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Abstract. This paper describes the distribution of living
coccolithophores (LCs) in the Yellow Sea and the East
China Sea in summer and winter, and its relationship with
environmental factors by canonical correspondence analysis
(CCA). We carried out a series of investigations on LCs
distribution in the Yellow Sea and the East China Sea in
July and December 2011. 210 samples from different depths
were collected from 44 stations in summer and 217 samples
were collected from 45 stations in winter. Totally 20 taxa
belonging to coccolithophyceae were identified using a
polarized microscope at the 1000× magnification. The
dominant species of the two seasons were Gephyrocapsa
oceanica, Emiliania huxleyi, Helicosphaera carteri, and
Algirosphaera robusta. In summer the abundance of coccol-
ithophore cells and coccoliths ranged 0–176.40 cells mL−1,
and 0–2144.98 coccoliths mL−1, with the average values of
8.45 cells mL−1, and 265.42 coccoliths mL−1 respectively.
And in winter the abundance of cells and coccoliths ranged
0–71.66 cells mL−1, and 0–4698.99 coccoliths mL−1,
with the average values of 13.91 cells mL−1 and
872.56 coccoliths mL−1, respectively. In summer, the
LCs in surface layer were mainly observed on the coastal
belt and southern part of the survey area. In winter, the LCs
in surface layer had high value in the continental shelf area
of section P. The comparison among section A, section F,
section P and section E indicated lower species diversity
and less abundance in the Yellow Sea than those in the
East China Sea in both seasons. Temperature and the nitrate
concentration may be the major environmental factors

controlling the distribution and species composition of LCs
in the studying area based on CCA.

Abbreviations: LCs: Living Coccolithophores; CCA:
canonical correspondence analysis; DCM: Deep Chlorophyll
Maximum

1 Introduction

As an important phytoplankton functional group in the
ocean, by conducting both photosynthesis to absorb CO2
from the atmosphere and calcification to form calcium car-
bonate coccoliths and release CO2 back into the atmosphere,
living coccolithophores usually flourish in the open ocean,
and sometimes form large blooms that can be viewed by
satellites for the white light reflection from the coccolith both
detached and enclosed in the coccospheres (Holligan et al.,
1983; Brown and Yoder, 1994). Thus, coccolithophores take
on major roles in the marine carbon cycle and it is neces-
sary to understand the ecological distribution of individual
species of living coccolithophores (Sun, 2007).

As West Pacific marginal seas, the East China Sea and
the Yellow Sea not only have the eutrophic water near the
coast, but also the oligotrophic water mainly caused by the
Kuroshio; moreover, phytoplankton productivity is in general
high in these areas, supporting the important fishery on the
near shore and in the slope sea. There have been many stud-
ies on phytoplankton assemblages since the mid-20th century
(e.g., Riley, 1957; Okada, 1971), especially Hulburt (1962,
1963a and b, 1964, 1970, 1990) and Marshall (1966, 1968,
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1969a and b, 1973, 1976), but few studies on modern coccol-
ithophores have been carried out in the China Sea areas.

In the current research, we reported the abundance, com-
position and correlation between species and environmental
parameters from a cubic view of the water layers from two
seasons in order to understand the ecological role of living
coccolithophores in these regions.

2 Material and methods

2.1 Survey area and sampling method

We carried out a series of comprehensive investigations in-
cluding hydrology, geology, chemistry and biology in the
Yellow Sea and the East China Sea (27.4◦ N ∼ 36.4◦ N,
121.3◦ E∼ 127.3◦ E) from 6 to 24 July 2011 and 20 Decem-
ber 2011 to 12 January 2012, respectively. A total of 44 sta-
tions in summer and 45 stations in winter were investigated
(Fig. 1).

Water samples from each station were taken by a Rosette
sampler system with attached Seabird CTD (conductivity,
temperature and depth) profiler. For each sample 300 mL to
one liter of seawater were filtered onto polycarbonate filters
(25 mm diameter, 0.22 µm) under less than 20 mm Hg filtra-
tion pressure. The filters were then transferred onto plastic
Petri dishes for air-drying. The dried filters were clipped and
then immobilized on glass slides using Neutral balsam for
laboratory microscopic analysis.

2.2 Coccolith and coccosphere data analysis and
statistical methods

The samples were investigated using a Motic Polarizing
Microscope (PM, BA300) under 1000× magnification with
more than 300 coccoliths or 100 coccospheres being identi-
fied and counted per filter according to Heimdal (1997), Boll-
mann et al. (2002), Yang et al. (2003), Jordan et al. (2004)
and Frada et al. (2010).

Coccolith/coccosphere abundance was calculated follow-
ing the method described in Sun et al. (2011) as the following
equation:

A =
a × S

N × b × s
,

whereA is the abundance of the species;N is the number
of fields counted in each filter;a is the number of total cells
of a species in the whole viewing field of a filter;b is the
volume of the water filtered (mL);S is the effective filtration
area; ands is the area per field under 1000× magnification.
The biovolumes of coccolithophore were calculated by stan-
dard geometric models (Sun and Liu, 2003), and the carbon
biomass was calculated using Eppley’s formula (Eppley et
al., 1970).

Coccolith/coccosphere dominance index (Y ) and relative
abundance (P) were calculated following the methodology

of Sun et al. (2003, 2011):

Y =
ni

N
fi

P =
ni

N

in whichY is the dominance index;N is the total number of
cells of all species counted;ni is the number of cells of the
speciesi; P is the relative abundance; andfi is the frequency
of occurrence of the speciesi in each sample.

