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Abstract. Ecological models are effective tools for simu-

lating the distribution of global carbon sources and sinks.

However, these models often suffer from substantial biases

due to inaccurate simulations of complex ecological pro-

cesses. We introduce a set of scaling factors (parameters)

to an ecological model on the basis of plant functional type

(PFT) and latitudes. A global carbon assimilation system

(GCAS-DOM) is developed by employing a dual optimiza-

tion method (DOM) to invert the time-dependent ecological

model parameter state and the net carbon flux state simulta-

neously. We use GCAS-DOM to estimate the global distri-

bution of the CO2 flux on 1◦× 1◦ grid cells for the period

from 2001 to 2007. Results show that land and ocean ab-

sorb −3.63±0.50 and −1.82±0.16 Pg C yr−1, respectively.

North America, Europe and China contribute −0.98± 0.15,

−0.42± 0.08 and −0.20± 0.29 Pg C yr−1, respectively. The

uncertainties in the flux after optimization by GCAS-DOM

have been remarkably reduced by more than 60 %. Through

parameter optimization, GCAS-DOM can provide improved

estimates of the carbon flux for each PFT. Coniferous for-

est (−0.97± 0.27 Pg C yr−1) is the largest contributor to the

global carbon sink. Fluxes of once-dominant deciduous for-

est generated by the Boreal Ecosystems Productivity Simula-

tor (BEPS) are reduced to −0.78± 0.23 Pg C yr−1, the third

largest carbon sink.

1 Introduction

The spatiotemporal distribution of carbon sources and sinks

has drawn much attention in global carbon cycle research as

carbon dioxide is a major greenhouse gas. Techniques used

to quantify the spatial pattern of carbon fluxes have evolved

during the past decades, among which atmospheric inversion

(see, e.g., Enting and Mansbridge, 1989; Law, 1999; Gurney

et al., 2002; Rödenbeck et al., 2003; Deng et al., 2007; Deng

and Chen, 2011; Jiang et al., 2013; Peylin et al., 2013) is one

of the most commonly used techniques.

Atmospheric inversion uses CO2 observations to infer the

distribution of the carbon flux from global (Patra et al., 2005;

Rödenbeck, 2005; Rayner et al., 2008; Maki et al., 2010) to

regional scales (Gerbig et al., 2003; Peylin et al., 2005; Peters

et al., 2007; Schuh et al., 2010). It involves an atmospheric

transport model to link the measured CO2 concentration in

the atmosphere to the surface CO2 flux. However, the mea-

surements from sparsely located observational sites are not

sufficient for estimating global carbon sources and sinks in

fine grids. Enting (1995, 2002) suggested using a prior flux

to regularize the inverted flux based on the Bayesian theory,

which is referred to as Bayesian synthesis inversion method

(BSIM). The solution of BSIM usually corresponds to the

minimum of a quadratic cost function in the least square

sense under the assumption of Gaussian probability distri-

bution functions (PDFs).

In BSIM, prior information is normally precalculated from

an ecological model, e.g., the Carnegie–Ames–Stanford ap-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1132 H. Zheng et al.: A global carbon assimilation system based on a dual optimization method

proach (CASA) biosphere model (Gurney et al., 2003, 2004;

Baker et al., 2006), the Simple Biosphere model (SiB, Sellers

et al., 1986) and the Boreal Ecosystems Productivity Simula-

tor (BEPS) model (Deng et al., 2007; Deng and Chen, 2011).

These process-based models are constructed to estimate car-

bon sources and sinks based on the mechanisms of photo-

synthesis, autotrophic respiration, organic matter decompo-

sition and nutrient cycling. However, their estimates of car-

bon sources and sinks at regional scales often have substan-

tial biases, and the purpose of atmospheric inversion is to

reduce these biases using the additional information of atmo-

spheric CO2 concentration. Atmospheric inversion methods

differ considerably in the inverted carbon flux distribution

among large regions of the globe (Peylin et al., 2013), and

therefore improvements are still needed in prior flux estima-

tion and in optimization using atmospheric CO2 data.

In consideration of the possible biases in the prior flux

produced by an ecological model, Michalak et al. (2004)

used “the model of the mean of the surface flux distribution”

with unknown drift coefficients to substitute the prior flux

in the BSIM. This geostatistical approach took into account

the spatiotemporal correlation of the surface fluxes and hence

can recover flux variations on a significantly smaller scale

than typical Bayesian inversions. Different from Michalak

et al. (2004), the studies of Peters et al. (2007, 2010), Zu-

panski et al. (2007), Lokupitiya et al. (2008) and Schuh et al.

(2010) introduced scaling factors to the prior flux from eco-

logical models (e.g., SiB and CASA) to correct the biases.

In these methods, a forecast model for the scaling factors

is combined with an atmospheric transport model to real-

ize the flux evolution over time. The choice of the fore-

cast model is usually empirical. Most researchers defined

an identity operator as the forecast model for the biases

(Zupanski et al., 2007; Lokupitiya et al., 2008), while Pe-

ters et al. (2007, 2010) considered a more complex fore-

cast model which combines the information of biases in two

steps before the current time step. An ensemble Kalman fil-

ter (Evensen, 2007) is often used for estimating the unknown

scaling factors and the posterior flux is the prior flux scaled

by the estimated scaling factors. This ensemble-based as-

similation method takes a relatively long time to warm up

the system to reach a stable estimation of these scaling fac-

tors, and the filtering divergence (see, e.g., Houtekamer and

Mitchell, 1998) that retards the converge of the estimate to-

wards observations is still a problem.

Zheng et al. (2014) proposed a dual optimization method

(DOM) to estimate both the scaling factors (hereinafter

known as parameters) of an ecological model and gridded

carbon fluxes. DOM introduces a scaled ecological model

designed by plant functional types (PFTs), and uses CO2

observations to invert the unknown states of the parameters

and net flux simultaneously. This is different from Michalak

et al. (2004), which does not need to give prior estimates and

hence does not rely on the information of ecological models

at all. Moreover, DOM is an objective method which depends

just on the information of concentration observations and the

structure of the ecological model, but no forecast model is

needed. The estimation precision of fluxes can be greatly im-

proved by dual optimization, and the statistical properties of

parameters and fluxes also provide useful information about

the inversion accuracy.

As DOM inverts the flux for all regions and all times si-

multaneously using all observations at the same time, it re-

quires substantial computational resources. Therefore, it is

inconceivable to use DOM to estimate the global distribu-

tion of the carbon flux at high spatial and temporal reso-

lutions. In this study, a moving-window method similar to

that of Bruhwiler et al. (2005) is developed. Different from

a batch model which uses all observations to invert fluxes

for all source regions at all times simultaneously, Bruhwiler

et al. (2005) adopted a temporal moving window and used the

CO2 concentration observations at the current time (the end

of the window) to estimate carbon fluxes in the entire win-

dow. Considering that more observations will provide more

information, we propose to use the observations in the entire

time window to estimate the fluxes in this window instead of

using only the observations at the current time.

