 1 0.5 2 0.6

cTsen Temperature parameter controlling the start of senescence

(Eq. A33)

12 2 22 8

LAIMAX Maximum leaf area index (Eqs. A32 and A31) 5 3 7 1.6

SLA Specific leaf area (Eq. A28) 0.026 0.013 0.05 0.015

Lage_crit Mean critical leaf lifetime (Eq. A34) 180 80 280 80

KLAIhappy Multiplicative factor of LAIMAX that determines the thresh-

old value of LAI below which the carbohydrate reserve is used

(Eq. A32)

0.5 0.35 0.7 0.14

τleafinit Time in days to attain the initial foliage using the carbohydrate

reserve (Eq. A31)

10 5 30 10

Respirations

KsoilC Multiplicative factor of the litter and soil carbon pools

(Eq. A17)

1 0.25 4 1.5

Q10 Parameter driving the exponential dependency of the het-

erotrophic respiration on temperature (Eq. A18)

2 1 3 0.8

MRoffset Offset of the linear relationship between temperature and main-

tenance respiration (Eqs. A15 and A14)

1 0.1 2 0.76

MRslope Slope of the linear relationship between temperature and main-

tenance respiration (Eqs. A15 and A14))

0.16 0.05 0.48 0.172

KGR Fraction of biomass allocated to growth respiration (Eq. A16) 0.28 0.1 0.5 0.16

Respirations responses on water availability

HRHa Parameter of the quadratic function determining the moisture

control of the heterotrophic resp. (Eq. A20)

−1.1 −2 0 0.8

HRHb Parameter of the quadratic function determining the moisture

control of the heterotrophic resp. (Eq. A20)

2.4 1.8 6 1.7

HRHc Parameter of the quadratic function determining the moisture

control of the heterotrophic resp. (Eq. A20)

−0.3 −1 0.5 0.6

HRHmin Minimum value of the moisture control factor of the het-

erotrophic respiration (Eq. A20)

0.25 0.1 0.6 0.2

Zdecomp Scaling depth (m) that determines the effect of soil water on

litter decomposition (Eqs. A19 and A21)

0.2 0.05 5 2

Zcrit_litter Scaling depth (m) that determines the litter humidity (Eq. A22) 0.08 0.01 0.5 0.2

Energy balance

Kz0 Rugosity length scaling the aerodynamic resistance of the tur-

bulent transport (Eq. A13)

0.0625 0.02 0.1 0.03

Kalbedo_veg Multiplicative parameter of vegetation albedo (Eq. A23) 1 0.8 1.2 0.16

Krsoil Resistance to the evaporation of the bare soil (Eq. A26) 33× 103 10× 103 150× 103 56× 103

www.biogeosciences.net/11/7137/2014/ Biogeosciences, 11, 7137–7158, 2014
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Table 2. Data errors that are taken into account within the cost func-

tion (matrix R, Eq. 1). They were determined as the RMSE between

a priori model outputs and observations (see text).

Years 2001 2002 2003 2004 2001–

2004 (4Y)

NEE (gCm−2 day−1) 2 2.5 1.7 1.6 1.9

LE (Wm−2) 14 12 26.3 20.5 19

LE observations have similar weights in the inversion pro-

cess; they are defined as the root mean squared error (RMSE)

between the prior model and the observations (Table 2). This

rather simple formulation leads to relatively large errors (typ-

ically 25 % of the maximal amplitude of daily fluxes), which

reflects the fact that data uncertainties comprise not only the

measurement errors (random and systematic), but also signif-

icant model errors (representativeness issues as well as miss-

ing processes).

The magnitudes of prior parameter uncertainties (matrix

B) were chosen (i) according to expert knowledge and (ii) to

be relatively large, to minimize the influence of the Bayesian

term and thus to provide the maximum leverage of the ob-

servations upon the parameters. Moreover, for the minimiza-

tion algorithms, an additional important information is the

range of variation for each parameter; such range is pre-

scribed from expert knowledge and typical observed values

(TRY database: http://www.try-db.org). As in Kuppel et al.

(2012), the prior error for each parameter was thus set to

40 % of its prescribed range of variation (Table 1) and we do

not consider correlations between a priori parameter values.

2.3.2 Minimization algorithms

Gradient-based algorithm. Several numerical algorithms can

be used to minimize a cost function (Press et al., 1992;

Trudinger et al., 2007). In this article, we tested two ap-

proaches. The first one, the L-BFGS-B algorithm (Byrd et al.,

1995), belongs to the family of gradient-based methods that

follow local gradients of the cost function to reach its mini-

mum. It was specifically designed for solving nonlinear op-

timization problems with the possibility of accounting for

bounds on the parameters. The algorithm requires at each it-

eration the value and the gradient of the cost function with

respect to its parameters.

The computation of the gradient can be done straightfor-

wardly and precisely by using the tangent linear model (TL).

For complex models, the construction of the TL model is

a rather sophisticated operation (even with automatic dif-

ferentiation tools (Giering et al., 2005)) where threshold-

based formulations are not handled and need to be rewritten

with sigmoid functions for instance. Alternatively, gradients

computations can be approximated with a finite-difference

scheme. In this study, we use the TL model of ORCHIDEE,

generated by the automatic differentiator tool TAF (Gier-

ing et al., 2005). The computation of the gradient of J

with respect to one parameter requires one run of the TL

model whose computing cost is about two times a standard

run of ORCHIDEE. As the L-BFGS-B algorithm requires

around 40 iterations to converge (termination criterion: rel-

ative change of the cost function does not exceed 10−4 dur-

ing five iterations) and as we optimize a set of 28 parameters,

the total computing time of an optimization is close to 2400

model runs.

Even though the derivatives of J (x) are estimated pre-

cisely by the use of TL models, the main drawback of the

gradient-based algorithms is that they may end up on lo-

cal minima instead of locating the global minimum. To as-

sess the importance of this problem, optimizations from dif-

ferent initial parameter guesses have been performed (see

Sect. 3.1).

Genetic algorithm. Our second approach to minimizing J

is based on a genetic algorithm (GA) that operates a stochas-

tic search over the entire parameter space. The GA was cho-

sen from other global search algorithms (simulated anneal-

ing, Monte Carlo Markov chains (MCMC)) because of its

ease of implementation and its efficiency in terms of con-

vergence. Particularly, MCMC algorithms were discarded

given that their computational expense may be prohibitive

with global terrestrial ecosystem models (Ziehn et al., 2012).

The GA mimics the principles of genetics and natural selec-

tion (Goldberg, 1989; Haupt and Haupt, 2004). When ap-

plying a GA for an optimization problem, parameter vectors

are considered as chromosomes whose each gene represents

a parameter. Every chromosome chr has an associated cost

function J (chr) (Eq. 1), which assigns a relative merit to

that chromosome. The algorithm starts with the definition of

an initial population of nchr chromosomes; each parameter

value being randomly chosen within a defined interval (Ta-

ble 1). Cost functions are then computed for each chromo-

some. Then, the GA follows a sequence of basic operations

to create a new population: (1) Selection of chromosomes

from the current population (parents) that will (2) mate and

form new chromosomes (children) by exchanging part of

their genes (crossover). (3) Additionally, some new chromo-

somes will come from the mutation of some parents chro-

mosomes. This mutation induces random changes in the pa-

rameters (genes) of the parents leading to new chromosomes

that are partly independent of the current population. Finally,

depending on the user choice, a new generation can be cre-

ated in several ways: (1) by gathering the current and new

populations; (2) by selecting the best chromosomes, i.e., the

ones that have the lowest cost function, amongst both pop-

ulations (elitism); and (3) by integrating the new population

only. This new generation is used in the next iteration of the

algorithm.

GA performances are sensitive to the way their processes

are implemented (selection, recombination or mating, muta-

tion) and to the values of their principal parameters: num-

ber of chromosomes nchr, fraction of chromosomes that mate
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or mutate, and number of iterations. The best configuration

should provide a good balance between, on the one hand, ro-

bustness and precision, and, on the other hand, rapidity. In

our study, we tested different configurations by optimizing

the model against the 2001 Hesse data. The chosen setup of

the GA leads on average to the smallest optimal cost function

with the smallest number of iterations. For this configuration,

the population is of 30 chromosomes and the maximal num-

ber of iterations is set to 40. The total computing cost of the

GA is hence about 1200 model runs (versus the 2400 model

runs of the gradient-based algorithm). Moreover, we set that

80 % of the children chromosomes are created by reproduc-

tion processes, and 20 % by mutations. The chromosomes

are selected for mating by a roulette wheel process over their

cost function values (Goldberg, 1989) and, once two chromo-

somes have been selected for recombination, they exchange

their genes (parameters) by a double crossover point scheme

(Haupt and Haupt, 2004). Next generations are then created

by selecting the 30 best chromosomes amongst the parents

and the children (elitism). This ensures that the population

size will be constant.

2.3.3 Posterior uncertainty assessment

Once the minimum of the cost function has been reached by

one or the other algorithm – i.e., optimal parameter values

have been found – it is crucial to determine which param-

eters, through the data assimilation system, have been best

resolved and which ones have not. Posterior errors and cor-

relations in optimized parameters provide not only an answer

to this question, but also the sensitivities of the cost function

to each parameter.

