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Abstract. Diatoms and dinoflagellates are major bloom-

forming phytoplankton groups competing for resources in

the oceans and coastal seas. Recent evidence suggests that

their competition is significantly affected by climatic fac-

tors under ongoing change, modifying especially the condi-

tions for cold-water, spring bloom communities in temper-

ate and Arctic regions. We investigated the effects of phy-

toplankton community composition on spring bloom car-

bon flows and nutrient stoichiometry in multiyear mesocosm

experiments. Comparison of differing communities showed

that community structure significantly affected C accumu-

lation parameters, with highest particulate organic carbon

(POC) buildup and dissolved organic carbon (DOC) release

in diatom-dominated communities. In terms of inorganic nu-

trient drawdown and bloom accumulation phase, the domi-

nating groups behaved as functional surrogates. Dominance

patterns, however, significantly affected C : N : P : Chl a ra-

tios over the whole bloom event: when diatoms were domi-

nant, these ratios increased compared to dinoflagellate dom-

inance or mixed communities. Diatom-dominated communi-

ties sequestered carbon up to 3.6-fold higher than the expec-

tation based on the Redfield ratio, and 2-fold higher com-

pared to dinoflagellate dominance. To our knowledge, this is

the first experimental report of consequences of climatically

driven shifts in phytoplankton dominance patterns for carbon

sequestration and related biogeochemical cycles in coastal

seas. Our results also highlight the need for remote sensing

technologies with taxonomical resolution, as the C : Chl a ra-

tio was strongly dependent on community composition and

bloom stage. Climate-driven changes in phytoplankton domi-

nance patterns will have far-reaching consequences for major

biogeochemical cycles and need to be considered in climate

change scenarios for marine systems.

1 Introduction

Coastal seas and shelf areas (< 200 m deep) constitute ap-

proximately 5 % of the ocean but are among the most vital

marine biotopes, both from an ecological and from a so-

cioeconomical perspective. They connect terrestrial, atmo-

spheric, and marine biogeochemical cycles, and it has been

estimated that ∼ 12 % of the marine primary production and

∼ 86 % of the total carbon burial in the ocean takes place

in coastal regions (Dunne et al., 2007). Coastal seas also

play a pivotal role in trophic transfer of organic carbon from

primary producers through the food web, and they include

some of the richest fisheries in the world. At the same time,

these areas are the most affected by direct and indirect an-

thropogenic pressures and are highly vulnerable to projected

global change (Halpern et al., 2008). Multiple drivers of

the marine food web – such as temperature, UV irradiation,

pCO2, and runoff of nutrients and freshwater – are affecting

the ecosystem on different levels. One of the key issues for

predicting how global change will affect coastal marine en-

vironments is to identify population dynamics and feedback

loops under a changing environment (Harley et al., 2006; Eg-

gers et al., 2014).

Temperate aquatic systems are characterized by high pro-

ductivity, especially of new production, as opposed to re-

cycled production (Dugdale and Goering, 1967). Their pro-

duction is highly seasonal, and the annual spring bloom
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represents the most significant production phase. High ini-

tial concentrations of inorganic nutrients, increasing solar

radiation, and emerging stratification of water layers trig-

ger the onset of photosynthetic production. Several bloom-

forming phytoplankton groups compete for resources in ma-

rine environments during spring, the most conspicuous being

diatoms, dinoflagellates, and prymnesiophytes. Recent evi-

dence from both coastal and offshore environments shows

decadal shifts in the relative proportions of diatoms and di-

noflagellates at different seasons and suggests that their com-

petition is significantly affected by climatic factors under on-

going change (Leterme et al., 2005; Hinder et al., 2012),

modifying especially the spring bloom conditions of temper-

ate and Arctic regions. Mild winters and more storms have

been shown to favor dinoflagellates (Klais et al., 2013), and

also changes in thermal stratification patterns and freshwa-

ter runoff are thought to affect phytoplankton community

composition; for example diatoms typically dominate dur-

ing times with high turbulence, whereas dinoflagellates are

more common after firm stratification has been established

(Smayda and Reynolds, 2001). The extensive temperate and

Arctic shelf seas and marginal ice zones are globally among

the most susceptible biotopes for climate change, and their

changing production preconditions will potentially have a

great impact on global carbon budgets and interconnected

biogeochemical cycles. The consequences of climate-driven

phytoplankton community change represent therefore urgent

challenges for reliable climate change scenarios.

The physiology and morphology of different phytoplank-

ton species and groups vary considerably, with direct impacts

on ecosystem-wide nutrient cycling and cascading food web

effects. Differences in species-specific traits like growth rate,

nutrient affinities and biochemical composition, cell size,

motility, and life cycle strategies govern the outcome of re-

source competition, and therefore the community composi-

tion in a set of environmental conditions. They also directly

affect system-level carbon sequestration, stoichiometry of

material flows, and the export of organic carbon to the sea

floor. Several of these functional aspects of algal physiology

are thus relevant for large-scale biogeochemical cycles, and

their incorporation in trait-based models of phytoplankton

production (Litchman and Klausmeier, 2008; Litchman et al.,

2010) would significantly enhance the predictive potential of

marine biogeochemical models under climate change.

Among the temperate coastal seas projected to change

most rapidly is the Baltic Sea, due to its close interac-

tion with the intensively modified catchment, the predicted

changes in annual precipitation patterns over northern Eu-

rope, its reduced alkalinity, and heavy fishing pressure (Ni-

iranen et al., 2013). In the Baltic Sea, cold-water dinoflag-

ellates and diatoms have been considered functional surro-

gates during the spring bloom, as both effectively deplete

the wintertime inorganic nutrient concentrations (Tammi-

nen, 1995; Kremp et al., 2008), and the bloom terminates

in most basins once nitrate has been consumed below analyt-

ical detection limits (Tamminen and Andersen, 2007). How-

ever, there are obvious differences with respect to life cycle

strategies and sedimentation patterns of the competing phy-

toplankton groups. In general, diatoms sink quickly to the

sea floor once nutrients are depleted, and it has been shown

that the fraction of the population forming resting spores is

highly species-specific (Rynearson et al., 2013). Dinoflagel-

lates, on the other hand, lyse before reaching the sediment, or

alternatively go through a life cycle transformation produc-

ing decomposition-resistant resting cysts (Heiskanen, 1998).

The differences in sedimentation patterns have a large im-

pact on decomposition of the bloom biomass in sediments,

with consequences on oxygen consumption and release of

phosphorus (Spilling and Lindström, 2008); this should also

affect the decomposition by pelagic bacteria. This indicates

strong cascading effects of bloom community composition

on benthic food webs and material cycles. Although graz-

ing pressure is relatively low during the spring bloom pe-

riod in the Baltic Sea (Lignell et al., 1993), phytoplank-

ton species composition has been shown to affect also the

planktonic grazer communities because of species-specific

differences in food quality for the emerging copepod pop-

ulations (Vehmaa et al., 2011). Therefore, the cascading ef-

fects of bloom composition are potentially pervasive within

the whole ecosystem.