Due to the difference in seasonal and meteorological con-

ditions at different latitudes, we redesign the scaling factors

by dividing the globe into several latitudinal zones. Each

zone shares a set of scaling factors. The number of param-

eters assigned to each grid equals the number of PFTs in the

grid so that one parameter is associated with one PFT. This

is different from CarbonTracker (Peters et al., 2007, 2010)

in which each grid is assigned to one category based on the

dominant vegetation type. On the basis of the above settings,

we build a global carbon assimilation system (GCAS-DOM)

by combining DOM with an atmospheric transport model

(MOZART-4). The forecast of the assimilation system is em-

bodied in updating the background concentration field. At

each step, the background CO2 concentration is updated by

running MOZART-4 forced forward with the optimized flux

at the last step. Finally we use the GCAS-DOM to estimate

the worldwide weekly flux in 1◦×1◦ grid cells for a relatively

long period of 7 years. Results show its accuracy in flux esti-

mation and significant effect in uncertainty reduction.

The objectives of this study are (1) to develop a global car-

bon assimilation system using DOM, i.e., GCAS-DOM, for

the purpose of improving the estimation of the global distri-

bution of the carbon flux, (2) to produce with GCAS-DOM

a global carbon flux field on 1◦× 1◦ grid cells from 2001 to

2007 and analyze the flux in terms of its long-term mean and

interannual variations for the globe and selected large regions

and (3) to investigate the impacts of atmospheric CO2 data on

the estimation of the carbon flux per PFT for the evaluation of

ecosystem models. This paper is organized as follows. Sec-

tion 2 consists of detailed descriptions on each component

of the GCAS-DOM. It begins with the introduction of state

variables in Sect. 2.1. Then in Sect. 2.2, we will show the

procedure of building the GCAS-DOM by using a moving-

Biogeosciences, 12, 1131–1150, 2015 www.biogeosciences.net/12/1131/2015/



H. Zheng et al.: A global carbon assimilation system based on a dual optimization method 1133

window method. Section 2.3 presents the estimation method

of state variables in a window. The calculation of the un-

certainties is given in Sect. 2.4. In Sect. 3, we undertake a

process for estimating the global flux in 1◦× 1◦ grid cells

starting with a detailed introduction to models and data use

in GCAS-DOM, followed by estimated quantities and their

uncertainties. Finally, we summarize our results and discuss

future directions of our work in Sect. 4.

2 Methodology

GCAS-DOM consists of three major components: an eco-

logical model and an atmospheric transport model, a moving

window and the optimization module. The ecological model

provides the first guess of the flux before data assimilation.

The atmospheric transport model links the flux to the CO2

mixing concentration ratio. Considering the computational

feasibility, we use a temporal moving window in which the

flux is optimized using the optimization algorithm DOM.

2.1 State variables

The ecosystem model is formed to simulate the variations of

carbon sources and sinks based on the mechanism of carbon

cycling. As improperly simulated ecological processes could

result in biases in the flux, we consider a scaled ecosystem

model similar to that of Lokupitiya et al. (2008). But dif-

ferent from Lokupitiya et al. (2008), which adjusts ecosys-

tem respiration (ER) and gross primary productivity (GPP)

using separate scaling factors, only the net ecosystem ex-

change (NEE) defined as the difference between ER and GPP

is scaled. This is because both ER and GPP are much larger

than the net ecosystem production (NEP) fluxes by approx-

imately 1 order of magnitude; adjusting their separate influ-

ence could lead to spurious variations. Moreover, the strong

correlation between ER and GPP could result in poor perfor-

mance in stability. Hence the parametric model can be repre-

sented as

s(x,y)= λNEE(x,y)sNEE(x,y)+ λOCE(x,y)sOCE (x,y)

+ sFF(x,y)+ sFIRE(x,y)+ ε(x,y), (1)

where x and y denote the spatial coordinates; s is the un-

known flux aimed to estimate; sOCE is the first-guess ocean

flux computed from an ocean exchange model; sNEE is

the first-guess biospheric flux estimated from a terrestrial

ecosystem model; sFF and sFIRE are fossil fuel and fire fluxes

estimated from inventory-based emissions; λNEE and λOCE

are scaling factors applied to the land surface flux and the

ocean flux, respectively; and ε is the model error. To simplify

this expression, we use its vector form,

s = λNEE · sNEE+λOCE · sOCE+ sFF+ sFIRE+ ε, (2)

where all the variables are n× 1 vectors and n denotes the

number of the grid cells over the globe; the “·” (dot prod-

uct) represents the element-by-element multiplication of two

vectors with the same dimension unless one is a scalar; and ε

is the model error with zero mean and covariance matrix Q.

Here, the parameter vectors (λNEE,λOCE) and s are treated

as state variables and called parameter states and flux states,

respectively.

Zheng et al. (2014) suggested specifying the structure of

parameters according to PFT to avoid over-adjustment or ex-

cessive computation. In consideration of the fact that (1) the

seasonal variation in climate in the North Pole is opposite

that in the South Pole and (2) the tropical rainforest has high

temperature all year around, it is not effective to specify pa-

rameter states just according to PFT. In this study, we di-

vide the globe into q zones according to latitude and assume

that the vegetation distribution is mapped onto p PFTs. Thus

a grid box can contain up to p+ 1 different types (p PFTs

and one oceanic type) quantified with an areal fraction for

each PFT in the grid.

We decompose the flux in each grid box into p+1 compo-

nents with each denoting the flux generated from one PFT. To

facilitate the expression, we use sm,j for the gridded flux in

the j th latitude zone computed from land and oceanic mod-

els, and it is denoted as follows:

sm,j =
(
s
j

OCE s
j

NEE,1 s
j

NEE,2 · · · s
j
NEE,p

)
, (3)

j = 1,2, . . .,q,

where s
j

OCE is a vector for the oceanic component and s
j
NEE,i

is a vector for the terrestrial component for the ith PFT. Grid-

ded fluxes at the same latitude zone share the same set of pa-

rameters and thus the corresponding parameter for the sm,j

is

λj =
(
λ
j

OCE λ
j

NEE,1 λ
j

NEE,2 · · · λ
j
NEE,p

)T

,

where each element is a scalar used to scale the correspond-

ing column vector of sm,j .

Then model Eq. (2) can be rewritten as

s =


sm,1

sm,2

. . .
sm,q



λ1

λ2

...
λq

+ sFF+ sFIRE+ ε

, smλ+ sFF+ sFIRE+ ε,

(4)

where sm, referred to the prior flux, is the reshaped form of

the flux computed from the ecosystem model in the order of

latitude; λ=
(
λ1T

λ2T
· · · λqT

)T

is a set of scaling

factors with (p+ 1)q unknown components; ε is the model

error with zero mean and covariance matrix Q. In Eq. (4), as

sFF and sFire are imposed without optimization, their contri-

butions to concentration can be subtracted from the observa-

tion concentrations directly. Then model Eq. (4) can be writ-

ten in a simplified expression:

s = smλ+ ε. (5)
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Figure 1. Illustration of three cycles in GCAS-DOM in which a state vector composes of the flux at l steps.