If the model is linear with Gaussian distributions for data

and initial parameter errors, the posterior probability distri-

bution of the optimized parameters is also Gaussian (Taran-

tola, 1987). The posterior error covariance matrix Pa can be

directly computed as

Pa = [H
t
∞R−1H∞+B−1

]
−1. (2)

The matrix H∞ represents the derivative of all model out-

puts with respect to parameters at the minimum of the cost

function. Square roots of diagonal terms of Pa are parameter

uncertainties. Large absolute values (close to 1) of correla-

tions derived from Pa indicate that the observations do not

provide independent information to separate a given pair of

parameters (Tarantola, 1987).

2.3.4 Optimization settings: parameters to be

optimized?

To simplify the problem, we first select among all OR-

CHIDEE parameters the most significant ones that primar-

ily drive, from synoptic to seasonal timescales, NEE and LE

variations. Accordingly, we do not consider, for example, the

optimization of soil carbon turnover or tree growth parame-

ters that impact the NEE mainly on decadal scales. Finally,

we choose a subset of 28 parameters controlling photosyn-

thesis, respirations, phenology, soil water stresses and energy

balance (Table 1).

Although only few parameters may be constrained by the

observations of NEE and LE, we optimize a large ensemble

because it is difficult to assess beforehand parameter sensi-

tivities over the whole parameter space. One drawback may

be that the algorithm would give spurious optimized values

because of the equifinality problem whereby multiple com-

binations of parameters yield similar fits to the data (Med-

lyn et al., 2005; Williams et al., 2009). The analysis of the

posterior error covariance matrix (Pa , Eq. 2) will inform on

which parameters are reliably constrained by the observa-

tions (Sect. 3.1).

3 Results

3.1 Performances of a gradient-based versus Monte

Carlo minimization algorithm

To assess the relative performances of the BFGS and GA al-

gorithms, we designed a twin experiment, using outputs of

the model as synthetic data. This model simulation was done

for year 2001 with parameters values that were randomly

chosen within their permitted range of variation (Table 1).

This artificial data set is fully consistent with the model and

therefore the optimization of the parameters is not biased by

potential model deficiencies or by observations uncertainties.

The objective is to assess the accuracy of the optimization al-

gorithms by comparing the assimilated parameters with the

“true” ones used to create the synthetic data. Consequently,

in order to let the optimization freely recover these parame-

ters, we remove the term of the cost function that restores

optimized values to the prior parameter estimates (Eq. 1).

We then ran 10 twin optimizations with each algorithm. For

the BFGS approach, we started the downhill iterative search

from 10 different initial parameters sets that were randomly

prescribed within the admissible range of variation of the

parameters (Table 1). For the GA, each optimization gives

different results, as several of the GA major operations are

based on a random generator.

To compare the a posteriori cost functions, we choose to

normalize their values by the value of the cost function ob-

tained by running the ORCHIDEE model with its standard

parameters. GA shows a much more robust behavior than

BFGS insofar as the normalized cost function values for that

algorithm range from 0.007 to 0.04 (mean value 0.02, stan-

dard deviation 0.01, Fig. 1). In comparison, the BFGS al-

gorithm produces a posteriori cost functions between 0.07

and 0.49 (mean value 0.29, standard deviation 0.14; Fig. 1).

Given the complexity of the ORCHIDEE model, the cost

function is likely characterized by multiple local minima.

These twin experiments thus clearly show that the GA is
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Figure 1. Cost function reductions for the 10 twin experiments

that were performed with the BFGS algorithm (BFGS) and with

the genetic algorithm (GA). Cost functions (J ) at the end of the

minimization process were normalized by the value of the cost

function representing the mismatch between the synthetic data and

the model outputs computed with the standard parameters of OR-

CHIDEE (Jstandard).

probably more efficient in minimizing complex cost func-

tions than the BFGS, which is prone, depending on the ini-

tial parameter guesses, to falling into local minima. Note that,

for our problem, the computing cost of the GA (1200 model

runs) is also lower than for the BFGS (2400 model runs).

On average, none of the two algorithms worked well in re-

trieving the “true” parameter values that were used to gener-

ate the synthetic data (Fig. 2). For the best realization of each

algorithm, the mean retrieval score across parameters (based

on the ratio of the estimated and true values) is about 1, but

with a standard deviation of 35 %. Both algorithms likely fail

to overcome the equifinality problem; the chosen data assim-

ilation framework and more specifically the type of assim-

ilated data (NEE and LE daily means) do not allow one to

distinguish parameters that are correlated (see Sect. 4.2). For

most parameters, however, the true values lie in the uncer-

tainty range of the optimized values (1 sigma of the Gaussian

PDF), with the error bars crossing the unit horizontal line.

Those inverted parameters that show large differences from

their a priori values are also characterized by large errors. As

Santaren et al. (2007) illustrated for the ORCHIDEE model,

the more uncertain an optimized parameter is, the more likely

the possibility that the equifinality problem could affect this

parameter.

The retrieved parameters that are far from the truth are as-

sociated with large posterior error correlations with other pa-

rameters, which may explain poor inversion skills. For ex-

ample, the BFGS optimization did not manage to determine

accurately the parameters cTopt, cTmax, Q10, KGR, HRHa,

HRHb, HRHc and Krsoil. Figure 3 shows that the errors on

these parameters are strongly correlated with each others.

Besides, these correlations are consistent with the model

structure as they concern parameters that are involved in

the simulation of the same processes. For instance, HRHa,

HRHb and HRHc define the soil humidity control of the

heterotrophic respiration (Eq. A20). In summary, we stress

again the need to use the information from the posterior

variance–covariance matrix, and especially the correlations

between parameter errors, to highlight the level of constraint

on each parametrization (see Sect. 3.3 with real data).

3.2 Temporal skill of the model equations

The twin experiment results have shown that the genetic al-

gorithm is a more robust method than the gradient-based

BFGS algorithm in optimizing the parameters of a model

with the complexity of ORCHIDEE. Therefore, we use the

GA algorithm to fuse the model with real data collected at

the Hesse site.

To address the issue of the temporal skill of the model

equations, i.e., their ability to represent year-to-year flux

variations, we have designed five cross-validation experi-

ments where the ORCHIDEE parameters are optimized us-

ing the Hesse data for different years: 2001, 2002, 2003,

and 2004, and for the whole period (2001–2004). The corre-

sponding optimized parameter sets are called X2001, X2002,

. . . , X4Y . Then, for every five optimized parameter sets, we

successively run the model forward and examine the fits to

the observations over each year and over 2001–2004. The

model runs with X2001, X2002, . . . and X4Y are, respectively,

called ORC2001, ORC2002, . . . , ORC4Y. As expected, the pa-

rameter set inverted from observations of a given time period

leads to the best model–data agreement during that time pe-

riod.

Through cross-validation experiments, we investigate how

parameters optimized with 1 year or the whole period of ob-

servations affect the simulations. More precisely, the opti-

mization against 4 years of observations allows one to es-

timate if the equations are generic enough to simulate the

year-to-year flux variations. Using the 1 year optimized pa-

rameter sets to simulate the other years helps to assess the

benefit of multi-year versus single-year optimizations. Note

that the range of weather conditions during the period 2001–

2004 was large, with the wet period in 2001–2002 and the

dryer conditions in 2003–2004. This contrast strengthens the

analysis of the temporal skill of the model equations.

3.2.1 Cost function reductions

Overall optimization efficiency. For a given time period of

assimilated data, the total data–model misfit produced by the

resulting optimal parameters is dramatically reduced with re-

spect to the prior one (Fig. 4a). Across the different time peri-

ods, the term of the cost function representing the total data–

model misfit (JOBS, Eq. 1) is divided by 1 order of magnitude
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Figure 2. Twin experiments results in terms of parameter inversion. For each parameter, the retrieved values (x) corresponding to the best

realization of each minimization algorithm (Min. algo.: BFGS, GA) are divided by the true values (xtrue) that were used to generate the data

so that a value of 1 indicates a perfect retrieval (horizontal lines within the boxes). Along with these values are the a posteriori uncertainties

normalized to the true parameter values.

(mean ratio ≈ 0.09, blue line Fig. 4a) with a standard devia-

tion of 0.04. The different years show different ratios ranging

from 0.05 (2002) to 0.14 (2001–2004). These results show

that the data assimilation framework has fulfilled its primary

target of reducing the total misfit between model outputs and

observations. Besides, even though the minimization of the

total cost function (Eq. 1) does not make any distinction be-

tween types of data, the partial cost functions JNEE and JLE
have been reduced by similar amplitudes, respectively, by

88 % and 93 %, with a standard deviation of 4 % for both

(green and red lines, Fig. 4a).

Performances of the 4 year optimized parameter set. The

2001–2004 data inversion leads on average to a significant

improvement of the fit to the data for each single year of the

2001–2004 period (mean JOBS reduction ≈ 0.16, Fig. 4f)).

Even better, the dispersion from year to year of the JOBS re-

ductions is relatively small (≈ 0.04). Hence, the single pa-

rameter set X4Y not only enhances the global fit to the 2001–

2004 data, but also leads to a significant improvement in the

simulation of each single year. These results indicate a sub-

stantial predictive ability of the model for periods including

wet and very dry summers such as in 2003.

