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Abstract. Understanding the interactions between the land

surface and the atmosphere is key to modelling boundary-

layer meteorology and cloud formation, as well as carbon

cycling and crop yield. In this study we explore these inter-

actions in the exchange of water, heat and CO2 in a cropland–

atmosphere system at the diurnal and local scale. To that

end, we couple an atmospheric mixed-layer model (MXL)

to two land-surface schemes developed from two different

perspectives: while one land-surface scheme (A-gs) simu-

lates vegetation from an atmospheric point of view, the other

(GECROS) simulates vegetation from a carbon-storage point

of view. We calculate surface fluxes of heat, moisture and car-

bon, as well as the resulting atmospheric state and boundary-

layer dynamics, over a maize field in the Netherlands, on

a day for which we have a rich set of observations available.

Particular emphasis is placed on understanding the role of

upper-atmosphere conditions like subsidence in comparison

to the role of surface forcings like soil moisture. We show

that the atmospheric-oriented model (MXL-A-gs) outper-

forms the carbon storage-oriented model (MXL-GECROS)

on this diurnal scale. We find this performance is partly due

to the difference of scales at which the models were made to

run. Most importantly, this performance strongly depends on

the sensitivity of the modelled stomatal conductance to wa-

ter stress, which is implemented differently in each model.

This sensitivity also influences the magnitude of the surface

fluxes of CO2, water and heat (surface control) and sub-

sequently impacts the boundary-layer growth and entrain-

ment fluxes (upper atmosphere control), which alter the at-

mospheric state. These findings suggest that observed CO2

mole fractions in the boundary layer can reflect strong influ-

ences of both the surface and upper-atmosphere conditions,

and the interpretation of CO2 mole fraction variations de-

pends on the assumed land-surface coupling. We illustrate

this with a sensitivity analysis where high subsidence and

soil moisture depletion, typical for periods of drought, have

competing and opposite effects on the boundary-layer height

h. The resulting net decrease in h induces a change of 12 ppm

in the late-afternoon CO2 mole fraction. Also, the effect of

such high subsidence and soil moisture depletion on the sur-

face Bowen ratio are of the same magnitude. Thus, correctly

including such two-way land-surface interactions on the di-

urnal scale can potentially improve our understanding and

interpretation of observed variations in atmospheric CO2, as

well as improve crop yield forecasts by better describing the

water loss and carbon gain.

1 Introduction

The land surface and atmosphere interact on many time

scales, and understanding their exchange of energy, water,

carbon and chemical tracers is key to many research fields,

including climate modelling (Cox et al., 2013; Sitch et al.,

2008), crop yield prediction (Lobell et al., 2011), hydrol-

ogy (Teuling et al., 2010), atmospheric composition (Bo-

nan, 2008) and meteorology (Vilà-Guerau de Arellano et al.,

2012). When the interaction concerns a vegetated surface and

the planetary boundary layer overhead, the cycles of carbon,

water and energy are strongly coupled, notably at the sur-

face. Responding to their environment, plants regulate the

exchange of CO2 and water vapour through the opening and

Published by Copernicus Publications on behalf of the European Geosciences Union.



104 M. Combe et al.: Two perspectives on coupled exchange in the boundary layer

closing of their stomata (Jarvis, 1976; Cowan, 1978; Ball,

1988), which in turn impacts the energy partitioning at the

surface. This plant control over the carbon, water and energy

exchange plays a key role, especially in climate change stud-

ies, which is why the current generation of climate models

all include mechanisms to describe the stomatal response of

vegetation to changing environmental conditions (Farquhar

et al., 1982; Collatz et al., 1991; Leuning et al., 1995; Ja-

cobs et al., 1996). The ongoing rise of temperature and CO2

concentration are already shown to affect the coupled cycles

of water and carbon as plants have become more efficient in

water use over the past decades (Keenan et al., 2013; Brienen

et al., 2011; Silva and Horwath, 2013). Quantitative under-

standing of these interactions between plants and the atmo-

sphere is therefore needed.

The development of numerical models to describe land–

atmosphere interactions is based on two perspectives. While

vegetation models focus on carbon accumulation in land-

surface types, such as forests and crops, and treat the at-

mosphere as a prescribed upper boundary condition, the at-

mospheric models focus on weather forecast and use land

surface as a prescribed lower boundary condition. The for-

mer group includes (dynamic) vegetation models and crop

yield models such as LPJ (Sitch et al., 2003), ORCHIDEE-

STICS (Smith et al., 2010) and CERES-maize (Bert et al.,

2007). The latter includes submodels of numerical weather

prediction systems and atmospheric transport models such as

in SiBcrop-RAMS (Corbin et al., 2010), RAMS-Leaf3-5PM

(Tolk et al., 2009) and WRF-VPRM (Ahmadov et al., 2007).

The next generation of vegetation and atmospheric models

integrates both perspectives by allowing two-way interac-

tions between the land and the atmosphere. In these mod-

els, carbon from the atmosphere is accumulated into vegeta-

tion, which in turn feeds back energy, water and CO2 into the

atmosphere overhead (e.g. the C4MIP models HadCM3LC,

IPSL-CM4-LOOP, Bern-CC in Cox et al., 2013; Friedling-

stein et al., 2006).

Recent studies have analysed the underlying mechanisms

of land–atmosphere interactions and feedbacks using two-

way couplings between the land surface and the planetary

boundary layer (Santanello et al., 2013; Mcgrath-Spangler

and Denning, 2010; van Heerwaarden et al., 2009). Among

them, Vilà-Guerau de Arellano et al. (2012) have clearly

demonstrated the importance of how these interactions are

described. They showed that future conditions of CO2 level

rise and warming would influence the boundary-layer cloudi-

ness by affecting the plant stomatal aperture and vapour

pressure deficit (VPD), thus changing both evapotranspi-

ration and atmospheric humidity. Upper-atmosphere condi-

tions, which are connected to large-scale synoptic weather

patterns, were suggested to further affect the stomatal re-

sponse through their control of the daytime boundary-layer

growth and entrainment. Although the Vilà-Guerau de Arel-

lano et al. study only focused on the diurnal and local scale

with a relatively simple coupled model, the implications

for two-way coupled models operating on much larger and

longer scales were evident.

In this study, we continue this approach and analyse the

coupling between the heat, moisture and carbon cycles for

a maize field. We specifically focus on the diurnal scale,

like Vilà-Guerau de Arellano et al. (2012), paying partic-

ular attention to the simulation of carbon fluxes and espe-

cially photosynthesis, which have a cumulative impact on

crop growth and crop yield at the seasonal scale. We also ex-

plore the relative importance of upper-atmosphere conditions

like subsidence, compared to the role of surface forcings

like soil moisture, for the determination of CO2 mole frac-

tions. We choose to focus on crop–atmosphere interactions

because croplands occupy a fifth of the European Union land

surface (FAOSTAT 2011 land-use statistics), are important

for food production and yet are often not well represented

in land-surface models. In dynamic global vegetation mod-

els (DGVM) and soil–vegetation–atmosphere transfer mod-

els (SVAT models), they are conceptualised either as natural

(e.g. Sitch et al., 2003) or managed grass (e.g. Krinner et al.,

2005) and only distinguished by C3 or C4 plant photosynthe-

sis. Differences between species of crops in development are

often not simulated but rather are prescribed using seasonal

leaf area index (LAI). Also, nitrogen stress or the effect of

management options (fertilisation, irrigation, ploughing) are

often not implemented at all, although they have been shown

to have a large impact on crop carbon cycling (Ciais et al.,

2010; Lehuger et al., 2010; Gervois et al., 2008). In contrast

to DGVMs, process-based crop models could potentially bet-

ter represent these crop characteristics (Challinor et al., 2009;

Betts, 2005).

In order to investigate the differences between the

generic and specialised representation of crop biology,

we use a process-based crop yield forecast model,

the genotype-by-environment interaction on crop growth

simulator (GECROS; Yin and van Laar, 2005), and

a more meteorological-oriented, surface–atmosphere ex-

change model, A-gs (Ronda et al., 2001). We couple them to

the same atmospheric mixed-layer model (MXL) and com-

pare their ability to reproduce crop–atmosphere interactions.