2.2 Time-stepping

In the application of GCAS-DOM, one of the major diffi-

culties in estimating the carbon flux is the computational

cost at high resolution. For the estimation of weekly fluxes

on 1◦× 1◦ gird cells, the dimension n in Eq. (2) will be

64 800 (180× 360) for each week. That is about 3 130 400

(64 800× 48) unknowns per year, and the relevant cost of

matrix operations will be at least 3 130 4002 which is an im-

mense computational burden. To overcome this difficulty, we

adopt a method similar to that of Bruhwiler et al. (2005).

At each time t , we use the observations of CO2 concen-

tration and the carbon flux in the time window between t

and t + l− 1, where l is window length which could be in

days, weeks or months. This is different from Bruhwiler et al.

(2005), where only the observations at time t+l−1 are used.

We therefore have a (t, l)-window, which uses the CO2 con-

centration observations {ct+k,0≤ k ≤ l− 1} and the carbon

flux {st+k,0≤ k ≤ l−1} at each time point t , where the col-

umn vector ct+k represents the observed CO2 mixing ratios

of a given site at t + k, and the column vector st+k is the

global carbon flux in the time period from t + k− 1 to t + k.

The time-stepping in the assimilation scheme is illustrated

in Fig. 1. The light shaded boxes represent the prior flux

at each step computed by the ecosystem model. The dark

shaded boxes stand for the optimized flux. We now describe

one cycle of GCAS-DOM. The first step is to use the back-

ground CO2 concentrationC(t−1) as the initial value, which

is a 3-D matrix for the spatial distribution of CO2 concen-

trations at each latitude, longitude and elevation. Then we

run l steps of the transport model forward starting from

C(t − 1) to get the spatial distribution of CO2 concentra-

tion in the (t, l)-window. We keep the spatial carbon con-

centration patterns at all times in this window, which gives

{C(t), . . .,C(t + l− 1)}, and extract CO2 mixing ratios at

observation sites as {cbt , . . .,c
b
t+l−1}. The second step is to

estimate the optimized parameters {λ̂t+k,0≤ k ≤ l− 1} and

fluxes {ŝt+k,0≤ k ≤ l− 1} using the resulting mixing ratios

at sites {cbt , . . .,c
b
t+l−1}, the observations of CO2 concentra-

tions in the window {ct , . . .,ct+l−1}, and the prior flux in the

window {smt+k,0≤ k ≤ l− 1}. The estimation method is in-

troduced in the next section. The optimized parameter λ̂t and

flux ŝt do not need to be estimated in the next cycle and are

therefore used as estimates of the parameter and flux at time

t . In the third step, we run the transport model one step for-

ward starting from C(t−1) forced with the optimized flux ŝt
to get the updated spatial distribution of concentration C′(t).

Then we use observed CO2 concentration to assimilate the

C′(t) instead of directly using it as the background concen-

tration at time t for the next cycle in previous studies. We

extract updated CO2 concentration at locations of CO2 ob-
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servation sites from the C′(t) and compare it to the observed

concentration ct at time t . A constant adjustment, which

is computed from the site-averaged difference between the

above two vectors, is imposed on C′(t) to get an optimized

spatial pattern C(t) at time t .1 In the fourth step, we move

the window one step forward so a new flux smt+l and a new

concentration observation ct+l are read in to the system for

the next computational cycle, which begins from background

CO2 concentration C(t).

2.3 Adaptive DOM

In this section, we introduce the method for estimating pa-

rameters and the carbon flux in a window. Zheng et al. (2014)

proposed a DOM to improve the accuracy of the optimized

flux and successfully applied it to the inversion of the flux

for the globe divided into 50 regions. In this study, we expect

to use DOM in each (t, l)-window. As the fluxes computed

for different PFTs are often correlated, direct application of

the DOM to flux inversion at a high resolution will result

in many abnormal estimators of parameters and large uncer-

tainties of both parameters and fluxes. Therefore, we propose

an adaptive version of DOM by adding additional regulariza-

tion of scale factors which is referred to as a stochastically

constrained equation (Theil and Goldberger, 1961):

1= λ+ ζ , (6)

where 1 is a vector with all elements equaling 1 and ζ is the

random error of the regularization with E(ζ )= 0, and the

dispersion matrix var(ζ )=W.

Then we will present the adaptive DOM in a (t, l)-window.

To facilitate the discussion, we first introduce two denota-

tions: (1) the observations of CO2 concentration in (t, l)-

window is denoted by a vector

c(t,l) =
(
cT
t cT

t+1 · · · cT
t+l−1

)T
, (7)

and named as the (t, l)-window observation concentration,

(2) the flux is denoted as

s(t,l) =
(
sT
t sT

t+1 · · · sT
t+l−1

)T
(8)

and named as the (t, l)-window flux.

The (t, l)-window observation concentration c(t,l) contains

information from two sources: the (t, l)-window flux s(t,l)

and concentration transported from the previous time step

C(t−1). We let cw(t,l) be the CO2 concentration determined

by s(t,l), and refer it as (t, l)-window flux concentration.

In fact, cw(t,l) is the difference between window observa-

tion concentration c(t,l) and {cbt , . . .,c
b
t+l−1} (mentioned in

Sect. 2.2). Then the cw(t,l) follows that

cw(t,l) =G(t,l)s(t,l)+ η(t,l), (9)

1The correction is based on the idea that the optimized concen-

tration should match the actually observed concentration.

where ε(t,l) is the error of window concentration observation,

and

G(t,l)
=


Gt,t

Gt+1,t Gt+1,t+1

...
...

. . .
Gt+l−1,t Gt+l−1,t+1 · · · Gt+l−1,t+l−1


(10)

is the (t, l)-window atmospheric transport matrix. It de-

scribes the contribution of the window flux to the observa-

tion sites. Each submatrix Gm,n represents the influence of

the flux (normalized to 1 gC) at time n on the concentration

at observation sites at time m.

In a (t, l)-window, we minimize the following objective

function (11) to obtain the optimized (t, l)-window flux. This

function is similar to that of DOM but with an extra penalty

term, so it is called the adaptive DOM. To simplify the ex-

pression, all subscripts (t, l) are omitted here.

J (s,λ)= (Gs− cw)TR−1(Gs− cw)+ (s− smλ)T

Q−1(s− smλ)+ (λ− 1)TW−1(λ− 1), (11)

where sm = diag
(
smt , . . .,s

m
t+l−1

)
is the prior fluxes for the

(t, l) window, Q is the error covariance matrix of the corre-

sponding prior fluxes, R is the covariance matrix of the win-

dow concentration observation error η and W is the variance

of constrained error.

Solving for the minimum of cost function Eq. (11) with

respect to s and λ is similar to the process in DOM. The solu-

tions are given by the following two equations (see Appendix

A for details):{
λ̂= (XT6X+W−1)−1(XT6cw +W−11)

ŝ =QGT6(cw −Gsmλ̂)+ smλ̂
, (12)

where 6 = (R+GQGT)−1, X=Gsm and ŝ =(
ŝT
t ŝT

t+1 · · · ŝT
t+l−1

)T
. As the estimation of λ̂t and

ŝt uses the largest number of observations, it has the highest

accuracy. We therefore use λ̂t and ŝt as the optimized

parameter and carbon flux at time t .