A multivariate analysis, the Canonical Correspondence
Analysis (CCA), was performed to infer the relationship be-
tween a set of environmental factors (temperature, salinity,
nitrate, nitrite, ammonium, phosphate, silicate and sampling
depth) and the species abundance (Braak, 1986). In the CCA
diagram, the environmental factors are indicated by differ-
ent arrow lines. The length of the arrow line represents the
correlation between a certain environmental factor and the
distribution of the community and species. The longer the
line is, the larger the correlation is. The angle of the arrow
line and the axes stands for the correlation between a certain
environmental factor and the axes. The smaller the angle is,
the larger the correlation is. There was no transformation of
data before applying the CCA.

3 Results

3.1 Environmental parameters

The surface temperature and salinity distribution are shown
in Fig. 2. In general, lower temperature and salinity were
observed in the Yellow Sea than the East China Sea. The
Yangtze River estuary coast was affected by the Yangtze
River diluted water with low temperature and low salinity, es-
pecially in summer, and the high temperature and high salin-
ity offshore from the East China Sea were mainly caused by
the Kuroshio. Thus the cold eutrophic water with low salin-
ity near the coast and the warm oligotrophic water with high
salinity caused by the Kuroshio determine the basic hydro-
logical pattern in the East China Sea areas (Chen, 1996).

The temperature and salinity vertical distribution of four
major sections in the two seasons are shown in Figs. 3 and
4, respectively. In summer, the distribution of the tempera-
ture and salinity presented obvious stratification. Below 40 m
depth in the north of section A, the Yellow Sea Cold Water
Mass (YSCW) was formed with relatively low temperature
and high salinity (T < 9◦C, S > 32) (Fig. 3). In winter, the
temperature and salinity shared a similar trend, increasing
from the coast to the offshore area, and due to the intensive
vertical mixing, temperature and salinity showed no signifi-
cant change in the water column (Fig. 4).
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Fig. 1. Sampling stations of living coccolithophores in the Yellow Sea and East China Sea in summer and winter, 2011.(a) In summer;(b)
in winter.

Fig. 2. The distribution of temperature and salinity in the surface layer in summer and winter.(a) Temperature distribution in summer (◦C);
(b) Salinity distribution in summer (psu);(c) Temperature distribution in winter (◦C); (d) Salinity distribution in winter (psu).
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Fig. 3.Vertical distribution of temperature and salinity along the four sections in summer.(a) Temperature distribution along section A (◦C);
(b) Salinity distribution along section A (psu);(c) Temperature distribution along section F (◦C); (d) Salinity distribution along section F
(psu);(e) Temperature distribution along section P (◦C); (f) Salinity distribution along section P (psu);(g) Temperature distribution along
section E (◦C); (h) Salinity distribution along section E (psu).

3.2 LC species in the survey area

In summer, a total of 13 taxa were identified in the survey
area. The common taxa observed wereGephyrocapsa ocean-
ica, Emiliania huxleyi, Helicosphaera carteri, Algirosphaera
robustaandCalcidiscus leptoporus. For coccoliths,Gephy-
rocapsa oceanicaand Emiliania huxleyiwere overwhelm-
ingly dominant, with high frequencies of 93.07 % and
92.08 %, and the summed relative abundance was 98.65 %.
Additionally, Helicosphaera carterihad a high frequency of
50.00 %, while the relative abundance was as low as 1.07 %.
For coccospheres,Gephyrocapsa oceanicaand Emiliania
huxleyiwere the dominant species, with high frequencies of
68.81 % and 55.94 %, respectively (Table 1).

In winter, 20 taxa were identified and the common taxa
were the same as those observed in summer.Gephyrocapsa
oceanica and Emiliania huxleyi were still the dominant

species. In addition,Braarudosphaera bigelowiihad a higher
frequency of occurrence in winter (Table 2).

3.3 Horizontal distribution of common species

In summer, the vertically integrated abundance
of coccoliths and coccolithophore cells ranged
0 ∼ 2144.98coccolithsmL−1, and 0∼ 176.40cellsmL−1,
with average values of 265.42coccolithsmL−1 and
8.45cellsmL−1, respectively. The vertically inte-
grated abundance ofGephyrocapsa oceanicacoccol-
iths ranged 0∼ 1729.09coccolithsmL−1, averaged
at 156.56coccolithsmL−1; the vertically integrated
abundance of Emiliania huxleyi coccoliths ranged
0 ∼ 1029.00coccolithsmL−1, and the average value
was 105.27coccolithsmL−1; and the vertically in-
tegrated abundance ofHelicosphaera carteri coc-
coliths was 0∼ 36.75coccolithsmL−1, averaged at
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Fig. 4. Vertical distribution of temperature and salinity along the four sections in winter.(a) Temperature distribution along section A (◦C);
(b) Salinity distribution along section A (psu);(c) Temperature distribution along section F (◦C); (d) Salinity distribution along section F
(psu);(e) Temperature distribution along section P (◦C); (f) Salinity distribution along section P (psu);(g) Temperature distribution along
section E (◦C); (h) Salinity distribution along section E (psu).

2.83coccolithsmL−1. As for the vertically integrated
coccosphere abundances,Gephyrocapsa oceanicacell
abundance ranged 0∼ 69.83cellsmL−1, with an average
value of 4.38cellsmL−1; the abundance ofEmiliania
huxleyi cells ranged 0∼ 58.80cellsmL−1, averaged at
2.12cellsmL−1; andAlgirosphaera robustacell abundance
ranged 0∼ 47.78cellsmL−1, averaged at 1.11cellsmL−1.