Both models simulate the daytime carbon, water and heat

surface fluxes, with A-gs more focussed on representing the

individual surface energy balance terms. The additional lev-

els of complexity embedded in GECROS are the separation

of the effects of diffuse and direct radiation on photosynthe-

sis, the internal calculation of crop LAI, the allocation and

storage of carbon into crop organs (leading to crop yield) and

the interaction of the carbon and nitrogen cycles (nitrogen

stress). We assess both models using a very comprehensive

observational data set from a maize field in the Netherlands

(Jans et al., 2010) that includes atmospheric variables (tem-

perature, humidity, radiation), the surface fluxes of CO2, wa-

ter and (sensible and ground) heat, the soil temperature and

humidity and the seasonal crop development (crop height,

LAI, dry matter weight). We combine it with boundary-layer
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height data from a nearby meteorological station (Cabauw

experimental site for atmospheric research, online database

available at http://www.cesar-database.nl). It is important to

stress that these observations were conducted at the same

local scale as we simulate (field scale), which is smaller

than typically simulated in climate models (i.e. 50 km res-

olution at minimum). In order to bridge these different scales

(Eitzinger et al., 2008; Betts, 2005), we couple both our sur-

face models, GECROS and A-gs, to a model for the atmo-

spheric boundary layer (ABL). This framework enables us to

draw conclusions about the key boundary-layer–vegetation

interactions, and we use it to answer two research questions:

1. What are the essential processes at the surface and upper

atmosphere governing the coupled carbon, water and

energy budgets in the daytime crop–atmosphere sys-

tem?

2. Which modelling perspective can best reproduce these

essential processes, and what does it teach us about the

level of complexity needed in a daytime diurnal land-

surface scheme?

We hypothesise that:

1. In addition to surface processes, entrainment and subsi-

dence are essential processes which determine the car-

bon, water and energy budgets of the daytime crop–

atmosphere system.

2. MXL-GECROS can best reproduce the daytime crop–

atmosphere interactions because of the higher level of

crop biology detail embedded in the model.

The next section presents a description of our surface

and atmospheric models as well as of their coupling strat-

egy. We then present our findings with the full daytime in-

tercomparison of our two coupled models against observa-

tions and a sensitivity analysis of the two-way daytime crop–

atmosphere interactions.

2 Methods

2.1 Observations

In order to verify the behaviour of the cropland–atmosphere

system, we use a comprehensive set of surface exchange, at-

mosphere, soil and crop growth observations, which were

performed in 2007 and 2008 in a maize field located in Wa-

geningen, the Netherlands (see Jans et al., 2010). This data

set consists of half-hourly averages of the sensible and la-

tent heat fluxes and CO2 exchange, obtained with the eddy

covariance (EC) technique. They are quality-controlled ac-

cording to the protocols described in Aubinet et al. (2012).

These EC observations are supported by various continu-

ous micrometeorological measurements in the air and in the

soil. In addition to the continuous measurements, this data

Figure 1. Seasonal evolution of the (a) maize total dry matter

(TDM), (b) plant area index (PAI) and (c) crop height (CRH),

from sowing to maturity dates. The vertical continuous line repre-

sents 4 August 2007, the date at which we dynamically couple both

the MXL-GECROS and MXL-A-gs models (see the assessment of

these couplings in Sect. 3.1).

set includes soil type, crop management data and intermit-

tent observations of crop height, plant area index (PAI; i.e.

a proxy for LAI) and the dry weight of crop organs over

the growing season. To complete the atmospheric observa-

tions from Jans et al., we use the boundary-layer height

from the wind profiler measurements of the closest meteo-

rological station (Cabauw, the Netherlands) located approxi-

mately 50 kmwest from the maize site (Cabauw experimen-

tal site for atmospheric research, online database available at

http://www.cesar-database.nl). In the absence of boundary-

layer height data for Wageningen, this is the best estimation

possible.

Because we want to focus on the diurnal scale to study the

interactions and feedbacks of our maize–atmosphere system,

we specifically pick 1 day of observations, 4 August 2007:

a sunny, cloudless day with a convective atmospheric bound-

ary layer above the maize field. We pick that specific date

because our atmospheric boundary-layer model can only re-

produce well-mixed boundary layers and we want to avoid

sensitive periods of emergence and senescence times for the

crop. On 4 August 2007 our maize crop is in the reproductive

stage, at the peak of its growth (see PAI in Fig. 1).

On 4 August 2007, the continuous measurements show a

daytime energy gap of 19 % between the net absorbed radia-

tion and the sum of the surface (latent, sensible and ground)

heat fluxes. This energy gap is typical for a crop like maize,

mainly due to heat storage (Meyers and Hollinger, 2004).

The gap can also be partially generated by photosynthesis,

which can proceed at unusually large rates for maize, large-

scale heat transport processes and measurement accuracy
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(Foken et al., 2010; Foken, 2008). Since the two surface

schemes we use assume the closure of the surface energy

budget, we allocate the missing energy (or residual) into extra

sensible and latent heat in the observations, using the Bowen

ratio to determine the partitioning (see Eq. 1).

Fluxcorrected = Fluxobserved+Residual× f, (1)

with f =

{
β

1+β
for SH

1
1+β

for LE

This method ensures the observed Bowen ratio is conserved

after correction. It has been previously used by Barbaro et al.

(2014), Foken (2008), Twine et al. (2000) and Beljaars and

Bosveld (1997). For reference, we show in Fig. 3 both the

observed and corrected fluxes. Note that the corrected fluxes

are used in the further model comparisons.

2.2 Models

In order to study the daytime cropland–atmosphere system,

we couple two surface schemes, GECROS and A-gs, to

a convective atmospheric boundary-layer scheme, MXL, and

analyse their behaviour compared to our observations on 4

August 2007.

2.2.1 MXL, a convective atmospheric boundary-layer

scheme

Our atmospheric boundary-layer scheme is a box model,

which describes accurately the development of the day-

time atmospheric boundary layer when turbulence is strong

(mixed-layer situation). The first studies to develop the con-

cept of a mixed-layer model where done by Lilly (1968),

Betts (1973), Carson (1973) and Tennekes (1973). The ver-

sion used in this paper has been described by Vilá-Guerau de

Arellano et al. (2009). The ABL is well mixed during this

strongly convective daytime regime, and thus we infer that

the instantaneous atmospheric variables assume a single

value throughout the whole ABL. The top of the boundary

layer is characterized by potential temperature, moisture and

CO2 inversions, simplified as sudden “jumps” or gradients,

which sharply separate the ABL state from the free tropo-

spheric profiles. The evolution of the ABL state and height

over time is determined by boundary fluxes (surface, entrain-

ment and advection) of heat, moisture and CO2. Entrain-

ment fluxes are calculated. The MXL model has been widely

tested and is a robust model for sunny days with few to no

boundary-layer clouds – all conditions met on 4 August 2007

over our maize field.

2.2.2 GECROS, a crop yield forecast model

GECROS is a land-surface model specialised in crop carbon

storage (i.e. a crop yield forecast model). We use version 1.0,

which was released by Yin and van Laar (2005). GECROS is

from the two-big-leaf family of models initiated by De Pury

and Farquhar (1997), which means the crop canopy is simpli-

fied into two leaves, each possessing one substomatal cavity.

One leaf represents the entire sunlit leaf area of the canopy,

the other represents the entire shaded leaf area; their propor-

tions evolve with crop age and solar angle. The two big leaves

work in parallel for daytime photosynthetic and transpiration

processes. This enables different efficiencies of photosynthe-

sis to happen under diffuse and direct radiation.

On the diurnal scale, GECROS is a crop growth model

based on evaporative demand, which means that the potential

photosynthesis is first calculated according to the amount of

available photosynthetically active radiation, and then it de-

termines the leaf conductance and the potential transpiration.

The actual photosynthesis and transpiration are obtained by

evaluating the soil water content: if the available soil mois-

ture is higher than the amount of water needed for potential

transpiration, GECROS works at full potential. Otherwise,

GECROS transpires solely the available water supply and re-

duces its photosynthesis and stomatal conductance accord-

ingly. In addition to water stress, GECROS has a nitrogen

cycle implemented that interacts with the carbon cycle, ac-

counting for nitrogen stress. This last feature did not play

a role in our study of crop–atmosphere interactions on 4 Au-

gust 2007.

On the seasonal scale, GECROS simulates its own pheno-

logical development based on the accumulation of heat (i.e.

growing degree-days). Also, it accumulates carbon into the

different crop organs (leaves, stems, roots and storage or-

gans), which determines crop yield. Both of these features,

typical of a crop model but not of a DGVM or SVAT model,

allow interactions and feedbacks between the crop and the

atmosphere to change with crop ageing. This is a potential

advantage for a seasonal study of the cropland–atmosphere

system.