In this study, we investigate the effects of phytoplankton

community composition on stoichiometry of planktonic bio-

geochemical processes, in a coastal model system display-

ing ongoing, climate-driven community change (the Baltic

Sea; Klais et al., 2011). We hypothesize that a change in

phytoplankton community composition (here, diatom vs. di-

noflagellate dominance) will significantly modify the carbon

budget and stoichiometric composition of the seston. The

data originate from coastal mesocosm experiments with nu-

trient enrichments performed in 5 consecutive years, with

multiweek time series of phytoplankton species composi-

tion, primary production, and nutrient fractions in a total

of 36 mesocosms. The experiments displayed natural phy-

toplankton communities of interannually highly variable rel-

ative contributions of diatoms and cold-water dinoflagellates

(< 10 to > 90 % of either group) to the total bloom biomass.

2 Materials and methods

2.1 Experimental setup

The mesocosm experiments were conducted in spring 2004

to 2008 under laboratory conditions at the Tvärminne Zo-

ological Station, University of Helsinki. The experimental

setup consisted of a control unit of natural seawater and

three nutrient manipulation treatments: a combined nitrate

(N) and phosphate (P) addition; a dissolved silicate (DSi) ad-

dition; and a combined N, P, and DSi addition. On top of the

nutrient manipulations, different treatments were added. In
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Table 1. Summary of the experimental setup in different years. The treatments were nutrient addition (NPSi), which were additions of

nitrogen (N), phosphorus (P), and silicate (Si) in N–P, Si and N–P–Si additions. The light treatment (light) was a low- and high-light

treatment, 20 and 90 µmolphotonsm−2 s−1, respectively. In 2005 there was only the nutrient addition treatment and in 2007 there cultured

diatoms were added in a gradient (diatom gradient). The diatoms added were Thalassiosira levanderi (∼ 10 µm diameter and was added to

a final concentration of 20 000, 75 000 and 13 350 cells L−1) and T. baltica (20–30 µm diameter and was added to a final concentration of

2000, 3560 and 13 350 cells L−1), two very typical spring bloom species. The start concentration of NO3 (Start NO3) gives the concentration

in µgL−1 of NO3 in the control and in the treatments with N addition. The peak Chl a values are the minimum and maximum concentration

recorded in the control (no nutrient addition) and in treatments with nutrients added, respectively.

Year Start date Duration

days

Treatments Start NO3

µgL−1
Start Chl a

µgL−1
Peak Chl a

µgL−1

2004 24 Mar 44 NPSi, light 90/260 7.1 21/78

2005 7 Apr 28 NPSi 100/250 2.9 20/184

2006 19 Apr 23 NPSi, light 8/170 35.0 39/199

2007 16 Mar 33 NPSi, diatom gradient 90/250 4.9 22/77

2008 12 Mar 28 NPSi, light 100/280 0.6 43/70

2004, 2006, and 2008, two different light environments were

used, in a full factorial 23 design; in 2005, only the nutrient

treatments were used; in 2007, two cultured diatoms typi-

cal for the spring bloom in the area – Thalassiosira levan-

deri (∼ 10 µm diameter) and T. baltica (20–30 µm diameter)

– were added in a gradient to the natural communities. The

final concentration of T. levanderi was 20 000, 75 000, and

21 2000 cells L−1; the final concentration of T. baltica was

2000, 3560, and 13 350 cells L−1. A summary of the experi-

mental design and initial conditions in the experimental units

is given in Table 1.

For each experiment, containers were filled with natural

surface water and pre-screened with a 200 µm mesh-size net

to remove metazooplankton. Water was collected during ice

breakup from the ice edge near the Storfjärden monitoring

station at the SW coast of Finland (59◦51′ N; 23◦13′ E). In

2004, white plastic (PE) 80 L barrels were used as experi-

mental units, whereas, for the years 2005 to 2008, 25 L trans-

parent polycarbonate carboys were used.

Ice breakup typically coincides with the initiation of the

annual spring bloom in the area (Niemi, 1975), and the cap-

tured phytoplankton community was assumed to represent

the seed community for the spring bloom. The timing of ice

breakup varied between years, and accordingly the experi-

ments were started on different dates in subsequent years,

depending on the ice situation.

After filling containers on the ice, they were immediately

brought to the laboratory; the water was divided into meso-

cosm carboys and placed into a walk-in incubator set to 2 ◦C.

The mesocosms were illuminated by daylight-spectrum, flu-

orescent tubes (Philips TLD-95) at a 12 h light–12 h dark cy-

cle, corresponding to the ambient light cycle. Different ir-

radiance was used for different treatments (Table 1). Pre-

filtered (0.2 µm) air was bubbled into the mesocosms to keep

a low level of turbulence.

Natural nutrient conditions were manipulated by additions

of NO3−N, PO4−P (N+P treatment), and/or SiO2−Si (DSi

treatment), with similar nutrient manipulations carried out

each year. Nutrient additions (see Table 1 for the initial NO3

concentrations) were targeted at approximately doubling the

typical wintertime concentrations in the area, while main-

taining a balanced Redfield ratio (a molar N : P ratio of 16).

Irradiance was adjusted to 20 µmol photons m−2 s−1 for the

low-light treatment (LL), which was applied in the 2004,

2006, and 2008 experiments and to 90 µmol photons m−2 s−1

for the high-light treatment (HL). In 2005 and 2007, all treat-

ments received 90 µmol photons m−2 s−1.

The successive years represented different initial condi-

tions, due to differences in ice breakup and other meteorolog-

ical history of the winter–early spring season. The ambient

nutrient concentrations of each experiment thus represented

varying phases of the early bloom period despite similar ex-

perimental additions, between full wintertime levels and the

spring depletion period. The initial, natural phytoplankton

community varied from year to year.

2.2 Sampling protocol and measurements

Mesocosms were sampled for Chlorophyll a (Chl a), nutri-

ents and phytoplankton immediately after the addition of nu-

trients on day 0, and subsequently every 2 to 3 days. The du-

ration of the experiment differed between years, depending

on how fast nutrients were exhausted (Table 1). Prior to sam-

pling, which took place at the beginning of the daily light

period; the contents of the mesocosms were stirred with a

polycarbonate rod to ensure an even distribution of phyto-

plankton and other particulate matter. The samples thus rep-

resent bloom development without sedimentation losses. The

total sampling volume never exceeded half the total volume.