2.4 Calculation of uncertainty

The estimators given by Eq. (12) have the following uncer-

tainties (see Appendix A for details):
var(λ̂)= (XT6X+W−1)−1

var(ŝ)=QGT6(I−Xvar(λ̂)XT6)GQ

+smvar(λ̂)(sm)T.

(13)

Note that the uncertainty of the parameter estimator is incor-

porated into the variance of estimated fluxes.
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3 Application

In this section, we use the GCAS-DOM to estimate the

weekly carbon flux from 2001 to 2007 on 1◦×1◦ global grid

cells. The assimilation system usually needs a spin-up period.

Therefore the assimilation is conducted from 2000 to 2007

with the first year as a spin-up period, and the results from

2001 to 2007 are used for analysis. The initial concentration

is set as a globally uniform 3-D CO2 field of site-averaged

concentration in the last week of 1999.

3.1 Ecological model

We divide the globe into 1◦×1◦ grid cells, 64 800 (360×180)

grids in total. GCAS-DOM uses the BEPS (Liu et al., 1997)

as the terrestrial ecosystem model. BEPS simulates photo-

synthetic and carbon cycle processes (Chen et al., 1999; Ju

et al., 2006) based on remote sensing, meteorological and

soil data with a set of physical and physiological parameters

related to PFT. This model is initially developed for North

America and then expanded for global applications. The ter-

restrial prior fluxes are modeled by BEPS at the resolution

1◦× 1◦ and the weekly average values are used to avoid

the problem of the diurnal cycle. The weekly oceanic flux

at 1◦× 1◦ spatial resolution is obtained from CarbonTracker

2010 (CT20102) results (available via http://www.esrl.noaa.

gov/gmd/ccgg/carbontracker/download.html).

In BEPS, vegetation is mapped onto six PFTs including

coniferous forest, deciduous forest, evergreen forest, shrub-

land, C4 vegetation and “other vegetation”. A grid cell can

contain up to seven different cover types (six PFTs and one

ocean type) with their corresponding coverage fraction. We

divide equally the globe excluding China into 30 zones by

latitude and each spreads a range of 6◦. China is separately

split into six zones and each spreads a range of 6◦ as well.

Thus we yield a total of 30+ 6= 36 zones (see Fig. 2). In

each latitude zone, there are six PFTs and one ocean type.

As PFTs vary slowly in a short amount of time, we assume

that they are time independent within a window. Thus, we

have 7× 36= 252 parameters (1 parameter corresponds to

one PFT in a zone) to be estimated at each time step. The

model error covariance matrix Q for the prior flux is treated

using the same principle in Zhang (2013) based on the theory

of statistics.

The constrained matrix W (Eq. 11) for the scaling factor

is defined as a diagonal matrix with each item Wii defining

the degree of deviation from 1. The smaller the value is, the

closer the parameter and 1 are. Conversely, the parameter can

be more influenced by other information such as CO2 mea-

surements. We set an initial interval of [0.7, 1.3] as the range

of the scaling factor λ, as the preferences of BEPS are basi-

cally reasonable. According to the 3σ principle, the standard

deviation (SD) of parameters is set to be 0.1 (i.e., variance of

0.01). However, the results of regions excluding China (e.g.,

2CT2010 is a earlier version of CarbonTracker released in 2011.

Table 1. Annual fossil fuel and fire emissions across 2001–2007 (in

PgCyr−1).

Year Fossil fuel Fire

2001 7.1527 2.1868

2002 7.2069 2.4057

2003 7.5434 2.2687

2004 7.9537 2.3422

2005 8.1887 2.3541

2006 8.4376 2.1479

2007 8.6908 2.3267

Europe and North America) under this circumstance are ir-

rational compared to previous studies. This may be caused

by the larger error in soil carbon estimate of China in BEPS.

Then we try to reduce the SD for the other regions and test

the values of 0.0707 (i.e., variance of 0.005) and 0.0316 (i.e.,

variance of 0.001). The results indicate that the setting of

0.0316 for regions outside China and 0.1 for China can get a

more reasonable pattern of flux. Therefore, we use the vari-

ance of 0.01 for the scaling factors corresponding to grids in

China and 0.001 for the rest of the globe.

3.2 Background fluxes

In the process of making inferences about flux from ecosys-

tems, we need to exclude the contribution of other CO2 fluxes

such as fire and fossil fuel emissions to observed concentra-

tions. They are not perfectly known and but also not the target

of this study. Their information is included in the observation

data we use. As mentioned in Sect. 2.1, we do not include any

parameters concerning fossil fuel and fire fluxes in the opti-

mization. So the contribution of fossil fuel and fire emissions

needs to be extracted from the window flux concentration.

Then the window flux concentration excluding the influence

of fire and fossil fuel is used in the process of ecosystem

flux optimization. Although the fire and fossil fluxes are ex-

cluded from our optimization, their uncertainties should be

considered in the observational error. Therefore, we included

an extra contribution of (0.175 ppm)2 in the observational er-

ror (see Eq. 14).

The fossil fuel and fire fluxes are from the CT2010 results

on 1◦×1◦ resolution. The annual summary of fossil fuel and

fire emissions is listed in Table 1.

3.3 Atmospheric transport model

The carbon fluxes of the Earth’s surface at a certain time af-

fect the CO2 concentration observed in a subsequent time

period in the atmosphere. Therefore, we can use the atmo-

spheric CO2 concentration to invert the historical distribution

of carbon fluxes. Atmospheric transport models are generally

used to describe the process of surface fluxes spreading into

the atmosphere. The commonly employed transport mod-
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Figure 2. The partition the globe into zones.

els include MUGCM (Law, 1993), NCAR (Erickson et al.,

1996), TM5 (Krol et al., 2005) and MOZART-4 (Emmons

et al., 2010). We will use MOZART-4 in our study as its im-

plementation is flexible. MOZART-4 divides the space from

the Earth surface to a height of 2 hPa into 28 vertical sigma-

pressure layers, and its horizontal resolution can be adjusted

according to the capacity of computers. The highest resolu-

tion by far has been 0.7◦× 0.7◦. We use the meteorological

data from the National Centers for Environmental Prediction

(NCEP) reanalysis data (http://www.esrl.noaa.gov/psd/data/

gridded/data.ncep.reanalysis.html).

This model here is used in two forms. In its full form, the

assimilation is done by running forward with the optimized

flux state at the previous time step to update the historical

space concentration at the current time. In its simplified form,

the model is slightly reduced by leaving out the influence

of window flux on the site concentrations, and is shown as

a transport matrix (see Eq. 10).

3.4 Concentration data

Weekly average observations of CO2 concen-

tration are from GLOBALVIEW-2011 data set

(http://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php).

These data consist of pseudo-weekly interpolation

CO2 concentration data measured at 312 global sites.

The map of stations is shown in Fig. 3. It should be

noted that we used 312 sites in our assimilation system

while CT2010 only used about 100 sites (available from

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2010/

Table 2. Comparison of the optimized carbon sinks in this study

with the “Global Carbon Budget 2013 v2.3” (in PgCyr−1).