2.2.3 Modifications to GECROS used in this paper and

validation

We analysed the surface energy budget of GECROS and

identified two core problems in its original version: (a) the

budget of net long-wave radiation was faulty, generating too

much outgoing long-wave radiation and consequently too lit-

tle energy was retained at the surface; and (b) the calculated

VPD was too high because it used the humidity at 2 m instead

of inside-canopy humidity, stimulating too much latent heat

at the expense of sensible heat. In order for GECROS to have

realistic heat fluxes to feed to the MXL model, we imple-

mented the following changes to improve its surface energy

balance.
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Table 1. Seasonal statistics of the daily integrated Qnet, LE, SH and NEE from Fig. 2. Statistics are computed from sowing to maturity

dates. We present the observed and modelled means and standard deviations, the root mean squared error (RMSE) between the model and

the observations (in the same units as the mean) and the R2 between the model and the observations. Note that the large error on NEE is

partly due to the inability of the model to reproduce the LAI after DOY 240 (see Fig. 1).

Variable [units] Observed Modelled RMSE R2

mean stddev mean stddev

Qnet [MJm−2] 8.9 3.7 8.1 4.4 1.4 0.95

LE [MJm−2] 5.9 2.5 5.5 3.5 1.8 0.75

SH [MJm−2] 1.7 1.3 1.8 1.7 1.1 0.59

NEE [gCO2 m−2] −15.8 19.5 −19.1 28.8 16.0 0.74

First we replaced the original net long-wave radiation budget

with a simplified multilayer budget:

LWi =

EATMOS× σ × T
4

ATMOS︸ ︷︷ ︸
Incoming radiation

− Ei × σ × T 4
i︸ ︷︷ ︸

Outgoing radiation

×Fi,
(2)

with Fi =


fveg if sunlit leaf (i = 1)

0 if shaded leaf (i = 2)

1− fveg if bare soil (i = 3),

where EATMOS and Ei are emissivities, TATMOS and Ti are

temperatures, σ is the Stefan–Boltzmann constant and fveg

is the vegetation-cover fraction. We assume similar black-

body radiation (E1 = E2 = E3 = 1) originating from the sun-

lit leaf, shaded leaf and the underlying soil. As a conse-

quence, we approximate the net long-wave radiation budget

of the shaded leaf to be zero. Note that there is no interaction

of long-wave radiation between the bare soil and vegetated

fractions and thus no reabsorption of emitted long-wave ra-

diation. This approximation for shaded leaves in a multilayer

model is supported by Zhao and Qualls (2006).

Then, in order to decrease the allocation of energy into the

latent heat flux, we create a ground heat flux (it was assumed

negligible in the original GECROS version). We take a first-

order estimate and parameterize it to be 10 % of the net ab-

sorbed radiation at the surface (this assumption was validated

for short grass by de Bruin and Holtslag, 1982). Finally, we

implement a vapour pressure profile in the canopy layer to

enable a more realistic description of VPD. In our implemen-

tation, the vapour pressure (e) changes linearly from the top

to the bottom of the canopy and from the actual vapour pres-

sure at 2 m to the saturation vapour pressure at 2 m. The state

of saturation at the bottom of the canopy is adjusted for cases

of lighter vegetation cover. This allows the vapour pressure

at the bottom always to be larger or equal to e(2m).

e(z)= e(2m)+ (e0− e(2m))× drel, (3)

with e0 = e(2m)+ (eSAT(2m)− e(2m))× fveg.

We use the relative canopy depth drel = 0.5 for shaded leaves

and drel = 0.9 for the soil. Note that, in contrast to the canopy

profile for vapour pressure, we do not implement a canopy

profile for air temperature. We keep air temperature vertically

constant and equal to the 2 m air temperature. We refer to the

modified version of the GECROS model from here on.

In order to validate our modified version of GECROS, we

performed a standard simulation of the maize growth for our

location and year of interest (2007) and compared our re-

sults to observations. The initial conditions for this experi-

ment are presented in Table A3. In Fig. 1 we show three cu-

mulative variables evolving over the growing season: yield,

PAI and crop height. In Fig. 1a we find that the GECROS

model reproduces the observed maize yield at day 282 within

10 % (2 kgm−2 simulated vs. 1.8 kgm−2 observed), indicat-

ing a correct integration of the net primary production (NPP)

over the growing season. Moreover, Fig. 1b and c show that

GECROS also approaches the observed maximum PAI and

crop height, with a 3.5 m2 m−2 PAI and a 2.5 m height vs.

an observed 3.8 m2 m−2 PAI and 2.8 m height. This suggests

that NPP was also assigned to the correct GECROS carbon

pools (stems, leaves, roots) during crop development. This

satisfactory agreement for carbon storage was expected and

is reassuring since the GECROS model was built as a crop

yield model (Yin and van Laar, 2005).

In addition, we show in Fig. 2 the seasonal evolution of

surface available energy (Qnet), latent heat flux (LE), sensi-

ble heat flux (SH) and net CO2 exchange (i.e. net ecosystem

exchange; NEE) in daily integrated amounts. Their seasonal

means, presented in Table 1, are all in agreement with the

observations, except for a small overestimation of the mean

NEE. This overestimation could be due to a too-low soil res-

piration. Also, the R2 between the modelled and observed

daily integrated Qnet (0.95) is very high, and the R2 for the

daily integrated LE (0.75), SH (0.59) and NEE (0.74) are sat-

isfactory. The high degree to which GECROS reproduces the

variability from day to day results from the prescribed mete-

orological driver data in the seasonal simulation, which pro-

vides the model with observed radiation, atmospheric tem-

perature and precipitation data. Note that the mismatch be-

tween observations and GECROS on individual days can

nevertheless be quite large (cf. the RMSE compared to the

observed seasonal means and standard deviations in Table 1)

www.biogeosciences.net/12/103/2015/ Biogeosciences, 12, 103–123, 2015
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despite the improvements we made to its energy balance.

Such a mismatch could be produced by the incorrect sim-

ulation of key driver variables (e.g. Qnet and soil moisture)

in GECROS, by the absence of a diurnal-scale weather forc-

ing (only one data input is given per day) or even by the lack

of atmospheric feedback. This partly reinforces the aim of

our study, which is to focus on understanding the daytime

two-way crop–atmosphere interactions.

2.2.4 A-gs, a land-surface exchange model

The A-gs model is a generic meteorological-oriented land-

surface model, which was originally published by Jacobs

et al. (1996). Its use has been validated for grapevine (Ja-

cobs et al., 1996), C3 grass, C4 grass and soybean (Ronda

et al., 2001). It is a single-big-leaf model that relates plant

CO2 assimilation to the stomatal conductance (gs = 1/rs) via

a CO2 gradient (see Eq. 5). We use the version of Ronda

et al. (2001), where the impact of soil water depletion on gs

is calculated with a linear function from wilting point to field

capacity. In A-gs, the upscaled canopy conductance (gc) is

hence calculated as a function of light, temperature, stom-

ata to atmospheric CO2 concentration ratio, VPD, soil water

stress and LAI. In Eq. (5), soil respiration is computed with

an Arrhenius-type equation, using the concepts of reference

respiration R10 and of the activation energy for chemical re-

actions Ea. In addition to the CO2 fluxes, A-gs calculates

surface fluxes of latent and sensible heat with the same con-

ductance approach (see Eqs. 6–7). Finally, the ground heat

flux is calculated as the thermal diffusivity of the skin layer

times the temperature difference between the soil and skin

layers.

(w′c′)s︸ ︷︷ ︸
Net ecosystem

exchange

=

Net primary production︷ ︸︸ ︷(
1

ra+ 1.6 rs

)
︸ ︷︷ ︸
CO2 conductance

× (cstomata− catmos)︸ ︷︷ ︸
CO2 gradient

(4)

+Soil Respiration (5)

(w′q ′)s︸ ︷︷ ︸
Surface

moisture flux

=

(
fveg×

1

ra+ rs
+ (1− fveg)×

1

ra+ rsoil

)
︸ ︷︷ ︸

water conductance

× (qsat(Tskin)− qatmos)︸ ︷︷ ︸
moisture gradient

(6)

(w′θ ′)s︸ ︷︷ ︸
Surface
heat flux

=

(
1

ra

)
︸ ︷︷ ︸

heat conductance

× (Tskin− θatmos)︸ ︷︷ ︸
temperature gradient

(7)

A-gs adapts its surface fluxes according to the vegetation

cover and LAI but simulates neither its own crop phenolog-

ical development nor carbon accumulation into crop organs.

This set-up makes the A-gs model, in the present version,

suited for the simulation of surface exchange at the diurnal

scale only.