Samples for dissolved and particulate nutrients and

Chl a were processed immediately. Nutrient concentrations

(NO3−N, PO4−P, and DSi) were determined manually in

duplicate from each carboy according to the standard colori-

metric methods (Grasshoff et al., 1983). Dissolved organic
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carbon (DOC) concentrations were measured by the high-

temperature catalytic oxidation (HTCO) method using a Shi-

madzu TOC-V CPH carbon and nitrogen analyzer. Sub-

samples (< 0.45 µm Supor Acrodisc PES filter, Gelman Sci-

ences) were acidified to pH 2.5 with 2 M HCl and stored in

darkness at room temperature. The 20 mL glass ampoules

were stored for 4 to 6 months, before determining the DOC

concentration according to Sharp et al. (1993).

For the determination of Chl a, 50 mL duplicate samples

from each carboy were filtered onto glass-fiber filters (What-

man GF/F) and extracted in 10 mL of 94 % ethanol for 24 h in

the dark at room temperature. Chl a was measured on a Shi-

madzu RFPC-5001 fluorometer, calibrated with pure Chl a

(Sigma). Duplicate filters (50–100 mL filtered depending on

the biomass concentration) were also prepared for determi-

nation of particular organic carbon (POC), nitrogen (PON),

and phosphorus (POP). For all samples acid-washed, pre-

combusted GF/F filters were used. The filters were allowed

to dry and stored at room temperature (20 ◦C) until nutrient

determination. POC and PON were measured from the same

filter with a mass spectrometer (Europa Scientific). POP was

determined according to Solórzano and Sharp (1980).

Phytoplankton samples were preserved with acid Lugol’s

solution. Prior to microscopic analysis, volumes of 50 and

25 mL were set up for concentration in Utermöhl chambers

and allowed to settle for at least 24 h. Diatoms and dinoflag-

ellates, identified to species or genus level, were counted

with an inverted light microscope (Leica DM IRB, Wet-

zlar, Germany). Cells were grouped into two size categories

(> and < 10 µm), which were counted separately at×200 and

×787 magnification. At least half of the chamber bottom

was screened when cell densities were low; otherwise 400

cells were counted, if possible, for each category. Cell di-

mensions of diatoms and dinoflagellates were measured on

25 randomly selected cells of each species, and biovolumes

were calculated using formulas given for standard geometric

shapes of phytoplankton taxa (Sun and Liu, 2003). Biovol-

ume values were converted to carbon according to the rec-

ommendations of Menden-Deuer and Lessard (2000).

Radiolabeled 14C was used to determine the total primary

production, and this was determined on all sampling days.

An activity of 0.15 kBq was added to 10 mL of sample and

incubations carried out in the same light and temperature

conditions as for the mesocosms. After an incubation pe-

riod of 3 h, a 4 mL sample was extracted, 150 µL of 37 %

formaldehyde was added to fix the sample, and 100 µL of

1 M HCl was added in ventilation cupboard to remove unas-

similated (inorganic) 14C isotope. The samples were left with

the lid open for 24 h before 7 mL of liquid scintillation cock-

tail (Hi Safe) was added. The radioactivity was measured us-

ing a liquid scintillation counter (PerkinElmer Inc., Wallac

Winspectral 1414). The amount of total dissolved inorganic

carbon (DIC) was measured with a high-temperature com-

bustion infrared (IR) carbon analyzer (Unicarbo, Electro Dy-

namo, Finland). Primary production was calculated from up-
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Figure 1. An example of the data extracted from the mesocosms

(data from high-light treatment with N and P addition, 2004): dis-

solved, inorganic nutrients and particulate, organic nutrients (a) and

carbon parameters (b). The parameters are nitrate (NO3), particu-

late organic nitrogen (PON), phosphate (PO4), particulate organic

phosphorus (POP), dissolved silicate (DSi), biogenic silicate (BSi),

particulate organic carbon (POC), dissolved organic carbon (DOC),

and total gross production (TGP). All parameters were measured

directly except TGP, which was extrapolated from short-term 14C

incubations. The growth was divided into exponential and stationary

growth phases based on the primary production peak (L−1), indi-

cated with the horizontal bars on top (b). Note the different scales

on the y axes.

take of 14C knowing the total amount of added isotope and

total DIC. Due to the relatively short incubation period, mea-

sured primary production was assumed to represent gross pri-

mary production (Sakshaug et al., 1997).

2.3 Data treatment

The development of dissolved inorganic nutrients and POC,

PON, POP, Chl a, and DOC were organized as a function

of time (e.g., Fig. 1). Background levels of refractory DOC

are very high in the Baltic Sea – e.g., 350–400 µmol C L−1

as DOC in the open Gulf of Finland (Hoikkala, 2012)

– so the start concentration was subtracted from all val-

ues to express DOC change during the experiment. The
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phytoplanktondevelopment was divided into two growth

stages: exponential and stationary growth phase. The expo-

nential growth phase was defined from the start of the exper-

iment until the primary production peak per volume (i.e., not

normalized to biomass); stationary growth phase was defined

as the period after this point until the end of the experiment.

The community growth rate (µ) was determined during the

exponential growth phase for the biomass-related parameters

(µPOC, µChla) by linear regression of the natural log trans-

formed data. The exponential growth of DOC (χDOC) was

done in the same way. During stationary growth phase a lin-

ear regression (without log transformation) was fitted to the

data parameters in order to find the rate of change.

Primary production was modeled from the 14C incuba-

tions, assuming the measured production to represent the

whole light period (12 h d−1). Sampling did not take place

every day, and we estimated the carbon fixation between

sampling days by linear regression. A simple model was cre-

ated, summing the gross carbon fixation for each day, and this

was termed total gross production (TGP). This accumulated

gross primary production would be the theoretical develop-

ment of POC without any loss processes.

The growth rate of TGP (µTGP) was calculated similarly

to the other biomass-related parameters described above, and

carbon assimilation efficiency (CAE) was calculated from

the ratio between the measured carbon accumulation and to-

tal gross production:

CAE= µPOC/µTGP. (1)

Carbon loss rate (CLR) was calculated as the fraction of TGP

not entering the POC pool:

CLR= 1−CAE. (2)

Respiration (RES) was calculated as the part of the loss rate

not released as DOC, assuming that all carbon not adding to

the POC or DOC pools was used for respiration.

RES= CLR− (χDOC/µTGP) (3)

The CAE, CLR, and RES parameters were also calculated

for the stationary growth phases, with the difference that the

rate of change were used instead of growth rate, e.g., 1POC

instead of µPOC.

Phytoplankton community composition data were used for

calculating the proportion of dinoflagellates and diatoms of

the total community biomass. Species evenness (Shannon’s

equitability, HE) was calculated as follows:

HE =−[pi · ln(pi/S)], (4)

where pi is the proportion of ith species biovolume from to-

tal biovolume of the sample, and S is the number of species

present in the sample.