Performances of the 1 year optimized parameter sets. The

Xi parameters appear not to be generic enough to enhance in

the same proportions the model fit to data of a different year

j than the year i of the optimization (j 6= i). When using

the 1 year inverted parameters to simulate data of a differ-

ent year, the JOBS cost functions are decreased on average

by 68.5 % (mean ratio post/prior JOBS: 0.22 for X2001, 0.4

for X2002, 0.31 for X2003 and 0.33 for X2004; blue line in

Figs. 4b, c, d, e). In comparison, these parameters lead on

the year used for their optimization to a mean reduction of

www.biogeosciences.net/11/7137/2014/ Biogeosciences, 11, 7137–7158, 2014



7146 D. Santaren et al.: Ecosystem model optimization using in situ flux observations

Figure 3. A posteriori correlations between the optimized param-

eters corresponding to the best twin BFGS optimization. Red and

blue squares are, respectively, related to pairs of parameters that

are strongly correlated and anticorrelated. White cells correspond

to correlations whose absolute values are lower than 0.1.

92 % (ratio post/prior JOBS: 0.13 for X2001 on 2001, 0.05 for

X2002 on 2002, 0.06 for X2003 on 2003 and 0.07 for X2004

on 2004; Fig. 4a). Likely, the data assimilation framework

does not extract enough information from 1 year of data to

retrieve robust parameters for simulations in different years.

This is particularly true because we have different weather

regimes during summer, very dry and hot in 2003 and 2004,

normal in 2001 and wet in 2002. The 1 year optimized pa-

rameters sets tend to produce reasonable fits for years with

similar climates, but much poorer fits for the other years.

Over the whole 2001–2004 period, the JOBS reductions are

about 79 %, 67 %, 76 % and 75 % for X2001, X2002, X2003

and X2004, respectively (mean reduction ≈ 74 %), which is

slightly lower that the reduction for the X4Y parameter set

(86 %, Fig. 4f).

3.2.2 Fit to the observations

The above analysis of cost function reductions has provided

a general and quantitative overview of the performances of

the optimized models. Results are now discussed in terms of

seasonal fits to NEE and LE.

NEE prior model–data disagreement. The prior model

overestimates the magnitude of ecosystem respiration in win-

ter for all years (green curves, Fig. 5). As noticed in Sect. 2.2,

carbon pools were initialized from a steady-state spin-up run

and the modeled NEE does not represent the current forest

carbon uptake (mean NEE=−550 gCm−2 yr−1). Also, the

prior model does not fully capture the magnitude of the sum-

mer uptake period from July to August. ORCHIDEE with

prior parameters is however able to reproduce the effect of
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Figure 4. (a) Cost function reductions after optimization of the

model against observations of each time period (2001, 2002, . . . ,

4Y for the whole 2001–2004 time period). Blue bars are associated

with the term of the cost function representing the total data–model

misfit (JOBS, Eq. (1)); green and red bars are associated with partial

cost functions relative to NEE and LE data, respectively (JNEE and

JLE). The horizontal lines represent the mean values of the corre-

sponding cost functions reductions. Figures (b), (c), . . . , (f) show

the cost function reductions produced when running the model with

the corresponding optimized parameter sets (X2001, . . . , X4Y ) in

every time period. Horizontal lines are the averaged cost function

reductions across other years than the one used to optimize the

model.

the strong summer 2003 drought, which causes a positive

NEE anomaly (Fig. 5c). Finally, the prior model is unsuc-

cessful in reproducing the beginning and the end of the car-

bon uptake season during most years but 2003: the starting

and finishing dates are on average earlier than 13 days com-

pared to reality.

NEE optimization efficiency. The optimization success-

fully corrects most of the mismatches described above. For

each year, the amplitudes of observed winter release and

summer uptake are properly simulated by the model run with

the parameter set inverted from that year of observations. The

beginning and the end of the carbon uptake seasons are also

correctly determined compared to the prior model: after opti-

mization, the mean delay between the model outputs and the

observations is decreased to 2.5 days and 2.75 days for the

starting and finishing dates, respectively.

Seasonal cycle of the carbon uptake. The 4 year inverted

parameter set X4Y leads to a correct simulation of the phase

and amplitude of the seasonal cycle of the carbon uptake

for most of the years (Figs. 5a, b, c, d). On the contrary,

the model run with 1 year optimized parameter sets tends

to reproduce the start of the NEE decrease during spring

of a different year more incorrectly than the one used for

the inversion. A good example of this bias is the model run

with X2003, which predicts a NEE decrease much earlier than
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Figure 5. For 2001, 2002, 2003 and 2004, fits to the net CO2 flux

observations (thick black curve) of the model run with the prior

and the optimized parameter sets. Figure legends show the model–

data RMSE for the different parameter sets. Observation errors are

represented by the grey shaded area.

observed for the years 2001, 2002 and 2004 (Figs. 5a, b, d).

Probably, the description of leaf onset processes (Botta et al.,

2000) is too empirical to allow capturing of year-to-year vari-

ations when its associated parameters (Kpheno_crit, KLAIhappy

and τleafinit) are optimized with only 1 year of data. Moreover,

1 year optimized models fail to simulate the observed carbon

uptake magnitude of a different year. For instance, the model

parameterized with X2001, X2003 and X2004 systematically

underestimates the carbon uptake amplitude of the year 2002

(Fig. 5b).

Extreme 2003 summer drought. None of the optimized

models but ORC2003 was able to reproduce the amplitude of

the abnormally low uptake during September 2003 (Fig. 5c).

Most of them (ORC2001, ORC2004 and ORC4Y) reproduce

efficiently the effect of the hydric stress and the subsequent

sharp drop in CO2 uptake at the beginning of August, during

heat wave conditions, but they overestimate the follow-up re-

covery of NEE in September. Detailed in situ measurements

Figure 6. For 2001, 2002, 2003 and 2004, fits to the latent heat flux

observations (thick black curve) of the model run with the standard

and the optimized parameter sets. Figure legends show the model–

data RMSE for the different parameter sets. Observation errors are

represented by the grey shaded area.

have led to the conclusion that heavy hydric stress events may

damage photosynthetic organs, inhibiting further photosyn-

thetic assimilation, or may cause embolism due to cavitation

(Breda et al., 2006). As these physiological behaviors are not

modeled by ORCHIDEE, most of the inverted models, ex-

cept ORC2003, consistently overestimate the gross primary

production (GPP) during September 2003. To fit NEE 2003

data, the optimization probably produces misleading values

of the X2003 parameters (notably cTmax; see Sect. 3.3), which

in turn explains the poor NEE fit during September 2001,

2002 and 2004 of the ORC2003 model.

LE prior model disagreement with data. For all years, the

prior model overestimates the magnitude of the latent heat

flux nearly all year long (Figs. 6a–d). This bias is particu-

larly important during summertime periods, and dry years

such as 2003 and 2004. The LE bias reaches up to 40 W m−2

in 2003–2004 compared to 20 W m−2 in 2001–2002. In ad-

dition, prior modeled LE may precede the observation in
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Figure 7. Optimized parameter values (circles) and errors (vertical bars) estimated by the data assimilation system in every time period

(2001, 2002, . . . , 4Y for 2001–2004). Box heights specify the ranges within parameters are allowed to vary during the optimization process.

Horizontal lines are the a priori values of the parameters.

spring. This phase difference is particularly striking in 2002

and 2004, when canopy evapotranspiration starts much ear-

lier than observed. This could be related to biased param-

eterization of leafout phenological processes or to a wrong

assessment of the transpiration intensity. Also, observations

of LE may be underestimated because of the lack of energy

closure observed in FLUXNET data (Wilson et al., 2002).

LE optimization efficiency. For each 1 year parameter in-

version, the corresponding optimized model reproduces sub-

stantially better the LE observations than the prior model

for that particular year (Figs. 6a–d). Nevertheless, for each

year but 2002, it underestimates both the peak of LE in early

June and the subsequent decrease of the transpiration over the

summer (Figs. 6a, c and d). Possibly, these deficiencies illus-

trate structural shortcomings of the model in correctly com-

puting the stomatal conductance and/or the vapor pressure

deficit during summer periods, with a “big leaf” approach

(Jarvis P.G., 1995) that does not consider any gradient of hu-

midity from the free atmosphere down to the leaf level.

LE fits of the 4 year optimized model versus the 1 year op-

timized models. As expected, the inversion using the whole

period (X4Y parameters) produces the best compromise

throughout the years. Indeed, for a given year of obser-

vations, ORC4Y generally outperforms the models inverted

from a different year, with the two exceptions of the fits to

the LE data of 2002 by ORC2001 and 2004 by ORC2003.

3.3 Parameter and uncertainty estimates

Level of constraint on the parameters. Only a few param-

eters are tightly constrained by the observations if we take

as a criterion an error reduction greater than 90 % (error

reduction ≡ ratio of the a posteriori uncertainty to the

range of variation). The optimized values of these parame-

ters are characterized by lower relative a posteriori uncertain-

ties than other parameters (Fig. 7). When inverting 4 years
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Figure 8. Yearly trend of the cumulative weekly NEE averaged over

2001–2004 for the observations (black curve), for the model run

with the a priori parameter set (green curve) and with the 2001–

2004 inverted parameter set (X4Y , blue curve).

of observations, nine parameters are determined precisely by

the optimization framework: gsslope (stomatal conductance,

Eq. A2), cTopt (temperature control of the photosynthesis,

Eq. A11), cTmax (temperature control of the photosynthesis,

Eq. A10), Kpheno_crit (leaf onset, Eq. A30), cTsen (tempera-

ture control of the senescence, Eq. A33), SLA (specific leaf

area, Eq. A28), Lage_crit (leaf age driving of the senescence,

Eq. A34),KLAIhappy (leaf onset, Eq. A32) andZcrit_litter (litter

humidity, Eq. A22). The inversion of 1 year of observations

produces a lower constraint on the parameters: only four,

three, five and five parameters are precisely determined for

the 2001, 2002, 2003 and 2004 optimizations, respectively.