2.3 Simulation setup

With the three models presented before, we make two

couplings to study the daytime maize–atmosphere system:

MXL-A-gs and MXL-GECROS. We design them as two-way

couplings: the surface fluxes given by A-gs and GECROS are

used as surface conditions for the MXL model, and in return,

the incoming short-wave radiation, atmospheric temperature,

humidity, wind speed and CO2 mole fraction are fed to the

surface schemes as environmental conditions. The internal

calculations of MXL are done on a time step of 1 min. In ad-

dition, A-gs and GECROS feed the surface fluxes to MXL

with a frequency of 1 and 5 min respectively. Note that we

have checked and validated that the 4 min difference in com-

munication frequency does not affect the coupling. Finally,

all calculations start at 06:00 UTC, after sunrise when turbu-

lent convection is already active, and last until 18:00 UTC,

thus ensuring the atmosphere is well mixed during that time.

The main settings of our models are presented in Ta-

bles A1–A3. For MXL-GECROS, we first initialise the un-

coupled GECROS model with the maize parameters of Yin

and van Laar (2005) and Sinclair and de Wit (1975) (cf. Ta-

ble A3). The uncoupled GECROS model is run from emer-

gence date to 4 August 2007 in order to obtain all initial

conditions of its internal variables on the coupling date. On

4 August, we initialise all our coupled models following the

available soil, crop and atmospheric observations from Jans

et al. (2010). Note that we prescribe horizontal heat and

moisture advection during the first hours of our numerical

experiments to improve the match to observations during the

early-morning transition to convective conditions. In addi-

tion, we use the C4 photosynthesis parameters published by

Ronda et al. (2001) for the A-gs scheme.

The data set from Jans et al. (2010) provides the soil vol-

umetric water content on 4 August 2007, but in absence of

measurements of the soil wilting point and field capacity we

assume typical values for these quantities for our soil type.

In light of the uncertainty of the soil moisture measurements

and of these soil moisture characteristic points, we decide to

adjust the modelled soil volumetric water content to obtain a

Bowen ratio similar to the observed one. We perform this ad-

justment with the two models. The soil moisture index (SMI,

see Eq. 8) obtained with MXL-GECROS is very low, which

suggests a heavy drought situation that was not observed:

SMI=
Wactual−Wwilting point

Wfield capacity−Wwilting point

, (8)

with W the soil volumetric water content.

In consequence, we decide to apply the SMI obtained with

MXL-A-gs (55.5 %) in both cases. In the end, both models

operate with the same soil type and SMI (see Appendix Ta-

bles A2 and A3) but yield different Bowen ratios and surface

energy balances because of their difference in water-stress

implementation.
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Figure 2. Daily integrated (a) net radiation (Qnet), (b) latent heat

flux (LE), (c) sensible heat flux (SH) and (d) net ecosystem ex-

change (NEE) at the maize site, from sowing to maturity dates. The

integration is computed each day, using the average daytime flux

times the daytime number of seconds. Days with more than 20 %

measurement gaps are discarded. Errors are computed as a direct

sum of the eddy covariance random errors for instantaneous fluxes,

which are presented in Sect. 4.4 of Aubinet et al. (2012). The verti-

cal continuous line represents 4 August 2007, the date at which we

dynamically couple both the MXL-GECROS and MXL-A-gs mod-

els (see the assessment of these couplings in Sect. 3.1).

In the absence of observations for soil respiration on

4 August 2007, we adjust the MXL-A-gs soil respira-

tion to be identical to the internally calculated value from

MXL-GECROS (0.2 mgCO2 m−2 s−1 at 12:00 UTC). This

means that for NEE, the only difference between the two

models is in their representation of NPP. We execute this

by setting the reference respiration R10 of MXL-A-gs at

0.03 mgCO2 m−2 s−1, a low but realistic number when con-

sidering the natural range of variation of R10 in the Nether-

lands (cf. Jacobs et al., 2007). Also, the estimate of soil res-

piration is in the range of observed values at that period of

the year (Jans et al., 2010).

Finally, in order to obtain the same input of short-wave

radiation as in our observations (25.0 MJm−2) on 4 Au-

gust 2007, we prescribe a cloud cover of 22.5 % in our mod-

els to match the observed total incoming short-wave radia-

Table 2. Daytime integrals of Qnet, LE, SH and NEE from Fig. 3,

calculated from 08:00 to 18:00 UTC on 4 August 2007.

Qnet LE SH NEE

[MJm−2] [MJm−2] [MJm−2] [gCO2 m−2]

Observations 14.4 9.7 3.4 −52.0

MXL-A-gs 13.1 8.2 4.2 −41.4

MXL-GECROS 15.3 11.8 2.1 −65.0

tion (SWin) during daytime. This is because the observations

show a significant reduction of SWin compared to the out-

put of astronomic functions for a cloudless day, likely due to

haze or fog in the morning. With our two coupled models, we

make an intercomparison of their simulations against obser-

vations to study the ability of these couplings to reproduce

the cropland–atmosphere interactions.

2.4 Sensitivity analysis

Related to our first research question, we perform a sensitiv-

ity analysis of the daytime cropland–atmosphere system to

upper-atmosphere conditions (subsidence) in comparison to

surface conditions (soil moisture). We conduct this sensitiv-

ity analysis with the model that shows the best performance

on the diurnal scale (i.e. MXL-A-gs, see Results). We design

two study cases, stemming from the control case of 4 Au-

gust 2007 (Sect. 2.3), by selecting two drivers to modify sep-

arately: (a) the “high-subsidence” case, where we replace the

very small horizontal wind divergence (7× 10−6 s−1) of the

control case by a high one (4× 10−5 s−1), representing a re-

alistic case of strong subsidence in the Netherlands; and (b)

the “soil moisture depletion” case, where we apply a reduc-

tion of soil moisture (from 0.110 to 0.105 cm3 cm−3) equiv-

alent to a 5 % decrease of SMI for that soil type. A decrease

of 5 % SMI could happen over several days in a drying phase

(e.g. Daly et al., 2004; Betts, 2004). We analyse the impact

of these two external forcings on the daytime surface energy

balance and NEE, as well as the net effect on the atmospheric

CO2 mole fraction.

3 Results

3.1 Intercomparison of coupled models against

observations

3.1.1 Daytime evolution of the surface fluxes

Figure 3 presents three of the four components of the surface

energy balance, together with the net surface CO2 exchange,

for 4 August 2007. We identify three phases in the observed

surface fluxes daytime diurnal cycle. Phase A corresponds

to the early-morning transition from a stable to a convective

boundary layer. During Phase A, the SH flux switches from

negative to positive (see Fig. 3b), and this heat becomes the
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Figure 3. Daytime diurnal cycle of the (a) net radiation (Qnet), (b)

sensible heat flux (SH), (c) latent heat flux (LE) and (d) net ecosys-

tem exchange (NEE) on 4 August 2007. For comparison with the

models we corrected the observations to allocate the residual of the

surface energy balance into extra SH and LE (see Sect. 2.1). The

error bars represent the average eddy covariance random errors of

Aubinet et al. (2012, see Sect. 4.4). NEE is negative when CO2 is

being removed from the atmosphere. Differences in NEE between

the two couplings directly reflect differences in net plant photosyn-

thesis, as soil respiration is identical between the two models.

source of convection which works to break up the thermal

stratification built during night-time. Reproducing this ob-

served transition with our models is difficult: firstly because

advection of heat and moisture plays an important role in this

early-morning phase (see next section) and secondly because

dew on the vegetation possibly delayed the onset of a posi-

tive SH in observations. In addition, when SH is negative, the

corrected observed LE flux assumes unrealistically high val-

ues (see Fig. 3c) due to our correction method. For all these

reasons we will exclude the early-morning transition from

our model evaluation.

Phase B is the most important part of the day, when fluxes

are highest and convection is dominant. During Phase B,

MXL-GECROS strongly underestimates the Bowen ratio,

with an underestimated SH in accordance with its consis-

tently higher LE flux. As a consequence and due to the

coupling with evapotranspiration, photosynthesis is overes-

timated, as shown in NEE (considering that the soil respira-

tion is low and identical between MXL-GECROS and MXL-

A-gs). These strong fluxes contribute most to the daily inte-

grated amount, which impacts the atmospheric state. There-

fore it is very important to calculate correct surface fluxes

during Phase B, which MXL-A-gs does slightly better than

MXL-GECROS.

Finally, Phase C is the late-afternoon transition from a con-

vective to a stable boundary layer. During Phase C, the SH

flux changes from positive to negative, causing the convec-

tion to cease. Also, evapotranspiration and photosynthesis

decrease until fluxes become negligible. The late-afternoon

transition for SH occurs much earlier for MXL-GECROS

(15:00 UTC) than for MXL-A-gs (16:45 UTC) and the obser-

vations (17:15 UTC), which means the assumption of a con-

vective boundary layer, the basis of the MXL model, ends

earlier for MXL-GECROS than for MXL-A-gs.