ANOVA on ranks were used to check for statistical signif-

icance (α= 0.05) between different phytoplankton commu-

nity composition for the different carbon budget parameters.
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Figure 2. Species evenness plotted against the dinoflagellate pro-

portion of the whole community. For later analysis, the phytoplank-

ton community was divided into three categories: diatom domi-

nance (> 80 %), mixed community (20–70 % dinoflagellates), and

dinoflagellate dominance (> 70 %). The rationale behind setting the

group boundaries was based upon the apparent difference in species

evenness.

“On ranks” were used because of a low normal distribution

score for several parameters using the Anderson–Darling test

(A2 > 1 and p < 0.05). The ANOVA and regression analysis

were carried out in SigmaPlot (SPSS).

3 Results

3.1 Phytoplankton community

The initial phytoplankton community composition varied

from year to year, with relative proportions of the total

biomass ranging from > 90 % diatoms to > 90 % dinoflagel-

lates. In general, there were more species of diatoms present

in the mesocosms compared to dinoflagellates. The most

abundant diatoms were Thalassiosira baltica, T. levanderi,

Chaetoceros wighamii, Skeletonema marinoi, and Achnan-

thes taeniata, and two dinoflagellates were dominating:

Biecheleria baltica and Peridiniella catenata. Species even-

ness was highest in a mixed community, when dinoflagellates

constituted 20–70 % (i.e., 30–80 % diatoms) of the total pop-

ulation (Fig. 2). The effect on evenness was less pronounced

when diatoms dominated. During diatom dominance, sev-

eral species were represented, whereas, during dinoflagel-

late dominance, only one out of the two species accounted

for most of the biomass (B. baltica in 2004 and P. catenata

in 2007). The phytoplankton community was divided into

three categories: diatom dominance (> 80 %), mixed commu-

nity (20–70 % dinoflagellates) and dinoflagellate dominance

(> 70 %). The rationale behind setting the group boundaries
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represents the linear regression (slope=−0.16; R2
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carbon assimilation efficiency is the ratio between the measured growth rate in POC and the total gross production (Fig. 1). A positive

correlation was found (slope= 1.49; R2
= 0.12; p = 0.04).
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nance (> 80 %), mixed community (20–70 % dinoflagellates), and

dinoflagellate dominance (> 70 %). The rationale behind setting the

group boundaries was based upon the apparent difference in species

evenness (Fig. 2) between these groups. The stars (*) indicate sta-

tistical significance (α = 0.05) against one (*) or two groups (**);

details can be found in Tables 3 and 4.

was based upon the apparent difference in species evenness

(Fig. 2).

The dominance of either diatoms or dinoflagellates was

almost complete, being at > 90 % of the total phytoplankton

biomass during the experiments, with the exception of 2008

(mixed community) when chrysophytes made up 10–20 % of

the biomass.

3.2 Carbon budget

The community carbon growth rate (µPOC) was clearly af-

fected by the light conditions, but not by the community

composition. The average µPOC under the low- and high-

light conditions (20 and 90 µmol photons m−2 s−1)were 0.08

(d−1)± 0.01 (SD) and 0.15 (d−1)± 0.02 (SD), respectively.

There was no significant difference in µPOC between differ-

ent community compositions (Fig. 3a). However, the growth

rate calculated from Chl a (µChl a) was highest in diatom-

dominated communities and decreased linearly (p < 0.0001)

with increasing dinoflagellate proportion (Fig. 3a). The car-

bon assimilation efficiency (CAE) was positively correlated

(p = 0.04) with the growth rate (Fig. 3b).

During exponential growth, there was no apparent differ-

ence between phytoplankton communities in gross primary

production (Fig. 4, Table 2). There was, however, an effect

on the CAE and respiration (RES). The mixed community

had on average a∼ 30 % higher CAE and∼ 75 % lower RES

compared to the situations when dinoflagellates or diatoms

dominated (Fig. 4, Tables 2 and 3).

In the stationary growth phase, the community compo-

sition clearly had an effect on the carbon budget (Fig. 4,

Tables 2 and 4). When diatoms constituted > 80 % of

the population, there was on average 3–7 times higher

buildup of POC, ∼ 2 fold higher TGP, and ∼ 2-fold higher
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Table 2. Statistical comparison using one-way ANOVA on ranks.

Tukey’s post hoc test of statistically significant differences (∗) can

be found in Table 3 (exponential growth phase) and 4 (stationary

growth phase).

Exponential growth phase

Parameter DF SS MS F value p value

POC 2 5.58 2.79 0.026 0.974

DOC 2 29.3 14.6 0.140 0.870

TGP 2 313 156 1.637 0.211

CAE 2 888 444 5.770 0.007∗

RES 2 941 471 6.258 0.005∗

Stationary growth phase

POC 2 1395 678 9.246 < 0.001∗

DOC 2 958 479 5.399 0.009∗

TGP 2 1084 542 6.386 0.005∗

CAE 2 739 369 3.874 0.031∗

RES 2 564 282 2.804 0.075

release of DOC compared to the situations with mixed

or dinoflagellate-dominated communities (Fig. 5, Tables 2

and 4). The diatoms also had the highest CAE during sta-

tionary growth but with no statistical difference with a mixed

community (Table 4).

3.3 Stoichiometry

The phytoplankton community clearly affected the stoi-

chiometry of the seston, with C : N and C : P ratio being

higher during diatom dominance (Fig. 6). The drawdown of

inorganic N and P was close to 100 % and stayed stable after

the onset of stationary growth phase (e.g., Fig. 1a). There was

a significant, negative correlation between C : N and C : P ra-

tios with increasing dinoflagellate proportion during both ex-

ponential and stationary growth phase (p ≤ 0.03). The C : N

ratio was a factor of 1.2–1.7 times higher than the Redfield

ratio during exponential growth phase, and it increased to

1.7–3.6 times higher than the Redfield ratio in all commu-

nities during stationary growth phase.

The C : P ratio was up to 1.4 times higher than the Redfield

ratio during exponential growth in diatom-dominated com-

munities; dinoflagellate-dominated communities were ap-

proximately on par with the Redfield ratio. During stationary

growth phase the C : P ratio increased to 1.4–2.8 times higher

than the Redfield ratio.

The N : P ratio for most samples fell below the Redfield ra-

tio of 16 and did not vary between communities during expo-

nential growth (p = 0.23). After nutrients had been depleted,

however, there was a negative correlation of N : P ratio with

increasing dinoflagellate proportion (p < 0.001) (Fig. 6).