In winter, the vertically integrated abundance of coc-
coliths and cells ranged 0∼ 4698.99coccolithsmL−1,
and 0∼ 71.66cellsmL−1, with average values of
872.56coccolithsmL−1 and 13.91cellsmL−1, re-
spectively. The coccolith abundance ranged 0∼

2370.38coccolithsmL−1 for Gephyrocapsa oceanica,
averaged at 484.89coccolithsmL−1; the Emiliania huxleyi
coccolith abundance ranged 0∼ 2260.13coccolithsmL−1,
averaged at 365.00coccolithsmL−1; and the abundance of
Braarudosphaera bigelowiicoccoliths ranged from 0 to
16.54coccolithsmL−1, averaged at 1.02coccolithsmL−1.

The vertically integrated coccosphere abundance,
0 ∼ 51.45cellsmL−1 for Gephyrocapsa oceanica, with
an average value of 7.05cellsmL−1, and the Emiliania
huxleyicell abundance ranged 0∼ 31.85cellsmL−1, with an
average value of 4.84cellsmL−1.

The surface layer distributions of coccolith and coc-
cosphere in summer are shown in Fig. 5 and Fig. 6a,
respectively. The abundance ofGephyrocapsa oceanica
coccoliths ranged 0∼ 463.05coccolithsmL−1, averaged at
29.71coccolithsmL−1; the abundance ofEmiliania huxleyi
coccoliths ranged 0∼ 286.65coccolithsmL−1, and the aver-
age value was 16.55coccolithsmL−1. Gephyrocapsa ocean-
ica andEmiliania huxleyipresented obvious ribbon distribu-
tion in the coastal area of the Yellow Sea and East China
Sea, with the highest value observed in stations northeast
of the Yangtze River estuary. ForHelicosphaera carteri, the
highest value was found southwest of Jeju Island (Fig. 5).
The abundance of dominant speciesGephyrocapsa ocean-
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Table 1.Living coccolithophore species composition of the Yellow Sea and East China Sea in summer, 2011.

Species Frequency of Relative Dominance
occurrence (fi) abundance (P) index (Y)

Coccolith dominant species

Gephyrocapsa oceanica 93.07 % 59.04 % 0.5494561
Emiliania huxleyi 92.08 % 39.61 % 0.3647127
Helicosphaera carteri 50.00 % 1.07 % 0.0053287
Calcidiscus leptoporus 17.33 % 0.16 % 0.0002719

Coccolithophore dominant species

Gephyrocapsa oceanica 68.81 % 50.97 % 0.3507418
Emiliania huxleyi 55.94 % 24.63 % 0.1377727
Algirosphaera robusta 31.19 % 12.88 % 0.0401645
Helicosphaera carteri 15.84 % 4.24 % 0.0067235
Calcidiscus leptoporus 11.39 % 2.56 % 0.0029089
Umbilicosphaera sibogae 5.94 % 1.48 % 0.0008770
Syracosphaeraspp. 5.94 % 1.45 % 0.0008590

Table 2.Living coccolithophore species composition of the Yellow Sea and East China Sea in winter, 2011.

Species Frequency of Relative Dominance
occurrence (fi) abundance (P) index (Y)

Coccolith dominant species

Gephyrocapsa oceanica 98.62 % 56.72 % 0.5593388
Emiliania huxleyi 96.31 % 41.83 % 0.4028726
Helicosphaera carteri 68.66 % 1.08 % 0.0073966
Calcidiscus leptoporus 40.09 % 0.15 % 0.0006089
Braarudosphaera bigelowii 27.65 % 0.12 % 0.0003242
Umbilicosphaera sibogae 19.35 % 0.06 % 0.0001172

Coccolithophore dominant species

Gephyrocapsa oceanica 80.65 % 50.69 % 0.4087761
Emiliania huxleyi 68.66 % 34.82 % 0.2390601
Algirosphaera robusta 29.95 % 6.47 % 0.0193885
Helicosphaera carteri 19.35 % 3.36 % 0.0065052
Calcidiscus leptoporus 6.45 % 0.74 % 0.0004788
Umbilicosphaera sibogae 6.45 % 0.85 % 0.0005461
Braarudosphaera bigelowii 4.15 % 0.44 % 0.0001812

ica cells ranged from 0 to 23.28cellsmL−1, with an av-
erage value of 2.35cellsmL−1; the cell abundance of the
other dominant speciesEmiliania huxleyiranged from 0 to
7.35cellsmL−1, with an average value of 0.90cellsmL−1

(Fig. 6a). Higher abundances were mainly observed in the
southern part of the survey area. The abundance distribu-
tion of the two dominant species showed a similar trend
of increasing from north to south. The distributions of ver-
tically integrated coccolithophore carbon biomass in sum-
mer are shown in Fig. 6b. The summed coccolithophore

carbon biomass was mainly contributed by the distribu-
tion speciesGephyrocapsa oceanicaand Calcidiscus lep-
toporus, presenting a trend of decreasing from southeast
to northwest (1.4 ∼ 866.7 gC m−2, with an average value
of 22.2 gC m−2). The vertically integrated carbon biomass
of the other dominant speciesEmiliania huxleyi increased
significantly from north to south (135to ∼ 8621 mg C m−2).
However, due to the relatively smaller cellular biovolume,
Emiliania huxleyicoccolithophores only contributed an aver-
age of∼ 8 % of the total carbon biomass in the survey area.