Overall, Fig. 3 shows that both MXL-GECROS and MXL-

A-gs calculate reasonable magnitudes and temporal evolu-

tions of the surface fluxes for the observed maize crop, but

MXL-A-gs performs slightly better than MXL-GECROS.

We find in Fig. 3a that both models calculate different

amounts of Qnet. They benefit from the same amount of in-

coming short-wave radiation (25.0 MJm−2 integrated over

the day) but yield different radiation balances, since they

have differently parameterized functions for albedo and long-

wave radiation budgets of the leaves and soil. As a result,

a different amount of available energy will be partitioned into

sensible heat, latent heat and ground heat fluxes. Following

Qnet, in Fig. 3b–d we find that, integrated between 08:00 and

18:00 UTC, MXL-GECROS underestimates SH by a total

of 1.3 MJm−2 (38 %) and overestimates LE by 2.1 MJm−2

(22 %) and NEE by 13.0 gCO2 m−2 (25 %, see Table 2). On

the other hand, MXL-A-gs overestimates SH by a total of

0.8 MJm−2 (24 %), and underestimates LE by 1.5 MJm−2

(15 %) and NEE by 10.6 gCO2 m−2 (20 %). Considering the

three fluxes of heat, water and CO2, we find that MXL-A-

gs reproduces the observed daytime evolution of the surface

fluxes better than MXL-GECROS on 4 August 2007. It is im-

portant to remember that we prescribe the initial soil mois-

ture to match the observed Bowen ratio with MXL-A-gs,

which is why we arrive at this better fit for the surface energy

balance of this model. We prescribe the same SMI (55.5 %)

to both models, which have different water-stress responses

and are thus the lesser fit for MXL-GECROS. To see how

the differences in magnitudes and timing of heat, water and

carbon surface fluxes impact the atmospheric state, we assess

the atmospheric mixed layer next.

3.1.2 Daytime evolution of the ABL

Figure 4 shows that MXL-A-gs outperforms MXL-GECROS

when simulating a fully coupled atmosphere. When compar-

ing observations with the model results, note that we present

the modelled mixed-layer (or bulk) values against the 2 m

observations for temperature and specific humidity. Consid-

ering the general properties of the surface layer (a gradual

decrease of temperature and humidity from the surface level

to the mixed-layer level), the observed 2 m atmosphere is

thus expected to be slightly warmer and moister than the
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Figure 4. Daytime diurnal cycle of (a) the potential temperature θ ,

(b) the specific humidity q, (c) the CO2 mole fraction and (d) the

boundary-layer height h at the maize site on 4 August 2007. The er-

rors for the θ , q and CO2 measurements are obtained based on the

factory specifications of the instruments. The error for h is assumed

to be constant and equal to 50 m (personal communication, Henk

Klein Baltink). Note that, in order to reproduce the early-morning

temperature and humidity variations, we prescribed advection of

heat until 10:00 UTC and advection of humidity until 07:30 UTC

(see settings in Table A1).

modelled mixed-layer atmosphere. Also, because the nega-

tive SH depletes the layer of air close to the surface from

heat at the very end of the day, the observed 2 m temper-

ature is expected to decrease at that time. Keeping these

expected differences in mind, we find that the MXL-A-gs

model reproduces the observed temperature and moisture

values well, while MXL-GECROS calculates a clearly too-

high 18:00 UTC humidity (11.2 gkg−1) compared to the ob-

servations (9.8 gkg−1). Similarly, MXL-GECROS simulates

a too CO2-depleted atmosphere (−20 ppm) and a too-shallow

boundary layer (−250 m) compared to observations, where

MXL-A-gs performs relatively well.

When we relate the integrated heat, water and CO2 surface

fluxes of Table 2 to the atmosphere of Fig. 4, we observe,

as expected, that a lower integrated amount of SH in MXL-

GECROS compared to MXL-A-gs leads to a 2 ◦C lower max-

imum temperature (24 instead of 26 ◦C). Also, a higher inte-

grated LE in MXL-GECROS compared to MXL-A-gs results

in a 1.4 gkg−1 higher specific humidity at the end of the day

(11.1 instead of 9.7 gkg−1). Finally, a lower integrated NEE

in MXL-GECROS compared to MXL-A-gs leads to a 22 ppm

lower CO2 mole fraction (333 instead of 355 ppm). However,

when we compare the modelled and observed atmosphere we

find discrepancies. This is because surface fluxes do not di-

rectly translate into a daytime evolution of the atmospheric

temperature, humidity and CO2 mole fraction. For instance,

in Fig. 4c we find that the daytime overestimation of NEE

by MXL-GECROS leads to a too strongly CO2 depleted at-

mosphere compared to observations only in the afternoon.

Also, despite a daytime underestimated NEE, MXL-A-gs re-

produces satisfactorily the observed CO2 daily minimum on

4 August 2007. This shows that errors in the surface fluxes

can be cancelled by other non-local effects like the advection,

entrainment or boundary-layer dilution (e.g. see the role of

dry-air entrainment in van Heerwaarden et al., 2009, or CO2

advection in Casso-Torralba et al., 2008). A full analysis of

the daytime diurnal cycle of the atmosphere must thus in-

clude the contribution of these processes.

Advection fluxes can change the expected evolution of the

atmosphere. The occurrence of heat and moisture advection

on 4 August 2007 is noticeable because the observed daytime

range in temperature and the early-morning increase in hu-

midity are too large to be solely due to realistic crop-sensible

heat and evapotranspiration fluxes. We thus prescribed hor-

izontal heat and moisture advection during the first hours

of our numerical experiments (see Table A1). We estimate

the contribution of advection for the MXL-A-gs model to

the daytime temperature range (DTR, 13 ◦C) to be 3 ◦C and

the contribution to the early-morning specific humidity in-

crease (1.8 gkg−1) to be 1.2 gkg−1. The observed CO2 mole

fraction stabilisation and increase after 13:00 UTC is also

most probably generated by advection because an increase

in CO2 mole fraction could only be due to (a) a positive NEE

(which we do not have), (b) strong entrainment of CO2-rich

air (which is unlikely at the end of the day) or (c) CO2 advec-

tion. Despite this observation, we prescribed no advection of

CO2 in our model runs to more clearly demonstrate the role

of surface fluxes in the CO2 budget.

Finally, entrainment fluxes also alter the state of the

boundary layer. The boundary-layer height (h) of Fig. 4d can

serve as a proxy for measuring the amount of warmer, drier,

CO2-depleted air that is entrained from the free troposphere

into the boundary layer in cases where there is no or very lit-

tle subsidence (our case). In the end, we find in Fig. 4d that

both models calculate a maximum h that is lower (−150 m

for MXL-A-gs and −250 m for MXL-GECROS) than ob-

served (1400 m). Differences between the models are due to

differences in heat input from SH and the subsequent en-

trainment, since the heat advection, free tropospheric verti-

cal profiles and subsidence are identical between the mod-

els. However, in reality there must be discrepancies in all

of these variables to create the existing differences between

models and observations. Clearly, both boundary-layer dy-

namics and surface fluxes must be included in atmospheric

simulations to properly capture the contribution of the large-

scale air masses to the local atmospheric state. We will inves-

tigate the relevance of upper-atmosphere conditions in more

detail in the next section.
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Figure 5. Interactions between the carbon (green), water (blue) and

heat (red) cycles in the coupled land–ABL system. Increased sub-

sidence tends to reduce the boundary-layer height, which directly

causes the ABL to warm up, dry and become CO2-depleted. This

in turn affects the land-surface, which feeds back on the ABL by

shifting its Bowen ratio towards more evapotranspiration.

3.2 Sensitivity analysis of an upper-atmosphere forcing

We show in the previous sections that MXL-A-gs performs

best to reproduce the daytime diurnal crop–atmosphere cou-

pling on 4 August 2007. As a consequence, we use it to

conduct a sensitivity experiment. Our goal here is to quan-

tify the strength of the couplings between the upper atmo-

sphere, the boundary layer and the crop surface. From now

on, we refer to the MXL-A-gs run of the previous sections

as the control run, from which we derive our sensitivity anal-

ysis runs. We design two case studies: one where we apply

a stronger upper-atmosphere forcing (high subsidence) and

another where we alter a land-surface forcing (depletion of

soil moisture, see Sect. 2.4 for a detailed specification of the

settings). Both high subsidence and soil moisture depletion

are characteristic of a drought period. Figure 5 presents the

main interactions between carbon, water and energy that re-

sult in the state of the land–atmosphere. We use it to sum-

marise the changes linked to increased subsidence, discussed

in the next paragraphs.