The N : Si ratio was lowest during diatom dominance

(p < 0.001) and increased with dinoflagellate dominance, es-

pecially during exponential growth phase (Fig. 6). In general,

Table 3. Tukey’s post hoc tests of carbon parameters during ex-

ponential growth phase. Only the statistically significant parame-

ters from Table 2 were tested: carbon assimilation efficiency (CAE)

and respiration (RES). The phytoplankton community was catego-

rized according to diatom dominance (diatoms), mixed community

(mixed) and dinoflagellate dominance (dinoflagellates). The stars

(∗) indicate statistically significant differences (α = 0.05).

CAE Diff St diff p value

Mixed vs. diatoms 10.833 3.026 0.013∗

Mixed vs. dinoflagellates 10.517 2.800 0.023∗

Dinoflagellates vs. diatoms 0.317 0.084 0.996

RES

Mixed vs. diatoms 11.583 3.272 0.007∗

Mixed vs. dinoflagellates 10.183 2.743 0.026∗

Dinoflagellates vs. diatoms 1.400 0.377 0.925

the drawdown of N and P and buildup of biomass (e.g., POC)

were very similar in the N, P and N, P & Si treatment and in

the control and Si addition.

The C : Chl a ratio was clearly affected by the phytoplank-

ton community composition and growth phase (R2
= 0.53,

p < 0.0001) (Figs. 3 and 7), and there was on average a

trend of decreasing ratios during exponential growth fol-

lowed by increasing ratios during stationary growth phase. At

the start of the experiment, the average C : Chl a ratios (com-

paring only high-light treatments) were 477± 338 (SD),

84± 51 (SD), and 55± 31 (SD) gC (g Chl a)−1 for diatom-

dominated, mixed, and dinoflagellate-dominated communi-

ties, respectively. The initial decrease in the C : Chl a ratio

was most rapid during diatom dominance (95± 74 (SD) at

the primary production peak), whereas there was less change

for mixed communities and during dinoflagellate dominance

(60± 60 (SD) and 45± 17 (SD), respectively, at the pri-

mary production peak). The C : Chl a ratio started to in-

crease again during the stationary growth phase and was,

at the end of the experiment, 208± 62 (SD), 218± 155

(SD), and 387± 49 (SD) for diatom-dominated, mixed, and

dinoflagellate-dominated communities, respectively.

4 Discussion

4.1 Natural mixed communities as an experimental

system

Differences in the physiology and cellular composition of di-

atoms and dinoflagellates have been recurrently established

in monocultures (Chan, 1980; Banse, 1982; Menden-Deuer

and Lessard, 2000), with the general conclusion that diatoms

show higher maximum growth rates, higher photosynthetic

rates per unit carbon, and lower C : Chl a ratios compared to

dinoflagellates. The conclusions are based on monoculture

growth under saturating light and nutrient abundance, or on
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Figure 5. Carbon budget parameters: carbon assimilation efficiency

and respiration, during exponential and stationary growth. The phy-

toplankton community was divided into three categories: diatom

dominance (> 80 %), mixed community (20–70 % dinoflagellates),

and dinoflagellate dominance (> 70 %). The rationale behind set-

ting the group boundaries was based upon the apparent difference

in species evenness (Fig. 1) between these groups. The stars indi-

cate statistically significant differences (α = 0.05) compared to one

(*) or two (**) other groups; details can be found in Table 4.

continuous monocultures with established light or nutrient

limitation, with the implicit or explicit assumption that the

empirically derived traits can be utilized in modeling the per-

formance of natural planktonic populations or communities

(Cloern et al., 1995; Sarthou et al., 2005). Other angles to the

phylogenetic–metabolic differences have been to address the

evolutionary inheritance of elemental stoichiometry between

phyla and superfamilies (Quigg et al., 2003), or to mecha-

nistically model the stoichiometry of the nested biochemical

processes underlying primary production of unicellular algae

(Geider et al., 1998; Falkowski, 2000; Pahlow, 2005).

Our experiment series departs from these approaches by

empirically studying the carbon flow and community stoi-

chiometry over the full duration of natural, mixed commu-

nity spring bloom events. During a multispecies bloom, the

abiotic conditions and species interactions go through a con-

tinuous transformation, inducing transitory physiological ac-

climation responses and changes in competitive advantage

between species. This seriously complicates prediction of

bloom development with species-specific properties originat-

ing from growth in controlled, artificial monoculture condi-

tions (Sathyendranath et al., 2009; Mateus et al., 2012). We

used standardized, representative environmental conditions

(light, temperature, nutrient supplies) and exclusion of ad-

vective and sedimentation flows to specifically address the

net effects of variable diatom-to-dinoflagellate proportions

of the bloom community on modification of coastal biogeo-

chemistry.

Our experimental setup eliminated sinking losses that af-

fect the overall bloom dynamics in open natural systems. Di-

atoms, in particular, are known to aggregate and sink effi-

ciently out of the photic layer after bloom culmination (Kiør-

boe et al., 1990; Underwood et al., 2004). Our results there-

fore represent an upper limit for bloom C drawdown. How-

ever, the stoichiometric differences between different com-

munities evolved fast after the bloom peak, and the variable

physical forcing in coastal seas include changes in mixing of

the surface layer, resuspension, and lateral transport, which

counteract permanent sedimentation of fresh biogenic mate-

rial, prolonging the stationary phase of bloom communities.

This increases the heterotrophic remineralization in the water

column.

4.2 Dominance patterns in experimental communities

The five initial communities represented the natural vari-

ability of phytoplankton in the respective years, as meso-

cosm communities developed from natural inocula. Interan-

nual variability in community composition was considerable:

years of dinoflagellate dominance alternated with years of

diatom dominance or evenly mixed communities. The exper-

imental treatments of light, nutrient supplies, and commu-

nity structure amplified or further diversified the dominance

patterns of the natural inoculum communities. This provided

a wide range of dominance conditions in the altogether 36

mesocosms over multiweek bloom events, thus representing

an ideal seminatural experimental system for community-

level comparisons.

In the coastal study area, pre-bloom and bloom period

weather patterns have been found to be significantly related

to high dinoflagellate proportions during spring (Klais et al.,

2013). Klais et al. (2013) reported that mild winters with

thin ice cover and more storms favored dinoflagellates, sug-

gesting that changing climate conditions are likely to drive

the increasing frequency of coastal dinoflagellate-dominated

spring blooms. Recent biodiversity shifts in offshore phyto-

plankton communities have been repeatedly linked to chang-

ing climate conditions (Reid et al., 1998; Hinder et al., 2012),

modifying hydrographic properties of the water column, and

thus selecting for specifically adapted taxonomic groups,

most notably dinoflagellates (Hallegraeff, 2010).