Biogeosciences, 11, 779–806, 2014 www.biogeosciences.net/11/779/2014/
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Fig. 5. The abundance distribution of coccolith on the surface layer in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; and(d) sum.

In winter, the abundance of Gephyrocapsa
oceanica coccoliths in the surface layer ranged
0 ∼ 1405.69coccolithsmL−1, with an average value
of 413.04coccolithsmL−1; the surface layer abun-
dance of Emiliania huxleyi coccoliths ranged
0 ∼ 1455.30coccolithsmL−1, and the average value
was 301.68coccolithsmL−1, in general higher than those
observed in summer. The higher values were observed
in stations northwest of Jeju Island and southeast of the
Yangtze River estuary. ForHelicosphaera carteri, the high
values presented obvious ribbon distribution along the
western edge of the survey region (Fig. 7). The abundance
of dominant speciesGephyrocapsa oceanicacells ranged
from 0 to 19.60cellsmL−1, with an average value of
6.08cellsmL−1; the abundance the other dominant species
Emiliania huxleyi cells ranged 0∼ 18.38cellsmL−1 and
averaged at 3.77cellsmL−1 (Fig. 8a). Higher values were
mainly observed offshore and southwest of the survey area.
As for the vertically integrated coccolithophore carbon
(Fig. 8b), Gephyrocapsa oceanicacontributed∼ 51% of

the water column total carbon biomass, especially in the
western and southern sections in the survey area, where the
integrated total carbon biomass reached up to 89 gC m−2.
The summed coccolithophore carbon biomass ranged from
0.5 to 88.5 gC m−2, with an average value at 28.8 gC m−2. In
the survey area, the carbon biomass of coccolithophores in
winter was slightly higher than in summer; this is because of
higher coccolithophore carbon biomass in the southeastern
part of the study area in winter. It indicated that much more
warm-water coccosphere species were being brought by the
intrusion of Kuroshio in winter in this region.

3.4 Vertical distribution of LCs at different sections

3.5 Vertical distribution of LCs at section A

Section A is located from north of the Yellow Sea
to northeast of the East China Sea, across the Yel-
low Sea. In summer, the abundance of coccoliths
ranged 0∼ 1679.48coccolithsmL−1, with an average
of 215.57coccolithsmL−1. The abundance of coccoliths
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Fig. 6a.The abundance distribution of the coccosphere on the surface layer in summer (unit: cells mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Calcidiscus leptoporus; (e)Helicosphaera carteri; and(f) sum.

Fig. 6b. The water column vertically integrated carbon biomass distribution of the coccosphere in summer (unit: mgC m−2). (a) Gephyro-
capsa oceanica; (b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Calcidiscus leptoporus; (e)Helicosphaera carteri; and(f) sum.
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Fig. 7. The abundance distribution of coccolith on the surface layer in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.

was in general less than 200coccolithsmL−1, increasing
from north to south and from surface to depth along this
section (Fig. 9). Relatively higher values were found in the
southern part of the section. The cell abundances ranged
0 ∼ 53.29cellsmL−1, with an average of 7.98cellsmL−1

(Fig. 10a). The summed cell abundance had a similar trend
to coccoliths. However, a higher abundance ofAlgirosphaera
robustawas observed in the low temperature and high salin-
ity region, with an abundance of more than 3cellsmL−1. The
number of species identified increased from 3 along the coast
to 8 in the southeast, with a general increasing trend from
north to south. Similarly, the calculated coccolithophore car-
bon biomass also kept increasing from north to south along
this section, with the highest value (up to 2552 µgC L−1)
observed in the water depth between 65 to 100 m at the
southern end (Fig. 10b). The distribution of total carbon
biomass was mainly contributed by speciesGephyrocapsa
oceanica, Helicosphaera carteriandCalcidiscus leptoporus
in the south andAlgirosphaera robustatowards the northern
section (Fig. 10b).

In winter, the abundance of coccoliths ranged
0 ∼ 3698.89coccolithsmL−1, with an average value of
924.17coccolithsmL−1, and mainly distributed in the south-
ern section of the survey area (Fig. 11). The coccosphere
cell abundances ranged 0∼ 40.23cellsmL−1, averaged at
9.75cellsmL−1 (Fig. 12a). Relatively higher values were
also found in the southern part, with a general increasing
trend from north to south. However, an obvious abundance

was observed in the north, with an abundance of more than
3cellsmL−1. The number of species identified increased
from 3 along the coast to 9 in the southeast. The total
coccolithophore carbon biomass in section A was in general
lower that the level in summer (Fig. 12b). The highest
value of 1849 µgC L−1 was observed in the bottom layer at
∼ 37◦ N, mainly contributed byGephyrocapsa oceanica,
Helicosphaera carteriandCalcidiscus leptoporus.

3.6 Vertical distribution of LCs at section F

Section F is affected by the Yangtze River diluted wa-
ter. In summer, the abundance of coccoliths ranged from
0 to 1492.05coccolithsmL−1, with an average value of
294.68coccolithsmL−1. The cell abundance ranged 0∼

26.95cellsmL−1, with an average value of 6.78cellsmL−1.
The distribution of coccolith abundance presented an obvi-
ous layering phenomenon, increasing with sampling depth
(Fig. 13), and the distribution of coccosphere cells was sim-
ilar to that of coccoliths (Fig. 14a). The calculated verti-
cal coccolithophore carbon biomass also presented the same
trend of increasing with sampling depth, with the highest ob-
served at∼ 50 m between 125◦ E and 126◦ E, mostly con-
tributed by the speciesHelicosphaera carteriandCalcidis-
cus leptoporus(Fig. 14b).