While the high-subsidence case stimulates the latent heat

flux LE through the warming of the boundary layer (red ar-

rows in Fig. 5), the soil moisture depletion case decreases LE

through the closure of plant stomata. Subsidence is a large-

scale forcing that counteracts the growth of the boundary

layer and even reduces h once its growth has stopped (see the

high-subsidence case in Fig. 6a). It enhances the entrainment

of warm free tropospheric air and causes a smaller volume

of air to be warmed up by the same surface sensible heat

Figure 6. Boundary layer and surface response to high subsidence

and soil moisture depletion. High subsidence, an upper-atmosphere

forcing, directly impacts the boundary-layer height h and affects the

specific humidity q and the potential temperature θ . This contrasts

with soil moisture depletion, a surface forcing, which acts through

the stomatal conductance gs to impact the evapotranspiration and q.

flux, thus increasing the atmospheric temperature (+1.5 ◦C

at 18:00 UTC, see Fig. 6b). This warming of the atmosphere

increases the VPD at the surface (+0.2 kPa at 14:00 UTC,

not shown here) and shifts the evaporative fraction (EF=

LE/(SH+LE)) towards evapotranspiration by 5 % on aver-

age during the day (see Fig. 7a). Finally, this increase in LE

results in a moistening of the atmosphere that counteracts the

initial atmospheric drying caused by a short-term enhance-

ment of dry-air entrainment (not shown here). In Fig. 6c we

find that the specific humidity, which is first lower than in

the control run, becomes higher than in the control run after

14:00 UTC due to the stimulation of LE.

On the other hand, for the lower soil moisture case, the de-

creased availability of soil moisture generates a decrease in

surface conductance gs on average by 1 mms−1 during the

day (see Fig. 6d). This decrease in surface conductance leads

to a reduction of EF of 5 % throughout the day (see Fig. 7a)

and finally to a reduction of h of 40 m (see Fig. 6a). As a re-

sult, we find that both cases affect the energy partitioning at

the surface with equivalent magnitude. It is thus important to

consider both the effect of high subsidence and of soil mois-

ture depletion on evapotranspiration in the context of drought

response. Moreover, it is interesting to analyse how the net

surface carbon uptake is affected by them.

High subsidence and soil moisture depletion have differ-

ent impacts on the net CO2 flux at the surface. While the

high-subsidence case shows no difference in photosynthesis
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Figure 7. The response of surface exchange to high subsidence and

soil moisture depletion. High subsidence and soil moisture deple-

tion both shift the evaporative fraction (EF= LE/(SH+LE)) by

5 % on average, and both increase the intrinsic water use efficiency

(iWUE= NPP/gs) by 3 and 6 % respectively on average, as a result

of two different mechanisms (respectively an increase of VPD and

a stomata closure).

and respiration compared to the control case, the reduced

soil moisture case presents a reduction in photosynthesis

(−0.2 mgCO2 m−2 s−1 at midday in Fig. 9a). This is be-

cause while the reduced soil moisture case generates a clear

stomata closure in response to water stress (−1 mms−1 at

14:00 UTC in Fig. 6d), the high-subsidence case generates

only a slight change of stomata opening in response to the in-

creased VPD (−0.3 mms−1 at 14:00 UTC in Fig. 6d), which

is entirely compensated by a slight increase in the surface

CO2 gradient (+8 ppm at 14:00 UTC, not shown here). Thus,

as a result of two very different feedback mechanisms on net

photosynthesis and evapotranspiration (see previous para-

graph), we obtain an increase in intrinsic water-use efficiency

(iWUE= NPP / gs) of 11 and 18 µmolCO2 molH2O−1 for

the high-subsidence and soil moisture depletion cases re-

spectively compared to the control case (i.e. +3 and +6 %

on average, see Fig. 7b). This means both forcings make

plant carbon exchange, and by extension plant carbon stor-

age, slightly more water efficient. While a reduction in soil

moisture has an immediate impact on the daily crop yield

(integrated decrease of NPP of 1.2 gCm−2), high subsidence

does not. However, high subsidence worsens soil moisture

depletion (−1 % SMI) because it increases EF by 5 %, as we

described earlier. This suggests that subsidence could ulti-

mately contribute to a yield decrease if the drought situation

is prolonged. It is therefore interesting to extend our sensitiv-

ity analysis to a larger range of SMI and subsidence in order

to verify the response of the system.

We perform a more detailed sensitivity analysis of iWUE

and EF to soil moisture and subsidence, which is presented

in Fig. 8. We start our 10 201 experiments with identical ini-

tial conditions to the control case (point C in Fig. 8), except

that we vary both the initial SMI by 20 % (on x axis) and

Figure 8. Response of the 14:00 UTC iWUE (µmolCO2 molH2O
−1,

in colours) and EF (unitless, in contours) to seasonal variations of

SMI and the large-scale divergence (D). Scatter points represent

the control case (C), the dry (−5 % SMI) case (D) and the high-

subsidence case (H) of Figs. 6 and 7.

the large-scale divergence by 4× 10−5 s−1 (D, on y axis).

Note that the variable D is related to the subsidence veloc-

ity (ws) through the ABL height (ws =−D×h). Thus, the

full range ofD explored in Fig. 8 represents a subsidence ve-

locity of 0 to 0.04 ms−1, the maximum being typical of sta-

tionary high-pressure systems. By studying these ranges, we

cover small fluctuations of drivers around the control case as

well as conditions associated with drought (i.e. much dryer

soil with high subsidence). Figure 8 shows that EF and iWUE

are more dependent on changes in SMI than variations of D.

However, note that day-to-day changes in SMI do not exceed

2–3 %; thus the full range presented here corresponds to a

long-term drying of the soil, whereas the full range of D can

be explored short-term. Thus, on a diurnal scale, subsidence

is as important as soil moisture.

As discussed earlier, increasing subsidence (e.g. moving

from point C to point H) directly reduces the maximum ABL

height (from 1250 to 825 m) and thus causes the atmosphere

to become warmer and moister at the end of the day. In-

creasing soil moisture (e.g. moving from point D to point

C) stimulates evapotranspiration and carbon exchange and

generates a cooler, wetter atmosphere at the end of the day.

As the figure shows, a simultaneous change of SMI and D

(e.g. when we move from the lower-right corner to the upper-

left corner of Fig. 8) leads to a 3.5 K increase in the day-

time maximum atmospheric temperature and a 0.5 g kg−1 de-

crease in the daytime average atmospheric humidity. These

atmospheric conditions, together with the lower availabil-

ity of soil moisture (−20 % SMI), enhance the 14:00 UTC

iWUE by 130 µmolCO2
molH2O

−1 and reduce the 14:00 UTC
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Figure 9. Contributions of the surface and entrainment fluxes to

the atmospheric CO2 budget. Net photosynthesis (NPP) and soil

respiration (Resp) combine at the surface to form NEE, while the

entrainment of CO2 takes place at the top of the boundary layer.

All these fluxes are negative when CO2 is being removed from the

boundary layer. The CO2 tendencies, which determine the daytime

diurnal cycle of CO2, are obtained by dividing these CO2 fluxes by

the instantaneous boundary-layer height.

EF by 14.4 %. These results are in accordance with studies

that state droughts enhance the plant intrinsic water-use ef-

ficiency for carbon exchange (e.g. Maseyk et al., 2011) and

switch the partitioning of the surface energy balance towards

SH at the expense of LE (e.g. Jongen et al., 2011).

We find in Fig. 8 that the positive feedback of subsidence

on soil moisture depletion, discussed earlier, is slightly less-

ened under a prolonged drought. Figure 8 shows that when

we increase subsidence (i.e. when we move along the full

range of the y axis), the resulting change in EF is smaller

at SMI 0.40 (3.0 %) than at SMI 0.60 (4.5 %). This is a di-

rect consequence of having less soil moisture available for

evapotranspiration. The positive feedback of subsidence on

soil moisture is an extension of the feedback loops on evap-

otranspiration discussed by van Heerwaarden et al. (2010).

Our findings indicate that although the stimulation of EF by

subsidence is less important under drought, it still contributes

to a faster soil moisture depletion and decrease in crop yield

over the days. Moreover, from a carbon cycle perspective it

is interesting to analyse in more detail how the atmospheric

CO2 budget can be affected by surface and upper-atmosphere

modifications.