While diatom dominance was in most cases caused by sev-

eral co-occurring diatom species, the dinoflagellate blooms

in the mesocosms consisted of a single species – Biecheleria

baltica (formerly known as Woloszynskia halophila) or Peri-

diniella catenata. This seems to be a general phenomenon

in a wide range of marine habitats: diatoms behave as guild

members sharing the habitat, whereas dinoflagellates usu-

ally follow a taxonomical hierarchical pathway towards dom-

ination of one species (Smayda and Reynolds, 2001). Di-

atoms are, in general, tolerant to habitat diversity and are

adapted to habitats with several ecological niches, whereas

dinoflagellates often are habitat specialists where typically
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Figure 6. The particulate C : N, C : P, N : P, and N : Si ratios plotted against the weighted mean of dinoflagellate proportion during exponential

(primary production peak) and stationary growth phase (end of experiment). The dashed horizontal line represent the Redfield–Brzezinski

ratio (molar ratio); the red and blue line represents statistically significant linear regression of exponential and stationary growth phase data.

Regression coefficients for the C : N ratio were slope =−3.3, R2
= 0.14, and p = 0.02 and slope =−9.6, R2

= 0.29, and p = 0.0004 for

exponential and stationary growth phase, respectively. For the C : P ratio they were slope =−48.0, R2
= 0.13, and p = 0.03 and slope

=−171.4, R2
= 0.45, and p < 0.001 for exponential and stationary growth phase, respectively. For N : P ratio, the linear regression for expo-

nential growth phase was not significant (p = 0.23); the regression coefficients for stationary growth phase were slope =−3.15, R2
= 0.31,

and p = 0.0002. For the N : Si ratio they were: slope= 3.06; R2
= 0.51; p < 0.0001 and slope= 1.31; R2

= 0.36 and p = 0.0001 for expo-

nential and stationary growth phase respectively.

the best-adapted species outcompete the rest (Smayda and

Reynolds, 2001).

In dinoflagellate-dominated blooms, the respective species

already constituted a major fraction of the initial community,

by far outnumbering any other phytoplankton species, and

were thus able to maintain dominance under several experi-

mental treatments despite their relatively low species-specific

growth rates (Kremp et al., 2008). Dinoflagellates have

been shown to possess compensatory strategies to compete

with fast-growing phytoplankton groups, such as allelopa-

thy, mixotrophy, and internal nutrient storages (Legrand and

Carlsson, 1998; Collos et al., 2004; Tillmann et al., 2008). B.

baltica has recently been confirmed to effectively suppress

growth of co-occurring diatoms by excretion of allelochemi-

cals (Suikkanen et al., 2011), and utilization of residual P has

been suggested to facilitate sustained growth of B.baltica in

the 2004 mesocosms (Kremp et al., 2008).

4.3 Carbon production and losses during developing

and late bloom stages

There were no significant differences between communi-

ties of diatom or dinoflagellate dominance in carbon-based

growth rates (µPOC or µTGP) during the exponential bloom

phase. This is somewhat counterintuitive, taking into account

the general conclusions from monoculture studies and pre-

vious evidence that Baltic Sea dinoflagellates exhibit lower

growth rates in mixed communities than the competing di-

atoms (Kremp et al., 2008). It should be noted that the carbon

budgets are cumulative for the whole exponential phase, in-

cluding also the variable delay periods from the experiment

onset. Also, we are dealing with natural, mixed communities

even in both “dominance” categories. Despite the differences

in instantaneous growth rates between individual diatom and

dinoflagellate species, the varying mixed communities thus

performed production-wise comparably during the bloom ac-

cumulation phase.

Growth rates based on increase in Chl a were higher than

carbon-based growth rates when diatoms were dominating.

The faster accumulation of Chl a than carbon, on a commu-

nity scale, could be caused by rapid synthesis of Chl a in di-

atoms based on reserve storage (Ross and Geider, 2009). This

was supported by the difference in C : Chl a ratio between

diatom- and dinoflagellate-dominated communities (Fig. 3).

During diatom dominance, the C : Chl a ratio was rapidly de-

creasing during exponential growth phase, reflecting the dif-

ference in µPOC and µChl a. The Chl a-based measurements

overestimated the production rate under diatom dominance,

www.biogeosciences.net/11/7275/2014/ Biogeosciences, 11, 7275–7289, 2014
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Table 4. Tukey’s post hoc tests of carbon parameters during station-

ary growth phase. Only the statistically significant parameters from

Table 2 were tested: particular organic carbon (POC), dissolved

organic carbon (DOC), total gross production (TGP), and carbon

assimilation efficiency (CAE). The phytoplankton community was

categorized according to diatom dominance (diatoms), mixed com-

munity (mixed) and dinoflagellate dominance (dinoflagellates). The

stars (*) indicate statistically significant differences (α = 0.05).

POC Diff St diff p value

Mixed vs. diatoms 11.071 3.240 0.007*

Mixed vs. dinoflagellates 4.029 1.120 0.509

Dinoflagellates vs. diatoms 15.100 4.060 < 0.001*

DOC

Mixed vs. diatoms 11.464 3.094 0.011*

Mixed vs. dinoflagellates 1.414 0.363 0.930

Dinoflagellates vs. diatoms 10.050 2.492 0.046*

TGP

Mixed vs. diatoms 12.381 3.416 0.005*

Mixed vs. dinoflagellates 2.114 0.554 0.845

Dinoflagellates vs. diatoms 10.267 2.603 0.036*

CAE

Mixed vs. diatoms 2.512 0.654 0.791

Mixed vs. dinoflagellates 8.671 2.145 0.096

Dinoflagellates vs. diatoms 11.183 2.675 0.030*

and the results emphasize the importance of considering the

currency of planktonic production measurements in large-

scale estimates of aquatic primary production.

Our data showed that assimilation efficiency was high-

est in mixed communities, compared to either diatom or di-

noflagellate dominance. This is in line with recent studies

on the effects of biodiversity on community functioning, in-

dicating that more diverse communities support higher re-

source use efficiency and productivity (Ptacnik et al., 2008;

Worm et al., 2006; Stockenreiter et al., 2013; Striebel et

al., 2009). Different species have different environmental

requirements, occupying different niches in the ecosystem.

With increased diversity, the probability of occupying more

of the total niche space increases, leading to better utilization

of resources.