In winter, the abundance of coccoliths ranged from
159.86 to 2451.23coccolithsmL−1, with an average
value of 1130.42coccolithsmL−1, and the cell abundance

www.biogeosciences.net/11/779/2014/ Biogeosciences, 11, 779–806, 2014
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Fig. 8a.The abundance distribution of the coccosphere on the surface layer in winter (unit: cells mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 8b.The water column vertically integrated carbon biomass distribution of the coccosphere in winter (unit: mgC m−2). (a) Gephyrocapsa
oceanica; (b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Calcidiscus leptoporus; (e)Helicosphaera carteri; and(f) sum.

Biogeosciences, 11, 779–806, 2014 www.biogeosciences.net/11/779/2014/
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Fig. 9. Vertical distribution of coccolith abundance along section A in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.

ranged 3.68∼ 36.75cellsmL−1, with an average value of
14.65cellsmL−1. The distribution of summed coccolith
abundance mainly presented an increasing trend with
sampling depth (Fig. 15). Differently, the highest summed
coccosphere cell abundance was observed at 60 m depth
in the eastern section, mainly determined by the dominant
speciesEmiliania huxleyicell distribution (Fig. 16a). The
calculated vertical coccolithophore carbon biomass showed
similar distribution with coccosphere cell abundance, with
the highest value found at a depth of∼ 50 m at the eastern
edge of the section, mainly contributed byGephyrocapsa
oceanica, Helicosphaera carteriandCalcidiscus leptoporus
(Fig. 16b). Compared with the vertical distribution in
summer, the carbon biomass in the surface layer was higher
in winter.

3.7 Vertical distribution of LCs at section P

Along section P, the summer abundance of coccoliths
ranged 0∼ 2144.98coccolithsmL−1, with an average value
of 362.86coccolithsmL−1, with an obvious trend of increas-
ing from surface to bottom (Fig. 17). Highest values were
observed along continental shelves. The abundance of coc-
cospheres was 0∼ 30.63cellsmL−1, with an average value
of 8.93cellsmL−1 (Fig. 18a). The number of species iden-
tified increased from 3 along the coast to 10 at the offshore
stations, with a general increasing trend from nearshore to
offshore areas. The highest carbon biomass was also found

in the offshore area in the bottom layer between 125◦ E and
126◦ E, contributed by the biomass ofHelicosphaera carteri
andCalcidiscus leptoporus(Fig. 18b). Vertically, the coccol-
ithophore carbon biomass in general increased from surface
to the bottom along this section in summer.

In winter, the abundance of coccoliths ranged
18.38∼ 4698.99coccolithsmL−1, and the average value was
1270.67coccolithsmL−1, with a decreasing trend towards
offshore (Fig. 19). The highest abundance was observed
along continental shelves. The abundance of coccosphere
cells ranged 1.23∼ 53.29cellsmL−1, with an average value
of 17.93cellsmL−1, mainly dominated by two species of
Gephyrocapsa oceanicaand Emiliania huxleyi, with the
highest abundance found close to the surface in the offshore
area (Fig. 20a). The number of species identified increased
from 4 along the coast to 16 at the offshore stations, with a
general increasing trend from nearshore to offshore areas.
Similarly, the total coccolithophore carbon biomass also
increased from nearshore towards offshore.Gephyrocapsa
oceanicawas the species that mostly determined the carbon
biomass distribution (Fig. 20b).

3.8 Vertical distribution of LCs at section E

Section E is located in the southernmost part of the
survey area. In summer, the abundance of coccoliths
and cells ranged 0∼ 1804.23coccolithsmL−1 and 0∼

39.47cellsmL−1, with an average of 178.83coccolithsmL−1
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Fig. 10a.Vertical distribution of the coccosphere abundance along section A in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 10b.Vertical distribution of coccolithophore carbon biomass along section A in summer (unit: ugC L−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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Fig. 11. Vertical distribution of coccolith abundance along section A in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.

Fig. 12a.Vertical distribution of coccosphere abundance along section A in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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Fig. 12b. Vertical distribution of coccolithophore carbon biomass along section A in winter (unit: ugC L−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 13. Vertical distribution of coccolith abundance along section F in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.
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Fig. 14a.Vertical distribution of coccosphere abundance along section F in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 14b.Vertical distribution of coccolithophore carbon biomass along section F in summer (unit: ugC L−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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Fig. 15. Vertical distribution of coccolith abundance along section F in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.

Fig. 16a.Vertical distribution of coccosphere abundance along section F in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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Fig. 16b.Vertical distribution of coccolithophore carbon biomass along section F in winter (unit: ugC L−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 17. Vertical distribution of coccolith abundance along section P in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.
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Fig. 18a.Vertical distribution of coccosphere abundance along section P in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; and(d) sum.

Fig. 18b.Vertical distribution of coccolithophore carbon biomass along section P in summer (unit: ugC L−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Biogeosciences, 11, 779–806, 2014 www.biogeosciences.net/11/779/2014/



J. Sun et al.: Living coccolithophores in Yellow Sea and East China Sea 797

Table 3.Historical data of living coccolithophore assemblage in the Yellow Sea and East China Sea.