Whatever the time period used for the optimization, 18 pa-

rameters are weakly constrained by the observations. Note

that, contrary to previous studies, the maximum photosyn-

thetic carboxylation rate (Vcmax_opt, Eq. A5) is not among

the most constrained parameters (Wang et al., 2001, 2007;

Santaren et al., 2007).

Hydric stress constraints. The data assimilation frame-

work optimizes processes related to the temperature control

of the carbon assimilation to match the observed NEE dur-

ing hydric stress events. The cTmax parameter (Eq. A10),

the maximal temperature where photosynthesis is possible,

is indeed much better constrained in 2003 and 2004 than

the parameters related to soil hydric control of the fluxes

(Kwroot, Fstressh, HRHa, HRHb, HRHc, HRHmin, Zdecomp and

Zcrit_litter). Moreover, the retrieved cTmax values for both pe-

riods are lower than a priori. Photosynthesis is suppressed

for temperatures warmer than 33 ◦C in 2003 and 27 ◦C in

2004. As the soil water stress periods during the summers of

2003 and 2004 are characterized by mean temperatures close

to those values, the optimization process likely uses the tem-

perature control of the carbon assimilation to reduce the GPP

rather than changing soil water stress functions to match the

observed NEE. Whether or not this potential bias is a numer-
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Figure 9. Standard deviations over 2001–2004 of the monthly NEE

for the observations (black curve), for the model run with the stan-

dard parameter set (green curve), and with the 2001–2004 inverted

parameter set (X4Y , blue curve).

ical artefact due to the relative simplicity of the hydrological

model (Choisnel, 1977) needs further investigation.

Leaf onset. For all inverted time periods of data, the pa-

rameter Kpheno_crit (accumulated warming requirement be-

fore bud burst; Eq. A30) is tightly constrained, indicating that

it plays a major role in the determination of the start of the

growing season. The adjustment of the 1 year inverted values

are positively correlated with the timing of the leaf onset of

the year used in the optimization. Examples are the 2002 and

2003 spring periods, which show, respectively, the latest and

earliest starting dates, and lead, respectively, to the largest

and smallest optimized values forKpheno_crit. This correspon-

dence is consistent with the phenology description in OR-

CHIDEE. The smaller the value of Kpheno_crit, the earlier the

leaf onset will occur (Eq. A30). The 4 year inverted value of

Kpheno_crit, which is approximately the average of the 1 year

optimized values, allows a reasonable fit to the starting dates

of the carbon uptake season (Fig. 5). However, further re-

finement of this approach including a possible modulation of

Kpheno_crit with past climate can be envisaged.

Poor determination of heterotrophic respiration parame-

ters. Because of error covariances (Fig. 3), some inverted

parameters may show very different values amongst the in-

verted time periods. The Q10 parameter, the temperature de-

pendency of the heterotrophic respiration (Eq. A18), is a no-

ticeable example. The X4Y value,Q10 = 2.8, is much higher

than the average value of Q10 from all 1 year inversions

(Q10 ≈ 2). Error correlation between Q10, KsoilC and HRHx

due to the formulation of heterotrophic respiration processes

(Eqs. A17, A18 and A20) may explain this feature. Consis-

tently, the parameter KsoilC, which scales the sizes of the

initial carbon pools (Eq. A17), also shows large variability

in its optimized values, depending on the time period used

for the inversion. Additional observations, like soil carbon

flux/stock measurements, should be assimilated in order to
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constrain the heterotrophic respiration parameters better (see

Sect. 4.2).

4 Discussion

4.1 Minimization algorithms

From a technical point of view, the goal of parameter opti-

mization is to efficiently and robustly locate the global min-

imum of a cost function with respect to model parameters.

With highly nonlinear and complex models, this task is not

straightforward, because cost functions can contain multiple

local minima and/or be characterized by irregular shapes.

These caveats may prevent gradient-based algorithms from

converging to the absolute minimum. In this study, this has

been verified insofar as the convergence of a gradient-based

method was shown to be very sensitive to first guess param-

eter values. Note that our experiment considered a relatively

large range for the random selection of the first guess point:

uniformly distributed over the entire parameter range. We

have tested a more restricted range (50 % of the parameter

range) and the results, although more consistent with those

from the GA, still highlight the convergence problem. When

applied to complex models and many parameters, gradient-

based methods should then be used with caution, and the

search of global minima should be initiated from different

starting points in order to get around local minima and po-

tential nonlinearities. Alternatively, we showed the efficiency

and robustness of a genetic algorithm (GA) to perform a

global random search over the parameter space. The GA ap-

pears to be adapted to the optimization of complex models,

as it can deal with nonlinearities and is hardly affected by the

presence of local minima.

The advantage of using gradient-based methods relies on

the possibility of using an adjoint operator to compute the

gradient of the cost function. Then, regardless of the number

of inverted parameters, the computing cost of the gradient

is similar to the one of a forward run of the model (Gier-

ing and Kaminski, 1998). Nevertheless, the implementation

of an adjoint code is a complicated process even with the

use of automatic differentiation tools (Giering et al., 2005).

An important programming work is required especially if the

model contains parameterizations with thresholds. Moreover,

to locate the global minimum without falling into local min-

ima, the minimization process should be still run from dif-

ferent first guesses of the parameters. At the opposite end,

the implementation of a GA does not require high informat-

ics skills, even though the settings of this algorithm have to

be carefully determined in order to enhance its convergence

(see Sect. 2.3.2). Last but not least, GAs can be easily par-

allelized, which substantially decreases the computing cost

and makes it comparable to one of the adjoint techniques.

4.2 Parameter optimization and observations

Although only few parameters may be well constrained by

the eddy-covariance flux observations of CO2 and water (see

Sect. 3.3), removing parameters from the optimization pro-

cess could bias the estimated values of the remaining ones.

Also, it is difficult to choose the most sensitive parameters

of a model, because the choice depends on the overall model

configuration. For example, the ORCHIDEE modeled GPP

is sensitive to the maximal temperature for photosynthesis

(cTmax, Eq. A10) during years 2003 and 2004, whereas this

parameter has little influence during years 2001 and 2002

(Fig. 7). Finally, even though some parameters may be as-

sociated individually with a low sensitivity of the cost func-

tion, their combined influence could become important. To

illustrate this point, we performed the optimization with a re-

duced set of parameters that contains the most sensitive pa-

rameters as derived from the a posteriori error estimates (see

Sect. 3.3): gsslope, cTopt, cTmax, Kpheno_crit, cTsen, Lage_crit,

SLA, KLAIhappy, Zcrit_litter, Q10 and KsoilC. When perform-

ing the optimization against the full period, the optimal-to-

prior cost function ratio is 0.52 compared to 0.14 for the op-

timization with the full set of parameters (Sect. 3.2.1). The

large deterioration of the optimal fits to the data when us-

ing this limited parameter set strengthens the importance to

take into account as many uncertain parameters as possible in

the optimization process. Ideally, we should optimize all pa-

rameters of the model that have a significant uncertainty, but

practically it may hamper/slow the convergence of the min-

imization algorithms and considerably increase the comput-

ing cost of the optimizations, we therefore choose a relatively

restricted parameter set (see Sect. 2.3.4).

To increase the level of constraint on the carbon cycle pa-

rameters, observations of carbon stocks (i.e., mainly above-

ground biomass and soil organic matter content) could be

used in addition to eddy-covariance flux data. Indeed, flux

data provide information on the diurnal to annual timescales

of the net carbon exchange, and consequently help to con-

strain processes on these timescales. Carbon pool data would

provide information on longer timescale processes and, even

more importantly, would help to separate the contributions

from the carbon stock and the rate of decomposition in the

computation of respiration fluxes (based on first-order ki-

netic equations). Our data-assimilation system starts with a

prior model that is at equilibrium with the atmosphere, as

is commonly done in most global simulations (annual sim-

ulated NEE close to zero, see Sect. 2.2), thus with potential

biases in the soil and vegetation above-/below-ground car-

bon pools. This may affect the optimal values of the param-

eters, even with the use of a parameter that scales the ini-

tial soil carbon pools (scaling factor KsoilC, Eq. A17). To

investigate the impact of the equilibrium state assumption

on the estimated parameters related to the temperature and

humidity sensitivity responses of the respirations, we per-

form the 2001–2004 optimization with soil carbon pool sizes
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fixed to different values (within a range of 50 % compared

to the estimated values from the standard optimization) and

the KsoilC parameter not being optimized. The optimal val-

ues of the parameters related to the temperature sensitivity

functions (cTmin, cTmax, cTopt, Q10, MRoffset, MRslope; see

Table 1) and to the humidity response functions (Kwroot,

Fstressh, HRHa, HRHb, HRHc, HRHmin, Zdecomp, Zcrit_litter;

see Table 1) of both the photosynthetic assimilation and the

respirations were found to depend significantly on the initial

soil carbon pools. Due to the complexity of ORCHIDEE, the

use of flux data only in the optimization likely prevents one

from constraining separately parameters related to the envi-

ronmental responses of the respirations from those related to

the carbon stocks themselves. The use of soil and vegetation

above-ground biomass data would help to differentiate these

parameters, and it would dampen the influence of bringing

the model to steady state. Our choice of optimizing KsoilC

(scalar to the initial soil C pools) should be considered a com-

promise, while for the vegetation stocks, we would need to

account for the true forest age in the simulation (study in

preparation).