The net metabolic differences within variable community

dominance manifested themselves only after the exponen-

tial growth phase, when nutrients were effectively incorpo-

rated to biomass and loss processes became prominent. Net

growth of primary producers is regulated by the balance of

production and loss processes, such as respiration, excretion,

sedimentation, and grazing. Sedimentation losses were elim-

inated in our experimental setup. Grazing effects were as-

sumed to be minor because there are no overwintering popu-

lations of large copepods in the Baltic Sea, our experiments

started with 200 µ m pre-screening, and the grazing pressure
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Figure 7. The C : Chl a ratio at the primary production peak (PP)

and at the end of the experiment (end). The phytoplankton commu-

nity was divided into three categories: diatom dominance (> 80 %),

mixed community (20–70 % dinoflagellates), and dinoflagellate

dominance (> 70 %). The rationale behind setting the group bound-

aries was based upon the apparent difference in species evenness

(Fig. 2).

by other heterotrophs on the large-celled (mostly > 20 µm)

spring bloom diatoms or dinoflagellates is negligible (Lignell

et al., 1993). The main loss pathways are therefore respira-

tion and excretion of dissolved organic matter. The latter ev-

idently possess high carbon-to-nutrient ratios, as particulate

nutrient fractions remained relatively stable once inorganic

nutrient pools were depleted during the exponential growth

phase.

There was no statistically significant difference between

respiration rates of communities dominated by diatoms or

dinoflagellates. In monocultures, dinoflagellates have gener-

ally higher respiration ratio than diatoms (Spilling and Mark-

ager, 2008; Falkowski and Owens, 1978), but our experi-

ments with natural mixed communities did not reproduce

this difference reliably. During the exponential phase, res-

piration ratios were equal, whereas for the stationary stage

high variability in the generally high respiration ratios of

dinoflagellate-dominated communities (median 78 %) failed

to yield significance for the apparent difference to diatom

dominance. However, significantly lower assimilation effi-

ciencies of dinoflagellate-dominated communities (median

10 %) were clearly driven by respiration, not by DOC release

(Fig. 5).

Especially in diatom-dominated communities, POC con-

tinued to increase significantly after the primary production

peak, and the communities kept fixing 14CO2, as indicated
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by the modeled carbon accumulation and relatively low (me-

dian 45 %) respiration ratios. Concomitant late bloom DOC

release in diatom-dominated communities increased signifi-

cantly over other communities, as well. The results from our

natural diatom-dominated communities reproduced the early

observations obtained with diatom batch monocultures by

Goldman et al. (1992), who pointed out that the conventional

new production concept, based on Redfield ratios (Dugdale

and Goering, 1967), neglects the “excess” carbon fixation,

due to uncoupling between photosynthesis and nutrient ac-

quisition.

Our results showed that the post-peak bloom DOC accu-

mulation was an order of magnitude lower than the parallel

POC increase in diatom-dominated communities (note y axis

scales in Fig. 1). DOC is by definition a pragmatic concept

(organic carbon passing a glass-fiber filter with a nominal

0.7 µm porosity). Diatoms are known to excrete C-rich or-

ganic compounds of variable molecular weight as a means to

dissipate harvested light energy, once biomass synthesis be-

comes limited by nutrient deficiency (Kiørboe et al., 1990;

Underwood et al., 2004). It is likely that the colloidal and

mucoid DOC fractions were progressively trapped on POC

filters during the late bloom stages – potentially affecting,

e.g., C : Chl a and µPOC – when coagulation and aggre-

gation of detrital matter with the continuum of “dissolved”

organic carbon continued in the absence of sedimentation

flows. Additionally, any labile DOC excreted was probably

quickly utilized by bacteria and did not add to the measured

DOC pool.

The overall conclusion of the C budgets for different com-

munities is that, during the buildup of the bloom, differences

between varying community dominance were far smaller

than anticipated from monoculture studies. With regard to

inorganic nutrient drawdown, exponential biomass develop-

ment, and assimilation efficiency, diatoms and dinoflagel-

lates acted to a large extent as functional surrogates. Major

differences evolved only after the bloom culmination (coin-

ciding with the depletion of inorganic nutrient pools and pri-

mary productivity peak), with significant consequences for

carbon sequestration, C : N : P stoichiometry of spring bloom

material flows, and the carbon-to-chlorophyll ratio of the

communities.

4.4 Effects of community composition on nutrient

stoichiometry and C drawdown during bloom

events

The stationary phase of diatom-dominated communities

strongly influenced the stoichiometry of seston, by doubling

(112 % increase) the C content from the exponential phase

compared both to N and P, and 1.6 times higher compared to

stationary phase dinoflagellate dominance (Fig. 6). The net

effect was therefore a 3.6-fold enhanced CO2 sequestration

to that expected from the Redfield ratio. Even dinoflagellate-

dominated communities exhibited corresponding CO2 draw-

down enhancement to POC in the stationary phase, but at

a significantly lower level (1.7-fold higher than the C : N,

Redfield prediction). Carbon assimilation efficiencies in late

bloom stages were very low for dinoflagellate-dominated

communities due to high respiration rates, therefore prevent-

ing significant accumulation of organic C despite ongoing
14C fixation. Dinoflagellate communities had a lower N : P

ratio than diatom communities in stationary growth phase.

Dinoflagellates have a high uptake affinity for P and keep as-

similating it after growth stops (Kremp et al. 2008) probably

due to their large genome, of which P is an essential compo-

nent. The N : Si ratio of the seston was, as expected, affected

by the dominance pattern (up to 4-fold difference) as only the

diatoms are utilizing silicate. The fact that the DSi addition

had little to no effect on the outcome suggests that the initial

DSi concentration was sufficient for the diatom community

and did not affect the competition with dinoflagellates.

The excess carbon fixation noted in a stationary diatom

batch culture (Goldman et al., 1992) was supported in field

conditions by chemical proxies and discussed within the “bi-

ological pump” framework, as a vehicle transporting more

CO2-derived carbon from the atmosphere to the oceans than

expected from nutrient availability and fixed Redfield ratios

(Sambrotto et al., 1993). Engel et al. (2002) showed that a

major component of the emerging high POC : PON ratios in

an experimentally induced natural diatom community bloom

was aggregation of “marine snow” (72 % more dissolved in-

organic carbon fixation than inferred from nitrate supply and

Redfield stoichiometry), following a large late-bloom flow of

carbon into transparent exopolymer particles (TEPs). Schar-

tau et al. (2007) modeled this “carbon overconsumption” flux

based on the experimental results, and addressed 30 % of the

POC increase to TEP formation.

Our results clearly support the “overconsumption” car-

bon flow pattern for a natural diatom-dominated bloom pre-

sented by Engel et al. (2002) and modeled by Schartau et

al. (2007), but the difference of our results to Redfield-based

estimates was even higher. The diatom community of En-

gel et al. (2002) exhibited close-to-Redfield stoichiometry

during the bloom accumulation phase, while our diatom-

dominated exponential phase communities showed seston

C : N and C : P ratios almost double and triple the correspond-

ing Redfield ratios, respectively. In the stationary phase, our

strongest diatom-dominated communities had up to 3.6 times

higher seston C : N content (regression in Fig. 6) than antici-

pated from Redfield ratios, as compared to 72 % by Engel et

al. (2002).