Sampling
time

Method Dominant
species

Abundance
(cellsmL−1)

Region Reference

Dec 2011∼
Jan 2012

PM E. huxleyi,
G. oceanica

0 ∼ 40.4 Yellow Sea and East China
Sea (surface)

This study

Jul 2011 PM E. huxleyi,
G. oceanica

0 ∼ 30.6 Yellow Sea and East China
Sea (surface)

This study

Nov 2010 PM E. huxleyi,
G. oceanica

18.6 East China Sea Jin et al. (2013)

Dec 2009∼
Feb 2010

PM E. huxleyi
G. oceanica

3.84 Yellow Sea and East
China Sea

Zhang (2011)

Jul∼ Sep 2009 PM E. huxleyi
G. oceanica

2.84 Yellow Sea and East
China Sea

Zhang (2011)

Jul∼ Aug 2009 SEM/PM E. huxleyi
G. oceanica

8.41 Yellow Sea and East
China Sea

Luan (2010)

Dec 1997 SEM E. huxleyi,
G. oceanica

0 ∼ 56.4 East China Sea
(surface)

Yang et al. (2004)

Jul 1996 SEM Uncertain∗ 11.5 ∼ 19.7 Northwest Taiwan
(surface)

Yang et al. (2001)

Apr 1996 HPLC Unclear – PN Section Furaya et al. (2003)

Jul∼ Aug 1994 HPLC Unclear – PN Section Furaya et al. (2003)

Jan∼ Mar 1993 IM/SEM E. huxleyi,
G. oceanica

– PN Section Furaya et al. (1996)

Jul 1992 SEM E. huxleyi,
G. oceanica

0 ∼ 64.5 East China Sea
(surface)

Yang et al. (2004)

Aug 1981 SEM/PM E. huxleyi,
G. oceanica

– PN Section Wang et al. (1988)

Oct∼ Dec
1969

PM Unclear – Two stations in East
China Sea

Okada et al. (1975)

IM: Inverted microscope; PM: Polarized microscope; SEM: Scanning electron microscope; HPLC: High-performance liquid chromatography.∗ Uncertain
dominant species at different stations.

and 10.92cellsmL−1, respectively. The abundance of coc-
coliths was relatively higher inshore and declined suddenly
towards offshore (Fig. 21).Gephyrocapsa oceanicawas the
absolutely dominating species, with the abundance rang-
ing from 0 to 1729.09coccolithsmL−1, and the average
value was 131.04coccolithsmL−1. The abundance distribu-
tion of coccosphere cells was mainly determined by the dis-
tribution of Gephyrocapsa oceanica, similar to coccoliths.
High Helicosphaera cartericoccosphere cell abundance was
found offshore (Fig. 22a). The highest coccolithophore car-
bon biomass concentration along section E was observed
in the sub-surface layer (30–50 m, up to 984 µgC L−1) in-
shore, mostly contributed by the dominant speciesGeophy-
rocapsa oceanica(Fig. 22b). Another high carbon biomass
region was found in the same layer offshore between 125◦ E

and 126◦ E, mainly contributed byHelicosphaera carteriand
Calcidiscus leptoporus(Fig. 22b).

In winter, the abundance of coccoliths and cells
ranged 7.35∼ 1413.04coccolithsmL−1 and 1.05∼

71.66cellsmL−1, with an average of 422.77coccolithsmL−1

and 22.50cellsmL−1, respectively. The abundance of coc-
coliths was relatively higher inshore throughout the water
column and in the bottom layer offshore right above the
continental shelf (Fig. 23).Gephyrocapsa oceanicaand
Emiliania huxleyiwere two dominating species, with the
abundance ranging from 5.25∼ 1029.00coccolithsmL−1

and 2.1 ∼ 679.88coccolithsmL−1, with the average values
of 206.28coccolithsmL−1 and 212.87coccolithsmL−1

respectively.Braarudosphaera bigelowiicoccolith was only
found in the surface layer above the edge of the continental
shelf. However, theBraarudosphaera bigelowiicoccosphere
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Fig. 19.Vertical distribution of coccolithophore carbon biomass along section P in winter (unit: ugC L−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 20a.Vertical distribution of coccosphere abundance along section P in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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cells were mainly observed in the layer from 60∼ 80 m.
High Helicosphaera cartericoccosphere cell abundance
was found inshore, and other species were mainly observed
offshore. TheGephyrocapsa oceanicaandEmiliania huxleyi
coccosphere cell distributions mainly determined the distri-
bution of summed cell abundance (Fig. 24a), whereas the
calculated total coccolithophore carbon biomass was mostly
contributed byHelicosphaera carterinearshore, showing the
highest value and contributed byGephyrocapsa oceanica
andCalcidiscus leptoporustowards offshore (Fig. 24b).

4 Discussion and Conclusion

In the current study on coccolithophore and coccolith dis-
tribution in the Yellow Sea and the East China Sea,Gephy-
rocapsa oceanicaandEmiliania huxleyiwere the two major
dominant species, consistent with the previous studies shown
in Table 2.