GCP GCAS-DOM

Year Net land sink Oceanic sink Net land sink Oceanic sink

2001 −1.14 −1.95 −1.77 −1.70

2002 (0.52)∗ −2.45 −1.06 −1.53

2003 −0.24 −2.42 −1.59 −1.68

2004 −2.06 −2.33 −1.52 −1.87

2005 −0.53 −2.43 −0.77 −1.78

2006 −2.17 −2.51 −1.50 −2.19

2007 −1.57 −2.55 −1.14 −2.00

∗ (0.52) is the carbon source of 0.52 Pg C yr−1.

documentation_obs.html#ct_doc). So nearly two-thirds of

observational data are independent from the ocean fluxes we

use as an input (mentioned in Sect. 3.1).

As the residual standard deviation (RSD) of the CO2 con-

centration data given by the var files in GLOBALVIEW-2011

data set is in months, we convert it into weekly values by lin-

ear interpolation, and impose a floor of 0.175 ppm on the data

uncertainty using the equation (Deng et al., 2007)

R=

√
(0.175ppm)2+RSD2, (14)

where 0.175 ppm is the system error at each site.

3.5 Window length

The choice of the window length is an important issue in

assimilation systems. A longer window size means more

www.biogeosciences.net/12/1131/2015/ Biogeosciences, 12, 1131–1150, 2015
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Figure 3. The distribution of 312 stations used in this study. The x axis and y axis stand for longitude and latitude respectively. The asterisk

symbol (*) represents the location of sites.

overlapping of transport integrations and larger calculation

demand. However, a small window size will cause signifi-

cant errors. Peters et al. (2005, 2007, 2010) used a 5-week

smoothing window. Here, we choose a 6-week smoothing

window, which is sufficiently long for the fluxes to transmit

around the world.

As scale factors vary much more slowly than the fluxes

themselves (Zupanski et al., 2007), it is reasonable that the

scale factor is time-independent within a 6-week window

but varies among different windows. Therefore, the unknown

states aimed to estimate involve 252 parameters and 388 800

(64 800 grids× 6 weeks) fluxes for each 6-week step.

3.6 Results

In this section, we will firstly show the variations of esti-

mated scaling factors over time. Then the total optimized

flux and its uncertainties will be summarized to compare with

those of the prior flux and results from previous studies. We

focus on the result of three large regions of North America,

Europe and China. Moreover, we further study the quanti-

ties and seasonal variations of fluxes for six PFTs. The spa-

tial distribution of the optimized flux is shown on a map of

1◦×1◦ grid cells. We also show the fit of the optimized con-

centrations to the observation concentrations to evaluate the

system.

3.6.1 Optimized parameters

Figure 4 shows the results of the scaling factors for six PFTs

and an oceanic type in the latitude zone spread from 24◦ N

to 30◦ N excluding China. The estimators fluctuate around 1

with small volatility. If the value is larger than 1, it means

that the absolute value of the prior flux is underestimated and

therefore needs to be multiplied by a factor of more than 1 to

increase its value. On the contrary, an estimator smaller than

1 indicates a decrease of the absolute value of the flux. From

the time series of weekly estimates, most of the parameters

show annual periodicity and the scaling factors of coniferous

type indicate opposite “swings” in contrast to other PFTs.

The scaling factors of deciduous and evergreen types have

lower amplitudes than those of the remaining types.

3.6.2 Optimized fluxes and their uncertainties

Global Carbon Budget

We compare the optimized total flux (excluding fire and

fossil fuel emissions, default hereinafter unless otherwise

specified) with the prior flux and the results of CT2011_oi

which is a newer version of CarbonTracker released on

28 June 2013 (Fig. 5). The terrestrial fluxes make a major

contribution for the years 2001 to 2007 before and after opti-

mization. Before optimization, the annual average terrestrial

and oceanic fluxes are −3.10 and −1.62 PgCyr−1, respec-

tively. GCAS-DOM increases the uptake in land and ocean

by a mean value 0.53 and 0.20 PgCyr−1, respectively, over

2001–2007. Therefore the total annual ecosystem sinks show

a significant increase mainly due to the increase in the ter-

restrial sink during the 7 years. As the oceanic prior flux is

derived from the optimized results of CT2010, the oceanic

fluxes before and after optimization are very similar. Even

so, the optimized oceanic flux is still closer to the results of

CT2011_oi compared to the prior flux.

The optimized result indicates that the terrestrial ecosys-

tems and oceans respectively absorb an average of 3.63

Biogeosciences, 12, 1131–1150, 2015 www.biogeosciences.net/12/1131/2015/
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Figure 4. The results of optimized weekly scaling factors in the 20th latitude zone, where Coni stands for coniferous forest, Deci for

deciduous forest, Evgn for evergreen forest, Shrub for shrubland, C4 for C4 vegetation and Other for other vegetation. Blue lines are

estimated parameters, while red lines are constants which equal 1. Note that different scales are used.

and 1.82 PgCyr−1 over the 2001–2007 period. These values

compare well with the inversion results of Deng and Chen

(2011), which are on average 3.63 and 1.94 PgCyr−1 for ter-

restrial and oceanic sink, respectively, for the years 2002–

2007. We then further compare the net land sink and oceanic

sink in our study to that of the Global Carbon Project (GCP,

Table 2). The Global Carbon Budget 2013 v2.3 (Le Quéré

et al., 2014) is the newest version released on April 2014

by the GCP. The net land sink of GCP is calculated by the

difference of land sink and land-use change emissions in

Global Carbon Budget 2013 v2.3, while that of the GCAS-

DOM is computed by the difference between the terrestrial

sink (Fig. 5) and fire emission in Table 1. The GCP gener-

ates larger oceanic sinks than GCAS-DOM, with the small-

est gap of 0.25 Pg Cyr−1 in 2001 and largest difference of

0.92 PgCyr−1 in 2002. For the net land sink, the largest dif-

ference occurs in 2002 when the GCP releases 0.52 PgCyr−1

from land while the GCAS-DOM maintains a land uptake of

1.06 PgCyr−1. The 6-year mean of the net land sink exclud-

ing the year 2002 in our study is 1.38 PgCyr−1, which is

close to 1.29 PgC yr−1 in GCP. Figure 5 shows that the to-

tal sink in land and ocean varies considerably between years,

and the variation is mostly due to the land sink. GCAS-DOM

sink results are usually larger than the prior value, indicating

that the prior flux underestimates the land sink. The multi-

year mean values of GCAS-DOM and CT2011_oi are about

the same, but they differ to some extent in individual years,

suggesting that different data assimilation methods can result

in considerable difference in the optimized carbon flux.

From the point of interannual variabilities, the ocean flux

shows much smaller variability than land flux, revealing that

the ocean sink pattern is stable. The interannual variation

of the land sink suggests a notable correlation with climate

change. The optimized annual flux of GCAS-DOM detects

an anomaly in 2005 which shows the smallest sink. This

could be mainly attributed to a continuing drought from July

to September in the Amazon that affected plant growth, and

high temperatures in 2005, the existence of which intensifies

ecosystem respiratory activities (Deng and Chen, 2011). The

relatively weak sinks in 2002 and 2007 may be related to

the El Niño–Southern Oscillation events in 2002–2003 and

2006–2007, respectively, that cause anomalies in precipita-

tion causing droughts in some regions.