Estimates of offshore carbon overconsumption in the field,

based on integrative geochemical approaches to in situ vari-

ations of chemical species, were reported up to 300 % in

the “Vanishing in Bermuda” debate and Joint Global Ocean

Flux Study (Toggweiler, 1994; Michaels et al., 1994; Mar-

chal et al., 1996), soon after the experimental observations

of Goldman et al. (1992), who found C : N ratio enhance-

ment of ca. 200 % in late-phase diatom cultures. Our N-based

www.biogeosciences.net/11/7275/2014/ Biogeosciences, 11, 7275–7289, 2014



7286 K. Spilling et al.: Coastal carbon pathways and stoichiometry

“C overconsumption” for coastal, diatom-dominated natural

community bloom events (up to 3.6 times higher) therefore

not only support but also expand these observations, in terms

of (a) the observed ranges of C overconsumption, (b) direct

measurements of bloom events by natural mixed phytoplank-

ton communities, and (c) geographically covering a coastal

regime. Most importantly, however, we also show that the

bloom community composition significantly affects the level

of C overconsumption. Dinoflagellate-dominated communi-

ties showed a similar pattern of increasing carbon-to-nutrient

ratios of seston from exponential to stationary phases, but

with clearly smaller departures from the Redfield stoichiom-

etry than under diatom dominance (1.7 times higher than

Redfield C : N).

4.5 Carbon-to-chlorophyll ratio and community

composition

A stoichiometric ratio of particular interest for large-scale

estimates of aquatic primary production, either for geo-

graphically defined provinces or globally, is the carbon-to-

chlorophyll ratio. Implementing numerical models of pri-

mary productivity requires either direct carbon-based phy-

toplankton observations or incorporation of fixed (Cloern et

al., 1995) or dynamic C : Chl a ratios (Taylor et al., 1997).

Phytoplankton C is notoriously difficult to separate from ses-

ton C, and no methods for direct measurements in the field

are available. Most available spatially extensive observations

originate from satellite remote sensing of chlorophyll, which

requires bridging to carbon-based models (Behrenfeld and

Falkowski, 1997). Currently, advanced oceanic biogeochem-

ical models include dynamic C : Chl a ratios with photoaccli-

mation parameterization, the most common of which is the

Geider et al. (1998) model or its derivatives (Sathyendranath

et al., 2009; Baird et al., 2013).

Carbon-to-chlorophyll ratios are known to be highly vari-

able both in monocultures and in nature (Taylor et al., 1997;

Chan, 1980), and the photoacclimation models are generally

parameterized with monoculture responses to controlled lab-

oratory conditions, most often highly departing from any set

of natural conditions. Major uncertainty is introduced when

laboratory models are translated for application to field mod-

els if the sources of C : Chl a variability are not sufficiently

understood and accounted for (Sathyendranath et al., 2009).

These sources are normally addressed as responses of cul-

tured algae to light and nutrient availability, which certainly

are the key drivers for photosynthesis and the maintenance

of the photosynthetic machinery, including cellular quotas

for C, N, and P. However, species- or group-specific differ-

ences in these responses have rarely been incorporated, and

the ability of photoacclimation models to cope with func-

tionally different phytoplankton groups and non-steady-state

natural conditions is a major current challenge for variable

stoichiometry models (De La Rocha et al., 2010).

Our results showed that both the growth stage of a bloom

and the species dominance patterns strongly affected the

community C : Chl a ratios. The lowest ratios (30 to 80; g : g)

were encountered during the primary productivity and Chl a

peak phases, when the community composition had a minor

effect. During senescent bloom stages, diatom-dominated

communities developed 4-fold C : Chl a ratios (median 200),

whereas dinoflagellate-dominated communities showed me-

dian values of ca. 400, in similar irradiance, temperature,

and nutrient-depleted conditions. These transient, order-of-

magnitude changes within a few weeks during bloom events,

with a strong component of species composition, present so-

far-overlooked challenges for models of phytoplankton ac-

climation and geographically extensive production estimates

based on satellite remote sensing.

An interesting difference between the diatoms and di-

noflagellates, dominating the spring bloom in the Baltic Sea,

is their different response to the onset of inorganic N deple-

tion. Diatoms continued to run photosynthesis building up

the internal C storage, and also releasing C as DOC, prob-

ably as a way of dissipating excess light energy (Myklestad

et al., 1989; Staats et al., 2000). Dinoflagellates, in contrast,

seem to shut down the photosynthetic machinery earlier as a

way to acclimate to a condition with reduced need for inor-

ganic carbon fixation. The observed increase in C : Chl a in

the two groups could have different causes, for the diatoms

primarily an increase in POC, while for the dinoflagellates

the decrease in Chl a was relatively more important.

4.6 Community change in changing climate

Competition between cold-water dinoflagellates and diatoms

represents an important aspect of community change, espe-

cially in changing climatic conditions of coastal temperate

and Arctic environments. Other well-documented, increas-

ing dinoflagellate occurrences amidst diatom dominance that

suggest climatic connotations are warm-water harmful al-

gal blooms (Hallegraeff et al. 2010), while in several marine

habitats, prymnesiophytes (especially Emiliania huxleyi and

Phaeocystis; Breton et al., 2006) are the main competitors

for diatoms. Our results indicate that such variation in phy-

toplankton community dominance patterns have potentially

significant consequences for marine biogeochemical cycles

that need to be addressed, as ca. half of global primary pro-

duction is attributed to marine systems, with phytoplankton

as the main component (Field et al., 1998).

Application of either fixed Redfield stoichiometry, or uni-

form “phytoplankton” stoichiometry, can lead to several-fold

errors or uncertainties in estimates for CO2 sequestration,

especially during temperate and Arctic spring blooms. In

dynamic natural bloom conditions, distinguishing between

community composition and physiological acclimation dur-

ing varying bloom stages, as sources of variation in seston

stoichiometry, therefore remains a major challenge for trait-

based phytoplankton ecology.
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Marine biota are often regarded and studied as mere pas-

sive objects of climate change, and their responses to changes

in, e.g., temperature, acidification, stratification, and light

climate of the mixed surface layer are accordingly actively

studied. It appears essential to focus equally on the active

role of phytoplankton in climate change: how marine car-

bon sequestration and interconnected biogeochemical cycles

are directly modified by community change. Incorporating

functional diversity and stoichiometric flexibility of primary

producers into marine biogeochemical models is therefore a

pending task for climate change research. An obvious paral-

lel challenge for geographically extensive estimates of ma-

rine primary production is enhanced taxonomical resolution

of remote sensing technologies, to cope with the ongoing

large-scale community change and its biogeochemical con-

sequences.
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