In summer, in the coccolith CCA diagram (Fig. 25), axis 1
mainly related to sampling depth and temperature while axis
2 mainly related to ammonium concentration. As shown in
Fig. 13,Gephyrocapsa oceanica, a tropical or warm water
coccolithophore species, andEmiliania huxleyi, an euryther-
mal species (Okada, 1971; Paasche, 2001), both related to
different environmental factors in the same degree, indicating
that they are able to survive in various environmental con-
ditions. Therefore, these two species have absolute advan-
tages in the Yellow Sea and East China Sea. Similarly,He-
licosphaera carteri, with a high frequency, widely survives
in the survey area, whereasCalcidiscus leptoporustends to
occur in cool waters and nutrient-rich environments. Differ-
ently,Syracosphaeraspp. prefers cool waters and rather olig-
otrophic conditions.Umbilicosphaera sibogaehad obvious
positive correlation with sampling depth. In the coccosphere
CCA diagram (Fig. 26), axis 1 related to sampling depth and
temperature, while axis 2 related to nitrate concentration. The
correlation between the main species and the environmental
factors were similar to those of the coccolith for the domi-
nant species,Gephyrocapsa oceanicaandEmiliania huxleyi.
However,Syracosphaeraspp.,Helicosphaera carteri, Cal-
cidiscus leptoporusandUmbilicosphaera sibogaehad obvi-
ous positive correlation with sampling depth.

In the coccolith CCA diagram of winter sampling
(Fig. 27), axis 1 mainly related to nitrate concentration
and temperature, while axis 2 mainly related to sampling
depth and phosphate concentration. Similar to that in sum-
mer, Gephyrocapsa oceanica, Emiliania huxleyiand Heli-
cosphaera carteri, with a high frequency, widely survive
in the survey area, whileBraarudosphaera bigelowiitends
to occur in rather oligotrophic conditions. As for the win-
ter coccosphere CCA diagram (Fig. 28), axis 1 related to
salinity, temperature and phosphate concentration, while axis
2 related to sampling depth and ammonium concentration.
Gephyrocapsa oceanica, Emiliania huxleyiandCalcidiscus

leptoporusrelated to most of the environmental factors in the
same degree, whileHelicosphaera carterishowed obvious
positive correlation with phosphate concentration.

Okada and Honjo (1975) reported that the distribution of
LCs associated with nutrient concentrations, especially ni-
trate. Winter et al. (2002) found a higher abundance of LCs
in the surface layer, above the nitrate halocline and in the
photic zone under the DCM (deep chlorophyll maximum) in
the Caribbean Sea. Andruleit et al. (2003) believed that the
mixing layer depth was the decisive factor in the abundance
of LCs and the competition with diatoms in the northern Ara-
bian Sea; Yang et al. (2004) suggested that the distribution of
LCs was mainly affected by temperature and salinity. The
study by Mohan et al. (2008) found that the abundance and
species of LCs was inversely linked to the silicate concentra-
tion in the Indian sector of the Southern Ocean.

In this study, according to Figs. 25 to 28, the distribu-
tion of LCs in the Yellow Sea and East China Sea had var-
ious connections with temperature and the nutrient concen-
tration. In summer, the abundance of coccolith in the surface
layer increased from north to south in the survey area, as-
sociated with the environment characteristics. In the Yellow
Sea, temperature, salinity and the nutrient concentrations are
in general low in summer (Liu and Hu, 2009; Zhang, 2009),
which limit the survival and growth of the LCs. As for the
East China Sea, the temperature and salinity are both sig-
nificantly higher (Zou and Xiong, 2001), and the input by
the Yangtze River runoff and the Kuroshio waters greatly in-
creased the nutrient concentrations in this area (Wang, 2008).
The abundance of coccoliths reaches a high value along sec-
tion P. The abundance of the coccosphere cells in the survey
area presents plaque distribution and is mainly distributed
in the Yangtze River diluted water region and the southern
part of the East China Sea, resulting from the distribution of
temperature, salinity and nutrients in various water masses.
Nutrient enrichment is beneficial to the survival and growth
of the LCs (Baumann et al., 2005), therefore the maximum
abundance of the LCs was found at 20 m depth where the big
phytoplankton blooms took place, consistent with what was
observed by Jin and Sun (2013).

In winter, temperature is lower and salinity is higher in the
Yellow Sea area, and the particularly low temperature limited
the growth of the LCs. In the East China Sea, the Yangtze
River runoff increased the nutrient concentrations, and the
Kuroshio waters brought high-temperature water mass. As
a result, the LC abundance observed in the East China Sea
is in general much higher than in the Yellow Sea area. The
maximum abundance of the LCs was found in the continental
shelf of section P, consistent with the study by Zhang (2011).

In summer, axis 1 is depth dependent (Figs. 25 and 26).
Temperature has a strong negative correlation with the depth
by linear regression due to stratification effects. In addition to
ocean current invasion, the water column depth is the main
factor leading to temperature changes. Therefore, the sam-
pling depth as well as the nutrient (mainly nitrate) concen-
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Fig. 20b.Vertical distribution of coccolithophore carbon biomass along section P in winter (unit: ugC L−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 21. Vertical distribution of coccolith abundance along section E in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; and(d) sum.

Biogeosciences, 11, 779–806, 2014 www.biogeosciences.net/11/779/2014/



J. Sun et al.: Living coccolithophores in Yellow Sea and East China Sea 801

Fig. 22a.Vertical distribution of coccosphere abundance along section E in summer (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 22b.Vertical distribution of coccolithophore carbon biomass along section E in summer (unit: ugC L−1). (a) Gephyrocapsa oceanica;
(b) Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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Fig. 23. Vertical distribution of coccolith abundance along section E in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Helicosphaera carteri; (d) Calcidiscus leptoporus; (e)Braarudosphaera bigelowii; and(f) sum.

Fig. 24a.Vertical distribution of coccosphere abundance along section E in winter (unit: coccoliths mL−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.
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Fig. 24b.Vertical distribution of coccolithophore carbon biomass along section E in winter (unit: ugC L−1). (a) Gephyrocapsa oceanica; (b)
Emiliania huxleyi; (c) Algirosphaera robusta; (d) Helicosphaera carteri; (e)Calcidiscus leptoporus; and(f) sum.