Before optimization, we use an uncertainty of

1.98 PgCyr−1 for the land flux, and an uncertainty of

0.93 PgCyr−1 for the oceanic flux, resulting in a total

uncertainty of 2.18 PgCyr−1 for the globe. Table 3 shows

the uncertainty of optimized fluxes by GCAS-DOM. We can

www.biogeosciences.net/12/1131/2015/ Biogeosciences, 12, 1131–1150, 2015
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Table 3. The uncertainties of optimized fluxes for the globe, land

and ocean by GCAS-DOM (in PgCyr−1).

Year 2001 2002 2003 2004 2005 2006 2007

Globe 0.51 0.50 0.53 0.52 0.54 0.54 0.53

Land 0.48 0.47 0.51 0.50 0.51 0.51 0.50

Ocean 0.16 0.17 0.15 0.16 0.17 0.16 0.15

see different levels of uncertainty reductions for land and

ocean. The uncertainty of the globe is significantly reduced

by about 75–80 % and ocean uncertainty has a slightly

larger reduction than the global value. It is mostly due to the

stronger constraint by the elongated clustered observation

sites over the Pacific Ocean (see Fig. 3). The uncertainty

reductions of ocean and land respectively stabilize at around

82 and 75 % for the years 2001–2007.

Regional Carbon Budget

We further analyze three large regions: Europe, North Amer-

ica and China. As shown in Table 4, GCAS-DOM respec-

tively increases the sink by 0.14 PgCyr−1 for Europe and

0.31 PgCyr−1 for North America compared to the prior

flux for the 7-year mean. The uncertainties before optimiza-

tion (0.44 and 0.86 PgCyr−1 for Europe and North Amer-

ica, respectively) are reduced to 0.08 and 0.15 PgCyr−1,

respectively. The uncertainty reductions for these two re-

gions are remarkably large at about 80 %, possibly be-

cause the atmospheric CO2 is densely observed in these

two regions. In Europe, the carbon sink from our study

(−0.42±0.08 PgCyr−1) is higher than CT2011_oi (−0.33±

1.86), Deng and Chen (2011, −0.22) and Jiang et al.

(2013, −0.28± 0.17 PgCyr−1). In North America, our re-

sult (−0.98± 0.15 PgCyr−1) agrees well with Deng and

Chen (2011, −0.89± 0.18 PgCyr−1), but shows a slightly

stronger sink than Jiang et al. (2013,−0.81±0.21 PgCyr−1).

In China, the carbon uptake slightly increases from the prior

to −0.20 PgCyr−1, which is weaker than Jiang et al. (2013,

−0.28±0.18) and Piao et al. (2009,−0.35±0.33 PgCyr−1).

Although the change in the sink in China before and after op-

timization is small, the uncertainty reduction is about 67 %,

which is smaller than those of Europe and North America be-

cause of relatively limited atmospheric data observed within

and around China.

The interannual variations of fluxes before and after op-

timization are shown in Fig. 6. With minor fluctuations, the

carbon uptake of Europe has an increasing trend before 2004,

and then decreases after 2005. Similar temporal trends are

also found in North America. In the first 4 years, the carbon

sink in China is stable around −0.22 PgCyr−1 and slightly

decreases from 2005 to 2007. The uncertainties of optimized

fluxes for three regions vary slightly from year to year and

are remarkably reduced from those of the prior fluxes.
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Figure 8. Weekly fluxes for coniferous forest. (a) Northern Hemisphere (b) Southern Hemisphere. All units are in gCyr−1. Note that

different scales are used.

Table 4. Comparison of the long-term mean optimized carbon

fluxes by GCAS-DOM with previous studies during 2001–2007.

Region Europe North America China

Model −0.28± 0.44 −0.67± 0.86 −0.17± 0.87

GCAS-DOM −0.42± 0.08 −0.98± 0.15 −0.20± 0.29

CT2011_oi −0.32± 1.84 −0.66± 1.35 −0.26

Deng and Chen (2011) a
−0.22 −0.89± 0.18 –

Jiang et al. (2013) b
−0.28± 0.17 −0.81± 0.21 −0.28± 0.18

Piao et al. (2009) c – – −0.35± 0.33

a Mean from 2002 to 2007. b Mean from 2002 to 2008. c Mean from 1996 to 2005, and the result is

based on the inversion method.

Fluxes for each PFT

Our gridded inversion system at 1◦ resolution affords us the

possibility to analyze the impacts of atmospheric CO2 data

on the estimation of the carbon sink by PFT. Figure 7 shows

the annual mean terrestrial flux for six PFTs. Prior stands

for fluxes simulated by BEPS consisting of six PFT com-

ponents with corresponding coverage fractions in each grid,

while GCAS-DOM represents fluxes optimized by GCAS-

DOM and the statistics are based on the principle that each

1◦× 1◦ grid box is assigned to a single category according

to the locally dominant PFT. As shown in Fig. 7, the or-

der of the sink magnitudes of different PFTs is altered af-

ter optimization. The carbon flux of once-dominant decidu-

ous forests is reduced from −0.93 to −0.78 PgCyr−1. After

optimization, largest net uptake is shown in regions domi-

nated by coniferous forest (−0.97± 0.27 PgCyr−1) and is

increased by 118.20 %. As the coniferous forest is mainly

distributed in North America, Europe and part of Russia, this

results in the notable increase of the sinks in North Amer-

ican and Europe (Table 4). This large increase in the sink

magnitude for conifer from the prior estimate suggests that

the ecosystem model considerably underestimates the sink

for this PFT. Other vegetation (−0.86±0.20) and deciduous

forest (−0.78± 0.23 PgCyr−1) are respectively the second

and third PFTs in terms of their total sink magnitude. Ev-

ergreen forests, mostly located in the Southern Hemisphere,

absorb−0.72±0.22 PgCyr−1 on average. Relatively speak-

ing, shrubland (−0.16± 0.12 PgCyr−1) and C4 vegetation

(−0.25± 0.13 PgCyr−1) make the least contribution to the

total global carbon sink. The slight changes in the sink mag-

nitudes of shrubland and C4 vegetation before and after opti-

mization suggest that BEPS provides nearly unbiased sink

estimates for these two PFTs. The sink magnitude of the

other vegetation is modified greatly by optimization, suggest-

ing BEPS does not work well for all other land cover types

Biogeosciences, 12, 1131–1150, 2015 www.biogeosciences.net/12/1131/2015/
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Figure 9. Weekly fluxes for other vegetation. (a) Northern Hemisphere (b) Southern Hemisphere. All units are in gCyr−1. Note that different

scales are used.

Figure 10. The average annual pattern of the prior flux for the years 2001–2007 excluding fossil fuel and fire emissions (in gCm−2 yr−1).

lumped into this PFT. One way to improve BEPS would be

to introduce more PFTs. Through this analysis, we show

that GCAS-DOM has provided a useful model framework

to evaluate an ecosystem model by PFT, and it can poten-

tially provide directions for further development of ecosys-

tem models.