Figure 9 presents the daytime atmospheric CO2 budget. In

Fig. 9c we see that the boundary-layer CO2 tendency receives

equivalent contributions from the surface and from entrain-

ment, but their distribution in time differs. The contribution

of entrainment to the overall CO2 drawdown (−32 ppm in

the control case) happens in the morning, before 09:00 UTC

(i.e. 11:00 LT). On the other hand, the contribution of the

surface uptake to the overall CO2 drawdown (−34 ppm in

the control case) is more constant throughout the day. In the

high-subsidence case, even though the entrainment of CO2-

depleted air is lower (cf. Fig. 9b) and the NEE is unchanged

(cf. Fig. 9a), both the surface and entrainment CO2 tenden-

cies are higher due to the lower boundary-layer volume (see

Fig. 6a). This is because the tendencies are inversely propor-

tional to the boundary-layer height in the mixed-layer frame-

work, as shown by Pino et al. (2012). Consequently, the at-

mospheric CO2 mole fraction is even more reduced in the

high-subsidence case (−12 ppm at 18:00 UTC relative to the

control and soil moisture depletion cases; Fig. 9d). Because

the larger CO2 drawdown is caused solely by the reduction

in boundary-layer height in the high-subsidence case, it is

very important to consider the effect of increased subsidence

in high-pressure systems when interpreting measurements of

the boundary-layer CO2 mole fraction.

4 Discussion

4.1 On the importance of upper-atmosphere processes

In our study we compare two coupled models, MXL-A-gs

and MXL-GECROS, against a complete set of surface and

boundary-layer observations. Related to our first research

question, we hypothesise that entrainment and subsidence are

essential processes which contribute to the determination of

the carbon, water and energy budgets of the daytime crop–

atmosphere system. Our findings indeed confirm our hypoth-

esis: we show that entrainment and subsidence have a non-

negligible impact on the daytime surface fluxes (iWUE and

EF) as well as the atmospheric quantities (temperature, hu-

midity and CO2 mole fraction).

Previous studies have often put emphasis on surface pro-

cesses. They have shown the importance of calculating cor-

rect surface fluxes of heat, water and CO2, to improve numer-

ical weather predictions (e.g. Boussetta et al., 2013; Moreira

et al., 2013; Smallman et al., 2013; Hong et al., 2009), at-

mospheric CO2 modelling (e.g. Corbin et al., 2010; Schuh

et al., 2010; Tolk et al., 2009) and crop yield forecast (e.g.

de Wit and Van Diepen, 2007). Studies involving two-way

coupled models like ours (e.g. Santanello et al., 2013; Tao

et al., 2013; Chen and Xie, 2011 and Kohler et al., 2010)

have stressed the importance of slowly evolving surface forc-

ings such as soil moisture, vegetation cover and LAI, which

drive the surface exchange and strongly impact atmospheric

properties like boundary-layer height. Also, interpretations

of observed CO2 mole fractions in the ABL often focus on

the role of NEE, typically a large contributor to the atmo-

spheric CO2 budget (Tolk et al., 2009). While we agree that
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these surface processes and drivers are all key to the carbon,

water and energy budgets, we have shown that atmospheric

processes occurring at the top of the ABL also need to be

taken into account.

A few studies have explored the importance of the upper-

atmosphere processes in the vegetation–atmosphere system.

For instance, van Heerwaarden et al. (2009) and Ek and Holt-

slag (2004) have shown the impact of the ABL–top mois-

ture inversion and the tropospheric temperature lapse rate

on surface fluxes, relative humidity at the top of the ABL

and the boundary-layer cloud formation. With our sensitivity

analysis, we additionally emphasise the importance of an-

other large-scale atmospheric forcing, subsidence, which af-

fects surface fluxes and changes boundary-layer properties

like temperature, moisture and CO2 mole fraction.

Our results agree with Canut et al. (2012), Williams et al.

(2011), Mcgrath-Spangler and Denning (2010), van Heer-

waarden et al. (2009), Casso-Torralba et al. (2008) and Vilà-

Guerau De Arellano et al. (2004), who found ABL growth

and entrainment were key controls of the atmospheric CO2

budget at the diurnal scale. However, the observation-based

work of Williams et al. (2011) also showed that during longer

time periods than the typical 10-day synoptic scale, NEE and

large-scale atmospheric transport are the most important con-

tributions to the atmospheric CO2 mole fractions observed

in the ABL. Day-to-day variations of ABL growth rates and

associated entrainment were less important when interpret-

ing weekly to seasonally averaged CO2 budgets. Here, we

show that NEE is impacted by the daytime diurnal coupling

of the fluxes of water and heat at the top of the ABL to the

crops growing at the surface, possibly at time scales of weeks

and longer. This is because crops such as wheat and maize

have sensitive periods of less than 2 weeks (e.g. crop ger-

mination, anthesis/flowering, ripening) in which crop yield

can decline if heat or water stress is applied (Eitzinger et al.,

2013; Sánchez et al., 2014). Thus, using a diurnal scale cou-

pled framework to calculate the fluxes of heat, water dur-

ing those specific periods of crop development could be im-

portant even if the direct contribution of entrainment to the

CO2 budget becomes smaller at longer time scales. A fur-

ther investigation of the interactions identified in this work,

focusing on the synoptic and seasonal time scales described

in Williams et al. (2011), is therefore planned as a follow-up

study.

To conclude, we know that the daytime diurnal cycles of

heat, water and CO2 are joined in a coupled system: through

(a) the canopy stomatal control on CO2 exchange and tran-

spiration, which in turn determines the amount of sensible

heat flux in the surface energy balance; and through (b) the

large-scale conditions at the top of the boundary layer, which

control the daytime boundary-layer development and thus the

entrainment and volume dilution of heat, water and CO2. Our

findings show these surface and upper-atmosphere controls

are of equivalent importance on a diurnal scale for the at-

mospheric CO2 budget. We recommend using a fully cou-

pled land–atmosphere framework to study the daytime at-

mospheric CO2 budget, as we confirm that the land-induced

boundary-layer growth has an important impact due to both

volume dilution and CO2 entrainment.

4.2 On the performance of our models

Related to our second research question, we hypothesise that

the MXL-GECROS model can best reproduce the daytime

crop–atmosphere interactions because of the higher level of

crop biology detail embedded in the model. However, we

show that neither of our models is able to simultaneously

reproduce the daytime heat, water and CO2 surface fluxes.

MXL-A-gs simulates the crop interactions more satisfacto-

rily overall, but it underestimates NEE.

The performance of our two models strongly depends on

the sensitivity of the water-stress function to soil moisture.

While GECROS only reduces its conductivity, and hence

evaporation, close to wilting point, A-gs linearly decreases

stomatal conductance from field capacity to wilting point.

These are similar water-stress responses as for the CLM3.5

and JULES models shown in Powell et al. (2013). We have

confirmed that these differences in water-stress functions are

responsible for the overestimation of latent heat by MXL-

GECROS compared to MXL-A-gs. We conclude, in agree-

ment with Eitzinger et al. (2013) and Powell et al. (2013),

that these differences in water-stress implementation could

lead to significant differences in simulated crop yield. Stud-

ies like that of Verhoef and Egea (2014) can help to validate

the water-stress representations of surface models.

The satisfactory performance of our models also de-

pends on the correct initialization of key surface and upper-

atmosphere variables, as suggested by Sabater et al. (2008).

In our study, we lacked measurements of the soil moisture

characteristic points (wilting point, field capacity and satura-

tion point). Thus, we estimated them and allowed the MXL-

A-gs model to profit from the explicit initialization of soil

moisture using the observed Bowen ratio. This was our best

estimation possible. We advocate the use of complete sets of

observations, including not only soil, vegetation and lower

atmosphere but also boundary layer and free troposphere, to

evaluate the performance of coupled land–atmosphere mod-

els. These proved to be of utmost importance for the valida-

tion of the modelled interactions.

For the prospect of going from a diurnal to a seasonal

scale study, we regard data assimilation of soil moisture val-

ues, as done by e.g. Boussetta et al. (2013); Hong et al.

(2009) and de Wit and Van Diepen (2007), as a promising

solution. Data assimilation of LAI, as done by Huang et al.

(2013), Zhao et al. (2013), Sus et al. (2010) and Jégo et al.

(2012), could also help transform our daytime diurnal land-

surface scheme A-gs into a capable seasonal surface scheme,

as previously done within ISBA-A-gs (Barbu et al., 2011).

Albergel et al. (2010) and Ines et al. (2013) suggest joint as-

similation of LAI and soil moisture yields the best results.
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As an alternative, the MXL-A-gs model could also benefit

from a satisfactory crop phenology module to interactively

calculate LAI, like GECROS, as a replacement for LAI data

assimilation (e.g. Lokupitiya et al., 2009).