Fig. 25.Results of the CCA of coccolith abundance vs. environmen-
tal factors in summer (T : Temperature;S: Salinity; D: Sampling
Depth; NO2: Nitrite; NO3: Nitrate; NH3: Ammonium;Si: Silicate;
P : Phosphate; G.o:Gephyrocapsa oceanica; E.h: Emiliania hux-
leyi; H.c: Helicosphaera carteri; B.b: Braarudosphaera bigelowii;
A.r: Algirosphaera robusta; C.l: Calcidiscus leptoporus; U.s: Um-
bilicosphaera sibogae; S.s.:Syracosphaeraspp.).

trations are the decisive factors in summer. The abundance of
coccoliths at all sections increased in various degrees as the
sampling depth increased. The high value always appeared
in the bottom layer, similar to the pattern reported by Sun et
al. (2011) in the area of water column depth less than 200 m
in the South China Sea, due to the resuspension of bottom
sediment coccoliths and the coccoliths exfoliation after the
dead cells sank to the bottom.

In winter, under the effects of monsoon, the water column
is well mixed from surface to bottom, which leads to a rela-
tively uniform vertical distribution of coccoliths. Therefore,

Fig. 26.Results of the CCA of coccosphere abundance vs. environ-
mental factors in summer (T : Temperature;S: Salinity; D: Sam-
pling Depth; NO2: Nitrite; NO3: Nitrate; NH3: Ammonium; Si:
Silicate; P : Phosphate; G.o:Gephyrocapsa oceanica; E.h: Emil-
iania huxleyi; H.c: Helicosphaera carteri; B.b: Braarudosphaera
bigelowii; A.r: Algirosphaera robusta; C.l: Calcidiscus leptoporus;
U.s:Umbilicosphaera sibogae; S.s.:Syracosphaeraspp.).

the sampling depth is not the driving environmental factor in
winter (Figs. 27 and 28).

Section P, from the Yangtze River estuary to southeast of
the survey area, is affected by Yangtze River diluted waters
and the Kuroshio waters, and the changing pattern of thermo-
cline, halocline and nutrients is complicated in this area. It is
always an important section for conducting research into the
phytoplankton community dynamics (Liu, 2001). In summer,
the increasing trend of coccoliths at section P from surface to
bottom is obvious, withGephyrocapsa oceanicaas the ab-
solutely dominating species. Higher abundances of both coc-
coliths and coccospheres were observed near the bottom of
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Fig. 27. Results of the CCA of coccolith abundance vs. environ-
mental factors in winter (T : Temperature;S: Salinity;D: Sampling
Depth; NO2: Nitrite; NO3: Nitrate; NH3: Ammonium;Si: Silicate;
P : Phosphate; G.o:Gephyrocapsa oceanica; E.h: Emiliania hux-
leyi; H.c: Helicosphaera carteri; B.b: Braarudosphaera bigelowii;
A.r: Algirosphaera robusta; C.l: Calcidiscus leptoporus; U.s: Um-
bilicosphaera sibogae; U.t: Umbellosphaera tenuis).

Fig. 28.Results of the CCA of coccosphere abundance vs. environ-
mental factors in winter (T : Temperature;S: Salinity;D: Sampling
Depth; NO2: Nitrite; NO3: Nitrate; NH3: Ammonium;Si: Silicate;
P : Phosphate; G.o:Gephyrocapsa oceanica; E.h: Emiliania hux-
leyi; H.c: Helicosphaera carteri; B.b: Braarudosphaera bigelowii;
A.r: Algirosphaera robusta; C.l: Calcidiscus leptoporus; U.s:Um-
bilicosphaera sibogae; M.a: Michaelsarsia adriaticus; S.s.:Syra-
cosphaeraspp.).

the continental shelf, with high temperature, salinity and nu-
trient concentrations. Meanwhile, an obvious trend of sudden
increase is the coccosphere abundance in the offshore area
due to the high nutrient concentration on the bottom caused
by the Kuroshio and its branch Taiwan warm current invad-
ing the East China Sea (Wang et al., 1998). In winter, the coc-
colith abundance increased slightly from the surface to bot-
tom and suddenly decreased offshore. However, higher coc-
cosphere abundance presented in the upper layers affected by
upwelling.

By comparing the calculated carbon biomass and cell
abundance distributions of LCs in the survey area, we found
that most of the distribution patterns coincide well with each
other for a specific species, except for one of the dominant
species,Emiliania huxleyi. The biovolume of this species is
relatively lower; therefore its contribution to the total carbon
biomass is much lower even with a higher abundance. In ad-

dition, the total LC organic carbon biomass contribution is
generally lower than other phytoplankton functional groups
in these areas (data not shown). This indicates that the major
role of LCs in the Yellow Sea and the East China Sea is to
contribute in the carbonate counter pump as a particle inor-
ganic carbon producer, instead of the organic carbon pump.

Studies on LCs in a wide area of the Yellow Sea and the
East China Sea of all seasons are still rare. There are still a lot
of uncertainties on the understanding of the correlation be-
tween the dominated species as well as its abundance and the
environmental factors. Further studies on the seasonal distri-
bution of coccolithophores, its relationships with the environ-
mental factors, and the succession between coccolithophores
and other phytoplankton groups, such as diatoms, are still
necessary for a comprehensive understanding of LC distri-
bution in these areas in the future.
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