To further investigate the seasonal variation of the carbon

flux, we compare the optimized weekly fluxes to the prior

www.biogeosciences.net/12/1131/2015/ Biogeosciences, 12, 1131–1150, 2015
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Figure 11. The average annual pattern of the optimized flux by GCAS-DOM for the years 2001–2007 (in g C m−2 yr−1).

Figure 12. Comparison between observed concentration and simulated concentration.

fluxes by PFT. For this purpose, we select the results of conif-

erous forest and other vegetation (Figs. 8 and 9) as fluxes by

these two types present the largest change after optimization

among all PFTs. All the time series exhibit pronounced sea-

sonality, and the Northern Hemisphere and Southern Hemi-

sphere show the opposite seasonal patterns. In the Northern

Hemisphere, the optimized flux of coniferous forest shows

a general shift towards larger sinks in all seasons than those

of the prior flux. After optimization, greater net uptake is

found in the growing season and a smaller net source in au-

tumn and winter. In the Southern Hemisphere, the optimized

flux shows a smaller seasonal amplitude than the prior flux

with departures from the prior occurring in winter and sum-

mer. Note that the sink magnitude is much smaller than that

of the Northern Hemisphere, and therefore the optimization

of the conifer flux in the Southern Hemisphere does not make

much difference in the overall sink estimate. For other vege-

tation, similar deviations of the optimized flux from the prior

flux in June through September are observed, but fluxes in

other months show good agreements. In the Southern Hemi-

Biogeosciences, 12, 1131–1150, 2015 www.biogeosciences.net/12/1131/2015/
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Figure 13. Observed (blue dots) concentration, simulated concentration with the optimized flux (red squares) and simulated concentration

with the prior flux (green circles) from (a) Dahlen, North Dakota, United States (47.5◦ N, 99.24◦W) (b) Mace Head, County Galway, Ireland

(53.33◦ N, 9.9◦W).
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Figure 14. Simulated-minus-observed CO2 for a set of 312 observation sites by week.
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sphere, the optimized flux presents larger amplitudes than the

prior flux, and this is opposite the case of coniferous forest.

Spatial distribution of fluxes

Figures 10 and 11 show the long-term mean spatial pattern

of the flux on 1◦× 1◦ grid cells before and after optimiza-

tion. This flux does not include the carbon emission due to

fires, and the net land sink is those shown in Figs. 10 and

11 minus fire emission. The uptakes over boreal Asia, Eu-

rope and southeastern Canada have been greatly increased

by GCAS-DOM, while the sink in tropical South America

is slightly reduced after optimization. For the oceanic flux,

a slight decrease of the source is found in equatorial areas

of the Pacific, the Atlantic and the Indian oceans. The re-

sults of this study show that relatively large sinks are located

in the northern hemispheric continents, and tropical conti-

nental areas. The northern continental areas from 30–90◦ N

contribute the largest sink of−2.07 PgCyr−1. Next, the con-

tinental areas in the range of 30◦ S–30◦ N contribute a sink of

−1.68 PgCyr−1. Intense sinks mainly appear in the eastern

US, Europe, tropical South America, tropical Asia and cen-

tral Africa. Southern continental areas (30–90◦ S) show an

approximately neutral flux. For the ocean, carbon uptake is

distributed relatively evenly between north (30–90◦ N) and

south (30–90◦ S), while the region 30◦ S–30◦ N generates

a weak source of 0.33 PgCyr−1.

3.6.3 Fit to CO2 concentrations

The fit of the simulated CO2 concentration by GCAS-DOM

to the observed concentration is an important aspect for over-

all evaluation of optimization. To evaluate the performance

of GCAS-DOM, we run MOZART-4 forced forward by the

prior flux and optimized flux and compare the simulated

time series of CO2 concentrations to the observed concen-

trations. We integrate the concentration data of all the 312

sites for 7 years to a series with 104 832 (312× 48 weeks× 7

years) elements and draw the simulated vs. observed scat-

terplot (Fig. 12). The blue points show an upward departure

from the one-to-one line, indicating that the simulated con-

centrations with the prior flux are overestimated. The RMSE

between the simulated and observed concentrations of the

119 808 weekly data points items is significantly reduced

from 5.58 ppm to 2.76 ppm after optimization. The correla-

tion between the simulated and the observed concentration

is also improved after optimization with R2 increasing from

0.64 to 0.80. This suggests that the optimized flux is a signif-

icant improvement over the prior flux.

Generally speaking, the simulated concentration at sites in

the Northern Hemisphere shows better agreement with the

observed concentration than the sites in the Southern Hemi-

sphere. We present the seasonal cycles fitted to the simulated

and observed concentration time series of two sites in Fig. 13.

At Dahlen, the simulated concentrations based on the opti-

mized flux follow closely the observed values. However, the

simulated concentrations based on the prior flux show an up-

ward drift from the observed concentrations especially in the

last few years. This indicates that the prior flux is biased and

the cumulative effect of this bias will get progressively larger

over time. This result is consistent with the viewpoint that

the prior sink value is underestimated. Moreover, the green

points present a seasonal cycle with smaller amplitudes. This

may be due to the shortcoming in the terrestrial biosphere

model which may not well describe the seasonal cycle of

ecosystem processes.

At Mace Head, the simulated concentrations with the op-

timized flux deviate less from the observations in winter than

in summer. This inability of the optimization procedure to

capture the depth of summer carbon drawdown by photosyn-

thesis was also found in CarbonTracker North America and

Europe (Peters et al., 2007, 2010) and in a carbon cycle as-

similation system based on the Biosphere Energy Transfer

Hydrology model (CCDAS, Rayner et al., 2005). One com-

mon problem would be that biospheric models tend to un-

derestimate the carbon sink in summer and this bias is not

fully rectified in the optimization process because of insuf-

ficient atmospheric CO2 data and the significant model–data

mismatch errors in the CO2 observation. Nevertheless, the

optimized concentration is still a large improvement over the

case of the prior flux. In addition, it should be noted that some

discontinued high anomalies in the simulated concentration

with the prior flux have been remarkably ameliorated after

optimization.

We also investigate, by week, the overall quality of 312

sites used in our system. In Fig. 14, week-by-week residu-

als (simulated minus observed) are made to assess the bias

of the optimized CO2 field against the observations. The er-

rors averaged by 312 sites can be controlled to within about

±0.51 ppm, indicating a satisfactory performance of our as-

similation system. However, an obvious seasonal cycle is

identified in the residual series. This is mainly caused by

the generally worse fit to observed concentrations at the sites

in the Southern Hemisphere. Although the residual error is

small, the clear seasonal pattern of the residual error indi-

cates that there is still some useful information in the CO2

data that are not fully utilized. The inability of BEPS to simu-

late the large summer sinks may be part of the reason because

the bias in summer is not fully corrected through optimiza-

tion (as shown in Fig. 13). Our study therefore suggests that

efforts should be made to improve the prior flux estimation

not only in terms of the annual sink magnitude but also the

seasonal sink pattern.