4.3 Parameter optimization and model validation

Data assimilation is a valuable method for assessing whether

models diverge from observations because of structural defi-

ciencies or because of inadequate tuning of their parameters.

If a model is not able to fit the data (within their uncertainties)

after a formal optimization of its parameters, its structure and

equations should be questioned. In this context, the compari-

son of model outputs versus data for different weather condi-

tions and different timescales provides valuable information.

For example, the analysis of LE daily mean time series high-

lighted the inability of the model to reproduce completely the

large decrease in evapotranspiration flux during dry periods

(Fig. 6).

In this study, we have optimized the parameters of OR-

CHIDEE with NEE and LE fluxes for four 1 year periods and

the full 4 year period. With the 1 year inverted parameters, we

used the “remaining years” to cross validate the optimization

and provide hints of the temporal generality of the equations

and the ability of the model to simulate year-to-year flux vari-

ations (especially during the extremely warm 2003 summer).

For instance, models optimized using one given year of data

were able to simulate accurately the beginning of the grow-

ing season during that year, although they produce signifi-

cant shifts in the date of the leaf onset for a different year

(Fig. 5). This point highlights the limits of the climate-driven

phenology model implemented within ORCHIDEE (Botta

et al., 2000). Note that the use of very different weather con-

ditions helps in assessing model structural shortcomings, as

illustrated by the fit of the 2003 hydric stress event, where

the optimization may compensate for model limitations in

simulating drought impacts by overtuning some parameters

(cTmax), which could limit model performances in a differ-

ent year (Sects. 3.2.2 and 3.3). This model drawback would

have been hidden when optimizing against observations of

wet years only, which emphasizes the need to consider dif-

ferent weather conditions in any parameter optimization.

Despite model shortcomings, the equations of OR-

CHIDEE are generic enough to allow the optimization pro-

cedure using 4 years of observations to greatly enhance the

fit to the NEE/LE data over the whole period (Sect. 3.2.1).

To evaluate the performances of the 4 year inverted model

further, the optimization results are analyzed for different

timescales (seasonal, annual and interannual). We first com-

puted, for each year of the 2001–2004 period, the weekly

NEE values in order to remove the synoptic variations. Then,

the yearly trend of the cumulative weekly NEE averaged over

the 4 years shows to what extent the optimized model repro-

duces the mean seasonal cycle and the mean annual value of

NEE (Fig. 8). In addition, we use the standard deviations of

monthly NEE over the 4 year period as a measure of the in-

terannual variation (IAV) of the monthly NEE (Fig. 9). The

4 year optimized model, ORC4Y, simulates fairly well the

mean seasonal cycle of the observations, with a slight un-

derestimation of the cumulated NEE in the fall season (max-

imal difference of 40 gCm−2 yr−1 on DOY 295, Fig. 8).

The mean annual carbon uptake observed in the ecosys-

tem (531± 64 gCm−2 yr−1, Fig. 8) is also well captured by

ORC4Y (508± 130.7 gCm−2 yr−1, Fig. 8), but with a simu-

lated IAV (130.7 gCm−2 yr−1) that is almost twice the ob-

served one (64 gCm−2 yr−1). Nevertheless, along the year,

ORC4Y is able to reproduce the temporal pattern of the ob-

served monthly IAV, except at the beginning (June) and the

end (September) of the growing season (Fig. 9), when differ-

ences can reach 12 g C m−2/month. Note that the prior model

was not able to capture the IAV during the peak of the grow-

ing season (July, August) and that the optimization drasti-

cally improves this feature. Overall, the inversion of daily

means across the 4 years leads to a strong enhancement of

the model fit to the NEE data on each analyzed timescale,

with the exception of the IAV of the annual carbon uptake.

Compared to the case of the 4 year inversion, the model

run with parameters optimized with 1 year of observations

shows a lower skill when simulating data of the whole period

and a much lower skill when applied to specific years with

different weather conditions (Sect. 3.2.1). A single year of

observation does not likely contain sufficient information to

constrain the parameters of ORCHIDEE efficiently. We first

showed that fewer parameters are constrained in the 1 year

optimizations compared to the 4 year one (Sect. 3.3). Sec-

ondly, 1 year optimizations are more prone to producing op-

timal values that are weakly portable to a time period char-

acterized by different weather conditions (i.e., the phenology

with the Kpheno_crit parameter), which may reflect overfitting

to compensate for model structural errors.

This work shows the potential skills of ORCHIDEE in

simulating on several timescales (from monthly to interan-

nual) the CO2 and water fluxes of a given beech forest (Hesse
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site). Kuppel et al. (2012) led a complementary study on the

ability of the same model to represent the ecosystem’s diver-

sity within the same plant functional type (PFT; temperate

deciduous broadleaf forests); they assessed the potential of

the model to simulate, with a single set of optimized parame-

ters, the carbon and water fluxes at 12 sites of the same PFT.

Particularly, they have shown that the multi-site optimization

leads to model–data RMSE reductions at each site compara-

ble to those of the corresponding single-site optimizations.

5 Conclusions

In this study, we demonstrate that the fit to NEE and LE flux

data of a complex terrestrial model like ORCHIDEE can be

dramatically enhanced with a Bayesian parameter calibration

based on a genetic algorithm (GA). The enhanced robustness

of this Monte Carlo approach compared to a variational ap-

proach using the gradient of the cost function (BFGS), high-

lighted in this study at one specific FLUXNET site, calls for

further investigation. First, one should verify if the better per-

formance of the GA holds at other sites with different plant

functional types. Secondly and more importantly the use of

multiple sites in the cost function, as in Kuppel et al. (2012),

may “smooth” the shape of the cost function, allowing the re-

trieval of the global minimum of the cost function more eas-

ily with a variational approach than for a single site, possibly

outperforming the performances of the GA. These technical

questions are beyond the scope of this paper and currently

under investigation.

For a multi-year simulation of contrasted weather regimes,

the ORCHIDEE model appears to be robust enough to simu-

late the carbon and water fluxes, with parameters optimized

against 4 years of observations. At the opposite end, parame-

ters obtained with the inversion of only 1 year of data do not

guarantee the simulation of the year-to-year variability of the

NEE and LE fluxes, especially the drought event impact or

the timing of the carbon uptake season. This study comple-

ments a recent study with the same model, by Kuppel et al.

(2012), investigating the generality of the model across dif-

ferent FluxNet sites of the same plant functional type. They

showed the benefit of including multi-site data to optimize

the ORCHIDEE model, but did not focus on the temporal

skill of the model. In this study, we highlight the fact that

using at least a few years of contrasted weather regimes is

crucial to calibrating the sensitivity of photosynthesis to tem-

perature or soil water stress.

A following step in assessing the predictive ability of the

model would be to study the propagation of the estimated pa-

rameter errors in the fluxes (Fox et al., 2009; Spadavecchia

et al., 2011). This should allow one to distinguish model defi-

ciencies from uncertainties due to parameterization. To con-

strain the latter better, additional types of data should also be

integrated within the optimization. Observations of soil car-

bon content, respiratory fluxes from flux chamber measure-

ment, above-ground annual wood increment or LAI would

help the optimization framework to determine more accu-

rately parameters related to annual or interannual timescale

processes.
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Appendix A: ORCHIDEE model equations

Hereinafter, we briefly describe the main equations of the

ORCHIDEE model involved in the optimization process. Op-

timized parameters are in bold. Prior values and the allowable

range of optimization are summarized in Table 1. An exten-

sive description of the model can be found in Krinner et al.

(2005).

Net ecosystem exchange (NEE)

The net ecosystem exchange (NEE) flux is calculated as the

sum of four terms:

NEE=MR+GR+HR−A (A1)

MR is the maintenance respiration, GR the growth respira-

tion, HR the heterotrophic respiration and A the net carbon

assimilation rate (A= photosynthesis minus leaf respiration

in light). ORCHIDEE is a “big leaf” model that maps the

processes and properties of a whole canopy onto a single rep-

resentative leaf (Jarvis P.G., 1995).

Photosynthesis

Net assimilation (A), stomatal conductance (gs)) and the CO2

concentration in the chloroplast are solutions of the following

system of three equations:

gs =
gsslope(PFT)×wl ×A×hr

Ca

+ gsoffset (A2)

A= Vcmax×min(Vr,Vj )× (1−
0i

Ci
)−Rd (A3)

A= gs× (Ca−Ci) (A4)

Equation A2 gives the stomatal conductance gs(A,Ci) fol-

lowing the experimental data of Ball et al. (1987) obtained

for plants under no-stress conditions. gsslope is the slope of

the stomatal conductance versus the A linear relationship, hr

the relative air humidity (%) and Ca the CO2 atmospheric

concentration. gsoffset is an offsetting parameter (= 0.01).

Equation (A3) describes A(Ci) with distinct rates of car-

boxylation for the Rubisco (RuBP) limited regime (Vr) and

the electron transfer limited regime (Vj ), following Farquhar

et al. (1980) for C3 photosynthesis and Collatz et al. (1992)

for C4 photosynthesis.