To conclude, we recommend using meteorological-

oriented (surface exchange) models, such as MXL-A-gs, for

simulations of the daytime crop–atmosphere interactions, as

long as the crop is not nitrogen-stressed. However, to simu-

late longer periods of crop–atmosphere interactions, we rec-

ommend adopting a merging strategy to use the distinct ad-

vantages of both the generic meteorological-oriented land-

surface models (sound surface energy balance) and the spe-

cialised crop carbon storage-oriented models (crop phenol-

ogy, nitrogen stress implementation and prognostic carbon

pools). The performance of such models is linked to their

correct initialization, which can only be achieved thanks to

complete observational data sets. It is also linked to their crop

water-stress representation, which conditions the surface en-

ergy balance and carbon exchange under shortages of soil

moisture.

5 Conclusions

In this work, we use a process-based coupled framework to

investigate the daytime interactions of CO2, water and heat

in the crop–atmosphere system. Our framework strength lies

in the relative simplicity of the model that still represents the

essential processes of the system. For example, the sensitiv-

ity analysis of Fig. 8 and the CO2 budget of Fig. 9 could

not easily have been produced using a full meso-scale land–

atmosphere model. Using it, we are able to study the relevant

interactions of the ABL with the surface and to allow a direct

comparison to observed ABL and surface variables. Our re-

sults show that upper-atmosphere processes and drivers (en-

trainment and subsidence) are as important as surface pro-

cesses and drivers (surface fluxes, soil moisture, LAI) to de-

termine the daytime budgets of heat, water and carbon of the

crop–atmosphere system. Therefore, ABL dynamics need to

be considered when interpreting observations of atmospheric

CO2 mole fractions over crops. Using correct estimates of

the large-scale forcings are also of key importance. Our mod-

elling framework and its modular design describe these dy-

namics and allows an extension to other processes, such as

the impact of aerosols (Barbaro et al., 2014), clouds (Vilà-

Guerau de Arellano et al., 2012) or ozone on the budgets of

carbon, water and heat. Although we have demonstrated that

the daytime diurnal scale interactions are well described by

a meteorology-oriented coupled model like MXL-A-gs, the

development of the crop and soil hydraulics at the seasonal

scale are likely to be important given the nonlinear response

of the coupled system across a wide range of large-scale forc-

ings, as shown in this paper.
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Appendix A

Table A1. MXL model initial conditions for 4 August 2007.

Variable Description and unit Value

latt latitude [◦ N] 51.59

long longitude [◦ E] 5.38

day date [DOY] 216

cc cloud cover [–] 0.225

h0 initial boundary-layer height [m] 230.0

pressure atmospheric pressure [hPa] 1022.0

D large-scale divergence [s−1] 7× 10−6

β entrainment ratio [–] 0.2

θ0 initial potential temperature [K] 286.0

1θ0 initial potential temperature jump [K] 5.0

γθ potential temperature lapse rate [Km−1] 8× 10−3

advθ initial heat advection flux [Ks−1] 3× 10−4

advθ tim time of heat advection stop [UTC] 10:00

q0 initial specific humidity [gkg−1] 8.5

1q0 initial specific humidity jump [gkg−1] −1.0

γq specific humidity lapse rate [gkg−1 m−1] −0.0005

advq initial humidity advection flux [gkg−1 s−1] 3.5× 10−4

advqtim time of humidity advection stop [UTC] 07:30

c0 initial CO2 mole fraction [ppm] 422.0

1c0 initial CO2 mole fraction jump [ppm] −50.0

γc CO2 mole fraction lapse rate [ppb m−1] −10.0

u0 initial mixed-layer u-wind speed [ms−1] 5.0

ug geostrophic u-wind speed [ms−1] 8. 0

γu free troposphere u-wind speed lapse rate [s−1] 0.0

z0,m roughness length for momentum [m] 0.15

z0,h roughness length for scalars [m] 0.015
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Table A2. A-gs model initial conditions for 4 August 2007.

Variable Description and unit Value

albedo surface albedo [–] 0.198

LAI leaf area index [m2 m−2] 3.5

fveg vegetation fraction [–] 0.97

rs, min minimum resistance for transpiration [sm−1] 180.0

rs, soil min minimum soil resistance [sm−1] 50.0

3 thermal diffusivity skin layer [Wm−2 K−1] 2.5

gD VPD correction factor for rs [–] 0.

CGsat saturated heat soil conductivity [K m−2 J−1] 3.56× 10−6

Cw constant water stress correction [–] 0.0016

Ts initial surface temperature [K] 290.0

Tsoil temperature of top soil layer [K] 288.0

T2 temperature of deeper soil layer [K] 289.0

wg water content top soil layer [cm3 cm−3] 0.11

w2 water content deep soil layer [cm3 cm−3] 0.11

wsat saturation water content [cm3 cm−3] 0.36

wfc field capacity water content [cm3 cm−3] 0.15

wwilt wilting point water content [cm3 cm−3] 0.06

ws,max upper reference value soil water [–] 0.55

ws,min lower reference value soil water [–] 0.005

C1,sat coefficient force term moisture [–] 0.132

C2,ref coefficient restore term moisture [–] 1.8

a Clapp and Hornberger retention curve parameter a [–] 0.219

b Clapp and Hornberger retention curve parameter b [–] 4.9

p Clapp and Hornberger retention curve parameter c [–] 4.

0 (298 K) CO2 compensation concentration at 298 K [mgm−3] 4.3

Q10 0 percentage of increase in 0 (298 K) with +10 K [–] 1.5

gm (298 K) mesophyll conductance at 298 K [mms−1] 17.5

Q10gm percentage of increase in gm with +10 K [–] 2.0

T1gm reference temperature T1 for gm [K] 286.0

T2gm reference temperature T2 for gm [K] 309.0

Am,max (298 K) CO2 maximal primary productivity at 298 K [mgm−2 s−1] 1.7

Q10 Am percentage of increase in Am,max with +10 K [–] 2.0

T1 Am reference temperature T1 for Am,max [K] 286.0

T2 Am reference temperature T2 for Am,max [K] 311.0

f0 maximum value Cfrac [–] 0.85

ad regression coefficient for Cfrac [kPa−1] 0.15

α0 initial low light conditions [mgJ−1] 0.014

Kx extinction coefficient for PAR [–] 0.7

gmin cuticular minimum conductance [ms−1] 2.5× 10−4

R10 respiration at 10 ◦C [mgCO2 m−2 s−1] 0.03

Eact0 activation energy [kJkmol−1] 5.33× 104
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Table A3. GECROS model initial conditions for 4 August 2007. See Yin and van Laar (2005) and Sinclair and de Wit (1975) for the rest of

the maize average genotype parameters.

Variable Description and unit Value

SLP short day crop yes

DETER determinate crop yes

C3C4 C4 crop yes

LODGE lodging allowed no

LEGUME legume crop no

NPL plant density [plant m−2] 9.1

EG efficiency of germination [%] 3.6783

HTMX maximum plant height [m] 2.8

BLD leaf angle [deg] 50.

SEEDW seed weight [g] 0.5

MTDV minimal thermal days for vegetative phase [d] 41.0

MTDR minimal thermal days for reproductive phase [d] 15.7

PSEN photoperiod sensitivity of phenological development [h−1] 0.

TM development stage when transition from CB to CX is fastest [–] 1.5

CX factor for initial N concentration of seed fill [–] 1.

CB factor for final N concentration of seed fill [–] 1.

PNLS fraction of dead leaf N incorporated into soil litter [–] 1.

CLAY percentage of clay in the soil [%] 7.

WCMAX soil water content at maximum holding capacity [m3 m−3] 0.36

WCFC soil water content at field capacity [m3 m−3] 0.15

WCMIN minimum soil water content [m3 m−3] 0.06

RPMR0 decomposition rate for resistant plant material [yr−1] 0.3

DPMR0 decomposition rate for decomposable plant material [yr−1] 10.

HUMR decomposition rate for humidified organic matter [yr−1] 0.02

BIOR decomposition rate for microbial in the soil [yr−1] 0.66

DRPM ratio DPM / RPM of added plant material [–] 1.44

RA residual ammonium-N in the soil [g N m−2] 1.

FBIOC fraction of initial microbial biomass in the soil 0.03

in the initial total soil organic carbon (TOC) [–]

BHC initial soil microbial biomass + humified soil organic 3500.

matter [gCm−2]

TOC total organic C in the soil [gCm−2] 7193.

RN residual nitrate-N in the soil [gNm−2] 1.

MULTF multiplication factor for initial soil water status [–] 1.

TCT time constant for soil temperature dynamics [d] 4.

RSS soil resistance for water vapour transfer, equivalent 80.

to leaf stomatal resistance [sm−1]

SD1 thickness of upper evaporative soil layer [cm] 5.

TCP time constant for some soil dynamic processes [d] 1.

FNA1 ammonium-N added in the 1st fertiliser application [gNm−2 d−1] 10.

FNA1T day number at which the 1st ammonium-N dose is applied [DOY] 1.
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