4 Conclusions

In this study, we build a global carbon assimilation sys-

tem (GCAS-DOM) and employ it to optimize a record of

the globally gridded CO2 flux at 1◦× 1◦ resolution for the

Biogeosciences, 12, 1131–1150, 2015 www.biogeosciences.net/12/1131/2015/



H. Zheng et al.: A global carbon assimilation system based on a dual optimization method 1147

years 2001 to 2007. This newly developed system combines

the ecological model BEPS, atmospheric transport model

MOZART-4 and observations of CO2 concentration to op-

timize the optimize the parameter and carbon flux simulta-

neously. In consideration of errors in climate data and the

structure of BEPS, we design a set of inflation parameters

for optimization according to latitude and plant function type

in BEPS, resulting in 252 parameters at each time step.

The 1◦× 1◦ for flux estimation at the global scale in our

study is higher than those in previous studies and therefore

it significantly advances our understanding of regional car-

bon cycles. To reduce the computational demand, a moving-

window method is used in the system so as to obtain time-

varying parameters and fluxes.

Our optimized results show that the mean terrestrial

and oceanic carbon fluxes over the period of 2001–2007

are −3.63± 0.50 and −1.82± 0.16 PgCyr−1, respectively.

North America, Europe and China contribute −0.98± 0.15,

−0.42±0.08 and−0.20±0.29 PgCyr−1, respectively. Large

sinks are mainly located in the Northern Hemisphere and

tropical continental areas. Moreover, the uncertainties of car-

bon fluxes are notably reduced by more than 60 % after opti-

mization for the globe and aforementioned three regions.

Coniferous forest, deciduous forest, evergreen forest,

shrubland, C4 plants and other vegetation contribute to

the global carbon flux at −0.97± 0.27, −0.78± 0.23,

−0.72± 0.22, −0.16± 0.12, −0.25± 0.13 and −0.86±

0.20 PgCyr−1, respectively. The optimized flux of conifer

differs most from its prior, indicating that the biospheric

model BEPS might have the largest error for this PFT. Shrub-

land and C4 vegetation show only slight changes from the

prior after optimization. In terms of seasonal variation, the

optimized flux shows larger uptake in growing season than

the priors for coniferous forest and other vegetation in the

Northern Hemisphere. In the Southern Hemisphere, the op-

timized flux of coniferous forest shows reduced amplitude

from its prior, while the opposite occurs for other vegetation.

After the flux optimization by GCAS-DOM, the agree-

ment between the simulated and observed CO2 concentra-

tions is greatly improved (R2 increased from 0.64 to 0.80,

and RMSE reduced from 5.58 to 2.76 ppm). However the

residual differences between simulated and observed concen-

trations show some seasonal structure, indicating that some

deficiency in the prior flux that has not been rectified in

the optimization process. Since atmospheric CO2 data are

sparse, errors in the biospheric model used to produce the

prior flux can propagate to the final optimization results. Fur-

ther efforts are needed to improve photosynthesis and respi-

ration calculation in BEPS in order to reduce the biases in the

flux estimation in both summer and winter.
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Appendix A: Proof of Eqs. (11) and (12)

According to the theory of DOM, for any fixed λ, the opti-

mized s that achieves the minimum of cost function (11) is

s(λ)=QGT6−1(cw −Gsmλ)+ smλ, (A1)

where 6 = (R+GQGT).

Plugging Eq. (A1) into the cost function Eq. (11), we get

J (λ)=(Gs(λ)− cw)TR−1(Gs(λ)− cw)

+ (s(λ)− smλ)TQ−1(s(λ)− smλ)

+ (λ− 1)TW−1(λ− 1)

=(Xλ− cw)T6−1(Xλ− cw)

+ (λ− 1)TW−1(λ− 1), (A2)

where X=Gsm and the first item is referred to as the DOM.

Then, the optimized estimator λ̂ is easy to obtain by deriva-

tion of Eq. (A2) with respect to λ,

λ̂= (XT6−1X+W−1)−1(XT6−1cw +W−11). (A3)

Thus the optimized fluxes can be obtained by replacing the

λ in Eq. (A1) with λ̂.

Note that

cw =Gs+ η =G(smλ+ ε)+ η = Xλ+ γ , (A4)

where E(γ )= 0,var(γ )=6 and 1 can be treated as a ran-

dom error with expectation λ and variance matrix W. It is not

hard to obtain the variance of λ̂.

var(λ̂)= (XT6X+W−1)−1 (A5)

The variance of ŝ

var(ŝ)= var(QGT6−1(cw −Gsmλ̂)+ smλ̂)

= var(QGT6−1(cw −Gsm(XT6−1X+W−1)−1

(XT6−1cw +W−11))

+ sm(XT6−1X+W−1)−1(XT6−1cw +W−11))

= var((QGT6−1
−QGT6−1Xvar(λ̂)XT6−1

+ smvar(λ̂)XT6−1)cw)+ var((smvar(λ̂)W−1

−QGT6−1Xvar(λ̂)W−1)1), (A6)

where

var((smvar(λ̂)W−1
−QGT6−1Xvar(λ̂)W−1)1)

= (smvar(λ̂)−QGT6−1Xvar(λ̂))(W−1var(λ̂)(sm)T

−W−1var(λ̂)XT6−1GQ)

=QGT6−1Xvar(λ̂)W−1var(λ̂)XT6−1GQ

− var(λ̂)W−1var(λ̂)XT6−1GQ−

QGT6−1Xvar(λ̂)W−1var(λ̂)(sm)T

+ smvar(λ̂)W−1var(λ̂)(sm)T (A7)

and

var((QGT6−1
−QGT6−1Xvar(λ̂)XT6−1

+ smvar(λ̂)XT6−1)cw)

= (QGT6−1
−QGT6−1Xvar(λ̂)XT6−1

+ smvar(λ̂)XT6−1)6

(6−1GQ−6−1Xvar(λ̂)XT6−1GQ

+6−1Xvar(λ̂)(sm)T)

= (QGT
−QGT6−1Xvar(λ̂)XT

+ smvar(λ̂)XT)

(6−1GQ−6−1Xvar(λ̂)XT6−1GQ

+6−1Xvar(λ̂)(sm)T)

=QGT6−1GQ−QGT6−1XA−1XT6−1GQ

+QGT6−1Xvar(λ̂)(sm)T−

QGT6−1Xvar(λ̂)XT6−1GQ+QGT6−1

Xvar(λ̂)XT6−1Xvar(λ̂)XT6−1GQ

−QGT6−1Xvar(λ̂)XT6−1Xvar(λ̂)(sm)T

+ smvar(λ̂)XT6−1GQ−

smvar(λ̂)XT6−1Xvar(λ̂)XT6−1GQ

+ smvar(λ̂)XT6−1Xvar(λ̂)(sm)T. (A8)

Combining Eqs. (A7) and (A8), we get

var(ŝ)= smvar(λ̂)(sm)T+QGT6−1GQ

−QGT6−1Xvar(λ̂)XT6−1GQ

=QGT6−1(I−Xvar(λ̂)XT6−1)GQ

+ smvar(λ̂)(sm)T. (A9)
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