Vcmax(PFT) is the maximum carboylation rate when plants

are not RuBP neither light limited. It is in turn scaled by sev-

eral limiting functions depending on soil water availability

(fwater), leaf age (fleafage) and temperature (ftemp):

Vcmax = Vcmax_opt(PFT)× fwater× ftemp× fleafage (A5)

Vcmax_opt(PFT) is the maximum carboxylation rate when any

limitation occurs. The dependence factor on soil water avail-

ability is function of the water fraction available for the plant

in the root zone fwroot:

fwater =
2

1+ exp(−Fstressh(PFT)× fwroot)
− 1 (A6)

Parameter Fstressh(PFT) defines the soil water fraction above

which maximum opening of the stomata occurs (wl = 1).

fwroot is described by an exponential root profile along the

soil depth Zsoil, parametrized by Kwroot(PFT):

fwroot = xtop exp(−Kwroot(PFT)×Zsoil× atop) (A7)

+ (1− xtop)exp(−Kwroot(PFT)×Zsoil× adeep)

where xtop, atop and adeep are normalized coefficients related

to the wetness of the top soil water reservoir and the dry

fraction of the top/deep soil water reservoirs, respectively.

The soil hydrology is computed following the double bucket

model (Choisnel, 1977).

The temperature dependence factor of the maximum car-

boxylation rate fw makes the photosynthesis maximal at the

temperature Topt and cancels it above Tmax and below Tmin:

ftemp =
(Tair− Tmin)(Tair− Tmax)

(Tair− Tmin)(Tair− Tmax)− (Tair− Topt)
(A8)

Tmin, Tmax and Topt are quadratic functions of the mean an-

nual temperature Tl :

Tmin = cTmin+ bTminTl + aTminTl
2 (A9)

Tmax = cTmax+ bTmaxTl + aTmaxTl
2 (A10)

Topt = cTopt+ bToptTl + aToptTl
2 (A11)

where aTi, bTi and cTi are constant coefficients.

The relative leaf efficiency fleafage decreases the maximum

carboxylation rate with leaf age. Its shape, shown in Fig. A1

in Krinner et al. (2005), is determined by the prescribed mean

leaf lifetime Lage_crit.

Equation (A4) calculates the gas phase molecular diffu-

sion of CO2 from canopy air to chloroplast. Altogether, the

system of Eqs. (A2, A3 and A4) is solved iteratively to up-

date at each time step the values of A, gs and Ci at the leaf

level.

To scale up to the canopy level, we integrate the values of

A and gs over the canopy depth, that is, over the leaf area in-

dex (LAI), assuming an exponential decrease in the effective

maximal carboxylation rate (Johnson and Thornley, 1985)

and the light intensity (Beer–Lambert law). Particularly, OR-

CHIDEE computes a total effective stomatal conductance gc

for the whole canopy:

gc =

l=LAI∫
l=0

gs(l)dl. (A12)

Aerodynamic resistance (ra)

The aerodynamic resistance, ra, describes the resistance to

the transfer of matter (CO2, Water) and energy between the
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canopy and the measurement plane:

ra =
1

Vwind×Cd(Kz0)
(A13)

Vwind is the windspeed norm. The influence of canopy turbu-

lence and surface roughness is embodied by the surface drag

coefficient Cd whose computation depends on a characteris-

tic rugosity length Kz0 (Ducoudré et al., 1993).

Maintenance respiration (MR)

The maintenance respiration is function of the size of each

living biomass pool Bi , and has a linear temperature depen-

dency on the pool (soil or surface) temperature (Ti) (Ruimy

et al., 1996). For leaf maintenance respiration, a function of

the leaf area index (LAI) also enters the calculation.

MRleaf =max(0,C0,leaf(MRslope× Ti +MRoffset)) (A14)

×B
0.3LAI+1.4(1−exp(−0.5LAI))

LAI

leaf (leaves)

MRi =max(0,C0,i(MRslope× Ti +MRoffset)) (A15)

×Bi(other pools)

where c0,i is a coefficient specific to each biomass pool.

Growth respiration (GR)

Growth respiration GR is computed as a fraction KGR of the

difference between assimilation inputs and maintenance res-

piration outputs to plant biomass during 1 day:

GR=KGR×max(Ba−1t ×
∑

Rm, i,0.2×Ba), (A16)

where Ba is the total biomass, and 1t the time step of 1 day.

Heterotrophic respiration (HR)

Processes controlling the decomposition of litter, soil organic

matter, and subsequent heterotrophic respiration (Rh) losses

of CO2 to the atmosphere are similar to those described in

Parton et al. (1988) and popular amongst biosphere modelers.

Soil litter of the forest floor is partitioned into four soil car-

bon pools (structural/metabolic litter above/below ground),

with structural and metabolic pools characterized by differ-

ent turnover times. Soil organic matter is distributed among

three soil carbon pools of increasing turnover (active, passive

and slow). The evolution of each of these seven soil carbon

pools is governed by a first-order linear differential equation,

where pool-specific turnovers have soil moisture (fH,s) and

soil temperature dependencies fT,s (Eq. A18). To account for

the impact of site history on carbon pools, we scale the total

Rh flux by the parameter KsoilC:

HR=KsoilC

∑
s

αs

τs
× fH,s × fT,s ×Bs, (A17)

where αs , τs and Bs are, respectively, a pool-specific

coefficient partitioning HR into pools (Parton et al., 1988), a

pool-specific residence time, and the size of the carbon pool

s.

The temperature dependency of above-/below-ground

pool respirations is a classical Q10 function of surface/litter

decomposition temperatures Ts, litter:

fT, s, litter =min(1,Q10

Ts, litter−30

10 ) (A18)

The effect of soil temperature on the litter decomposition

is assumed to be correlated with an exponential profile of

the decomposers that is parameterized by a scaling depth

Zdecomp. The effective temperature of litter decomposition

Tlitter is then

Tlitter =

∫ Zlitter

0
Tsoil(z)e

−
z

Zdecomp dz

1− e
−

Zlitter
Zdecomp

, (A19)

where Zlitter is the litter depth.

The soil or litter moisture dependencies fH, s, litter of the

above-/below-ground respirations of the soil or the litter are

quadratic functions that represent the slowdown of respira-

tion for too dry or too wet soils/litters:

fH, soil, litter =max(HRH min,min(1,HRHa (A20)

×H 2
soil, litter+HRHb×Hsoil, litter+HRHc))

where Hs, litter are the effective decomposition humidities of

the above-ground soil/litter pools.

The effective decomposition humidity of the litter Hlitter

also represents the depth integration of the litter humidity Hl

convoluted to an exponential profile of the decomposers:

Hlitter =

∫ Zlitter

0
Hl(z)e

−
z

Zdecomp dz

1− e
−

Zlitter
Zdecomp

(A21)

The litter humidity Hl(z) is an exponential profile of the

height of the dry reservoir hdry of the double-bucket hydro-

logical scheme (Choisnel, 1977):

Hl(z)= e
−

hdry
Zcrit_litter , (A22)

where the parameter Zcrit_litter is a scaling depth.

Energy Balance

The energy budget calculation considers that soil and veg-

etation form a single medium characterized by a common

surface temperature Ts. The energy balance is expressed by

RiLW+ (1−Kalbedo_veg× albedoveg (A23)

− albedosoil,snow,dead leaves)×R
i
SW− εσT

4
s = LE+H +G,

whereRi
LW,Ri

SW, ε and σ are, respectively, the longwave and

shortwave incoming radiation, the emissivity and the Stefan–

Boltzmann constant. LE,H andG are the latent, sensible and
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ground heat fluxes. In ORCHIDEE, shortwave incoming ra-

diation can be reflected by vegetation, soil, dead leaves on the

ground and snow. The most important fraction of reflected

radiation is determined by the albedo of the vegetation. We

scale this fraction by the parameter Kalbedo_veg.

Latent heat flux (LE)

The latent heat flux is computed as the sum of snow sublima-

tion Esnow, soil evaporation Esoil, plant evapotranspiration

ET and evaporation of water intercepted by foliage Eintercept:

LE= Esnow+Esoil+ET+Eintercept (A24)

The most important fluxes in the Hesse forest are ET and

Esoil. ET is largely predominant during the growing season

whereas the main component of LE during winter is Esoil.

Each of the LE fluxes is linearly related to the gradient of

specific humidity between the evaporating surface, equal to

the saturation-specific humidity of the air at the surface tem-

perature (qsat(Ts)) and the air overlying the canopy (qair), the

latter being an input forcing. The aerodynamic resistance ra
(Eq. A13) intervenes in the calculation of all LE compo-

nents, as illustrated for plant transpiration ET in Eq. A25 and

for soil evaporation in Eq. A27. The value of ra mediates the

transfer of all scalars from their emitting surface up to the top

of the canopy.

Concerning the plant evapotranspiration ET, stomatal re-

sponses create a resistance rc to evaporation processes in ad-

dition to the aerodynamic resistance:

ET∝
qsat(Ts)− qair

ra+ rc
(A25)

rc is the inverse of the canopy conductance gc (Eq. A12).

For soil evaporation, we introduce a soil resistance to evap-

oration rsoil that is proportional to the dry soil height rsoil:

rsoil =Krsoil×hdry (A26)

and

Esoil ∝
qsat(Ts)− qair

ra+ rsoil

. (A27)

Leaf area index (LAI)

In ORCHIDEE, LAI is proportional to the leaf biomass (Bl):

LAI= SLA×Bl. (A28)

The specific leaf area, SLA, is a parameter specific to each

PFT.

When increasing, LAI cannot exceed an upper limit,

LAIMAX, which is specific to each PFT as well.

Onset and termination of the growing season

Leaf onset and leaf senescence are fully treated in a prognos-

tic way.

The leaf onset modelling is based on the concept of grow-

ing degree days (g) (Botta et al., 2000), which is a way of

assessing if the dormant season has been long enough and if

the plant has stored enough heat during spring. From mid-

winter, when weekly mean temperatures exceeds monthly

mean temperature, the value of g is updated the days whom

daily temperature Td is over a threshold temperature Tc:

g← g+ (Td− Tc)1t ifTd > Tc, (A29)

where 1t represents the time step of the STOMATE model

(1 day in this study), and Tc = 12 ◦C.

For broadleaf summer green trees, biomass starts to be al-

located to leaves when g exceeds gc(n) a threshold function

of the number n of chilling days (days with mean tempera-

ture below Tc):

gc(n)=Kpheno_crit(ae
−bn
− c) (A30)

where a, b and c are PFT-dependent parameters.

To create the initial foliage, carbon is taken from a carbo-

hydrate reserve until LAI reaches a threshold value LAIhappy

proportional to the maximum value LAIMAX:

Btree→leaf =
LAIhappy

LAIMAX

×
1t

τleafinit

ifLAI< LAIhappy (A31)

LAIhappy =KLAIhappy×LAIMAX (A32)

where τleafinit is the time to attain the initial foliage using the

carbohydrate reserve and Btree→leaf the biomass transferred

at each time step from this reserve to the leaves.

For deciduous forests, leaf senescence is triggered when

the weekly mean temperature goes below Tsen:

Tsen = cTsen+ bTsenTl+ aTsenT
2
l , (A33)

where Tl is the annual mean temperature.

A fraction of the leaves (1Bloss,age) is lost at every time

step as a function of leaf age:

1Bloss,age = Bleafmin(0.99,
1t

Lage_crit

(
LeafAge

Lage_crit

)4) (A34)

www.biogeosciences.net/11/7137/2014/ Biogeosciences, 11, 7137–7158, 2014



7156 D. Santaren et al.: Ecosystem model optimization using in situ flux observations

Acknowledgements. The post-doc program of D. Santaren has

been funded by the Swiss Federal Institute of Technology, Zurich

(ETH Zurich). The authors thank ANR project PREVASSEMBLE

(ANR-08-COSI-012) for financial support and F. Chevallier,

N. Vuichard and N. Viovy for fruitful general discussions. Com-

putations were performed thanks to the computer team of the LSCE.

Edited by: M. Williams

References

Aubinet, M., Grelle, A., Ibrom, A. E. A., Rannik, Ü., Moncrieff, J.,

Foken, T., Kowalski, A., Martin, P., Berbigier, P., Bernhofer, C.,

Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern,

K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and

Vesala, T.: Estimates of the annual net carbon and water ex-

change of forests: the EUROFLUX methodology, Advances in

Ecol. Res., 30, 113–175, 1999.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Run-

ning, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R.,

Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi,

Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T. U., Pile-

gaard, K., Schmid, H. P., and Valentini, R.: FLUXNET: a new

tool to study the temporal and spatial variability of ecosystem-

scale carbon dioxide, water vapor, and energy flux densities, B.

Am. Meteorol. Soc., 82, 2415–2434, 2001.

Ball, J. T., Woodrow, I., and Berry, J. A.: A model predicting stom-

atal conductance and its application to the control of photosyn-

thesis under different environmental conditions, Prog. Photosyn.,

221–224, 1987.

Botta, A., Viovy, N., Ciais, P., Friedlingstein, P., and Monfray, P.:

A global prognostic scheme of leaf onset using satellite data,

Glob. Change Biol., 6, 709–725, 2000.

Braswell, B. H., Sacks, W. J., Linder, E., and Schimel, D. S.: Es-

timating diurnal to annual ecosystem parameters by synthesis

of a carbon flux model with eddy covariance net ecosystem ex-

change observations, Glob. Change Biol., 11, 335–355, 2005.

Breda, N., Huc, R., Granier, A., and Dreyer, E.: Temperate forest

trees and stands under severe drought: a review of ecophysiologi-

cal responses, adaptation processes and long-term consequences,

Ann. For. Sci., 63, 625–644, 2006.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory al-

gorithm for bound constrained optimization, SIAM J. Sci. Com-

put., 16, 1190–1208, 1995.

Cadule, P., Friedlingstein, P., Bopp, L., Sitch, S., Jones, C. D.,

Ciais, P., Piao, S. L., and Peylin, P.: Benchmarking cou-

pled climate-carbon models against long-term atmospheric

CO2 measurements, Global Biogeochem. Cy., 24, GB2016,

doi:10.1029/2009GB003556, 2010.

Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G. J.,

Pereira, J. A. S., Berbigier, P., Carrara, A., Granier, A., Mon-

tagnani, L., Papale, D., Rambal, S., Sanz, M. J., and Valen-

tini, R.: Implications of the carbon cycle steady state as-

sumption for biogeochemical modeling performance and in-

verse parameter retrieval, Global Biogeochem. Cy., 22, GB2007,

doi:10.1029/2007GB003033, 2008.

Choisnel, E.: Le bilan d’energie et le bilan hydrique du sol,

Météorologie, 1977.

Collatz, G. J., Ribas-Carbo, M., and Berry, J.: Coupled

photosynthesis-stomatal conductance model for leaves of C4

plants, Funct. Plant Biol., 19, 519–538, 1992.

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M.,

Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Ja-

cob, D., Lohmann, S., Ramachandran, P. L., da Silva, D., Wofsy,

S. C., and Zhang, X.: Couplings Between Changes in the Cli-

mate System and Biogeochemistry, in: Climate Change 2007:

The Physical Science Basis. Contribution of Working Group I

to the Fourth Assessment Report of the Intergovernmental Panel

on Climate Change, edited by: Solomon, S., Qin, D., Manning,

M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller,

H. L., Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA, 2007.

Ducoudré, N. I., Laval, K., and Perrier, A.: SECHIBA, a new set

of parameterizations of the hydrologic exchanges at the land–

atmosphere interface within the LMD atmospheric general cir-

culation model, J. Climate, 6, 248–273, 1993.

Farquhar, G., Caemmerer, S. V., and Berry, J.: A biochemical model

of photosynthetic CO2 assimilation in leaves of C3 species,

Planta, 149, 78–90, 1980.

Field, C. B., Jackson, R. B., and Mooney, H. A.: Stomatal re-

sponses to increased CO2: implications from the plant to the

global scale, Plant, Cell and Environment, 18, 1214–1225,

doi:10.1111/j.1365-3040.1995.tb00630.x, 1995.

Field, C. B., Raupach, R. M.: The Global Carbon Cycle: Integrating

Humans, Climate, and the Natural World, Island Press, Washing-

ton, 2004.

Fox, A., Williams, M., Richardson, A. D., Cameron, D.,

Gove, J. H., Quaife, T., Ricciuto, D., Reichstein, M., Tomel-

leri, E., Trudinger, C. M., and Van Wijk, M. T.: The RE-

FLEX project: comparing different algorithms and implementa-

tions for the inversion of a terrestrial ecosystem model against

eddy covariance data, Agr. Forest Meteorol., 149, 1597–1615,

doi:10.1016/j.agrformet.2009.05.002, 2009.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W.,

Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G.,

John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr,

W., Lindsay, K., Mattews, H. D., Raddatz, T., Rayner, P., Reick,

C., Roeckner, E., Schnitzler, K. G., Schnurr, R., Strassmann, K.,

Weaver, A. J., Yoshikawa, C., and Zeng, N: Climate-carbon cycle

feedback analysis: results from the C4MIP model intercompari-

son, J. Climate, 19, 3337–3353, 2006.

Giering, R. and Kaminski, T.: Recipes for adjoint code

construction, ACM T. Math. Softw., 24, 437–474,

doi:10.1145/293686.293695, 1998.

Giering, R., Kaminski, T., and Slawig, T.: Generating efficient

derivative code with TAF, Fut. Gen. Comp. Syst., 21, 1345–1355,

doi:10.1016/j.future.2004.11.003, 2005.

Goldberg, D.: Genetic Algorithms in Search, Optimization and Ma-

chine Learning, Addison-Wesley, 1989.

Granier, A., Bréda, N., Longdoz, B., Gross, P., and Ngao, J.: Ten

years of fluxes and stand growth in a young beech forest at Hesse,

North-eastern France, Ann. For. Sci., 65, 704–704, 2008.

Groenendijk, M., van der Molen, M. K., and Dolman, A. J.: Sea-

sonal variation in ecosystem parameters derived from FLUXNET

Biogeosciences, 11, 7137–7158, 2014 www.biogeosciences.net/11/7137/2014/

http://dx.doi.org/10.1029/2009GB003556
http://dx.doi.org/10.1029/2007GB003033
http://dx.doi.org/10.1111/j.1365-3040.1995.tb00630.x
http://dx.doi.org/10.1016/j.agrformet.2009.05.002
http://dx.doi.org/10.1145/293686.293695
http://dx.doi.org/10.1016/j.future.2004.11.003


D. Santaren et al.: Ecosystem model optimization using in situ flux observations 7157

data, Biogeosciences Discuss., 6, 2863–2912, doi:10.5194/bgd-

6-2863-2009, 2009.

Haupt, R. L. and Haupt, S. E.: Practical Genetic Algorithms, John

Wiley & Sons, 2004.

Hui, D., Luo, Y., and Katul, G.: Partitioning interannual variabil-

ity in net ecosystem exchange between climatic variability and

functional change., Tree Physiol., 23, 433–42, 2003.

Jarvis, P. G.: Scaling processes and problems, Plant, Cell and Envi-

ron., 18, 1079–1089, 1995.

Johnson, I. and Thornley, J.: Temperature dependence of plant and

crop process, Ann. Bot., 55, 1–24, 1985.

Jung, M., Le Maire, G., Zaehle, S., Luyssaert, S., Vetter, M., Churk-

ina, G., Ciais, P., Viovy, N., and Reichstein, M.: Assessing the

ability of three land ecosystem models to simulate gross carbon

uptake of forests from boreal to Mediterranean climate in Eu-

rope, Biogeosciences, 4, 647–656, doi:10.5194/bg-4-647-2007,

2007.

Krinner, G.: A dynamic global vegetation model for studies of the

coupled atmosphere-biosphere system, Global Biogeochem. Cy.,

19, GB1015, doi:10.1029/2003GB002199, 2005.

Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and

Richardson, A. D.: Constraining a global ecosystem model with

multi-site eddy-covariance data, Biogeosciences, 9, 3757–3776,

doi:10.5194/bg-9-3757-2012, 2012.

Lasslop, G., Reichstein, M., Kattge, J., and Papale, D.: Influences

of observation errors in eddy flux data on inverse model param-

eter estimation, Biogeosciences, 5, 1311–1324, doi:10.5194/bg-

5-1311-2008, 2008.

Medlyn, B. E., Robinson, A. P., Clement, R., and McMurtrie, R. E.:

On the validation of models of forest CO2 exchange using eddy

covariance data: some perils and pitfalls., Tree Physiol., 25, 839–

57, 2005.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C.,

Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T.,

and Yakir, D.: Towards a standardized processing of Net Ecosys-

tem Exchange measured with eddy covariance technique: algo-

rithms and uncertainty estimation, Biogeosciences, 3, 571–583,

doi:10.5194/bg-3-571-2006, 2006.

Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C,

N, P and S in grassland soils: a model, Biogeochemistry, 5, 109–

131, doi:10.1007/BF02180320, 1988.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.:

Numerical recipes: the art of scientific computing, Cambridge

Univ. Press, Cambridge, 1992.

Quentin, C., Bigorre, F., Granier, A., Bréda, N., and Tessier, D.:

Etude des sols de la forêt de Hesse (Lorraine) Contribution a

l’étude du bilan hydrique, Etude et Gestion des sols, 8, 279–292,

2001.

Reichstein, M.: Inverse modeling of seasonal drought effects on

canopy CO2/H2O exchange in three Mediterranean ecosystems,

J. Geophys. Res., 108, 4726, doi:10.1029/2003JD003430, 2003.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,

Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T.,

Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,

Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Mat-

teucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen,

J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,

Vaccari, F., Vesala, T., Yakir, D., and Valentini, R: On the separa-

tion of net ecosystem exchange into assimilation and ecosystem

respiration: review and improved algorithm, Glob. Change Biol.,

11, 1424–1439, 2005.

Richardson, A. D. and Hollinger, D. Y.: Statistical model-

ing of ecosystem respiration using eddy covariance data:

maximum likelihood parameter estimation, and Monte Carlo

simulation of model and parameter uncertainty, applied to

three simple models, Agr. Forest Meteorol., 131, 191–208,

doi:10.1016/j.agrformet.2005.05.008, 2005.

Richardson, A. D., Hollinger, D. Y., Aber, J. D., Ollinger, S. V., and

Braswell, B. H.: Environmental variation is directly responsible

for short- but not long-term variation in forest-atmosphere carbon

exchange, Glob. Change Biol., 13, 788–803, doi:10.1111/j.1365-

2486.2007.01330.x, 2007.

Ruimy, A., Kergoat, L., Field, C. B., and Saugier, B.: The use of

CO2 flux measurements in models of the global terrestrial carbon

budget, Glob. Change Biol., 2, 287–296, 1996.

Santaren, D., Peylin, P., Viovy, N., and Ciais, P.: Optimizing

a process-based ecosystem model with eddy-covariance flux

measurements: a pine forest in southern France, Global Bio-

geochem. Cy., 21, GB2013, doi:10.1029/2006GB002834, 2007.

Siqueira, M. B., Katul, G. G., Sampson, D. A., Stoy, P. C., Juang, J.-

Y., Mccarthy, H. R., and Oren, R.: Multiscale model intercom-

parisons of CO2 and H2O exchange rates in a maturing south-

eastern US pine forest, Glob. Change Biol., 12, 1189–1207,

doi:10.1111/j.1365-2486.2006.01158.x, 2006.

Spadavecchia, L., Williams, M., and Law, B.: Uncertainty in pre-

dictions of forest carbon dynamics: Separating driver error from

model error, Ecol. Appl., 21, 1506–1522, 2011.

Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting

and Parameter Estimation, Elsevier, 1987.

Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J.,

Liu, Q., Pak, B., Reichstein, M., Renzullo, L., Richardson, A. D.,

Roxburgh, S. H., Styles, J., Wang, Y. P., Briggs, P., Bar-

rett, D., and Nikolova, S.: OptIC project: An intercomparison

of optimization techniques for parameter estimation in terres-

trial biogeochemical models, J. Geophys. Res., 112, G02027,

doi:10.1029/2006JG000367, 2007.

Wang, Y.-P., Leuning, R., Cleugh, H. A., and Coppin, P. A.: Parame-

ter estimation in surface exchange models using nonlinear inver-

sion: how many parameters can we estimate and which measure-

ments are most useful?, Glob. Change Biol., 7, 495–510, 2001.

Wang, Y. P., Baldocchi, D., Leuning, R., Falge, E., and Vesala, T.:

Estimating parameters in a land-surface model by applying non-

linear inversion to eddy covariance flux measurements from eight

fluxnet sites, Glob. Change Biol., 13, 652–670, 2007.

Wang, Y.-P., Trudinger, C. M., and Enting, I. G.: A review of ap-

plications of model-data fusion to studies of terrestrial carbon

fluxes at different scales, Agr. Forest Meteorol., 149, 1829–1842,

doi:10.1016/j.agrformet.2009.07.009, 2009.

Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Rau-

pach, M. R., Pak, B., van Gorsel, E., and Luhar, A.: Di-

agnosing errors in a land surface model (CABLE) in the

time and frequency domains, J. Geophys. Res., 116, G01034,

doi:10.1029/2010JG001385, 2011.

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C.,

Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M.,

Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomel-

leri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land

www.biogeosciences.net/11/7137/2014/ Biogeosciences, 11, 7137–7158, 2014

http://dx.doi.org/10.5194/bgd-6-2863-2009
http://dx.doi.org/10.5194/bgd-6-2863-2009
http://dx.doi.org/10.5194/bg-4-647-2007
http://dx.doi.org/10.1029/2003GB002199
http://dx.doi.org/10.5194/bg-9-3757-2012
http://dx.doi.org/10.5194/bg-5-1311-2008
http://dx.doi.org/10.5194/bg-5-1311-2008
http://dx.doi.org/10.5194/bg-3-571-2006
http://dx.doi.org/10.1007/BF02180320
http://dx.doi.org/10.1029/2003JD003430
http://dx.doi.org/10.1016/j.agrformet.2005.05.008
http://dx.doi.org/10.1111/j.1365-2486.2007.01330.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01330.x
http://dx.doi.org/10.1029/2006GB002834
http://dx.doi.org/10.1111/j.1365-2486.2006.01158.x
http://dx.doi.org/10.1029/2006JG000367
http://dx.doi.org/10.1016/j.agrformet.2009.07.009
http://dx.doi.org/10.1029/2010JG001385


7158 D. Santaren et al.: Ecosystem model optimization using in situ flux observations

surface models with FLUXNET data, Biogeosciences, 6,

1341–1359, doi:10.5194/bg-6-1341-2009, 2009.

Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D.,

Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H.,

Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A.,

Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen,

J., Valentini, R., and Verma, S.: Energy balance closure at

FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, 2002.

Ziehn, T., Scholze, M., and Knorr, W.: On the capability of Monte

Carlo and adjoint inversion techniques to derive posterior param-

eter uncertainties in terrestrial ecosystem models, Global Bio-

geochem. Cy., 26, GB3025, doi:10.1029/2011GB004185, 2012.

Biogeosciences, 11, 7137–7158, 2014 www.biogeosciences.net/11/7137/2014/

http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.1029/2011GB004185

	Abstract
	Introduction
	Material and methods
	Eddy-covariance flux data
	The ORCHIDEE land surface model
	Parameter optimization procedure
	Cost function
	Minimization algorithms
	Posterior uncertainty assessment
	Optimization settings: parameters to be optimized?


	Results
	Performances of a gradient-based versus Monte Carlo minimization algorithm
	Temporal skill of the model equations
	Cost function reductions
	Fit to the observations

	Parameter and uncertainty estimates

	Discussion
	Minimization algorithms
	Parameter optimization and observations
	Parameter optimization and model validation

	Conclusions
	Appendix A: ORCHIDEE model equations
	Acknowledgements
	References

