

Supplement of

CO₂ fluxes and ecosystem dynamics at five European treeless peatlands – merging data and process oriented modeling

C. Metzger et al.

Correspondence to: C. Metzger (cmetzger@kth.se)

1 **Supplemental material**

2 ***Calibration procedure***

3 A stepwise approach was used to calibrate model parameter: (I) Parameter ranges of 45
4 parameters were constrained by applying a Monte Carlo based calibration by multiple runs
5 with randomized parameter values in a defined range, similar to the Generalized Likelihood
6 Uncertainty Estimation by Beven and Binley (1992) and Beven (2006). Ranges were selected
7 according to experiences from previous model runs, in most cases a certain range around the
8 default values. The list of parameters and their tested ranges are displayed in Table S3. The
9 output of these runs was compared with several different variables derived from
10 measurements. A number of performance indicators were considered to define the behavioural
11 models with an acceptable fit in step I a. Parameter ensembles of accepted behavioural models
12 were further analysed to identify covariance between parameters and also to understand the
13 importance and effect of multiple criteria (I b).

14 350'000 runs were executed for each site, except for Hor, for which 700'000 runs were
15 performed. The higher amount of runs at Hor was motivated by the observed discrepancy in
16 chamber versus EC derived R_{eco} values and a wider range for some parameters due to the
17 relatively high ratio of biomass to GPP.

18 (I a) From these runs, around 75 behavioural models per site were selected according to an
19 acceptable fit (Tab. S7) to measurement derived R_{eco} and GPP respectively in case of Hor net
20 ecosystem exchange (NEE) and plant biomass. Due to their relatively small amplitude, winter
21 fluxes hardly affect performance indices of the whole year. However they have a high
22 proportion of soil to plant respiration and are therefore of special interest. Hence, performance
23 in modelling R_{eco} and GPP during winter, respectively late autumn in case of Lom (see Tab. 4)
24 were additionally taken into account. As the ability to constrain parameter values and the
25 model performance depend on quality and frequency of the available measurement data,
26 different criteria (Tab. S7) had to be applied for each site.

27 (I b) Performance (R^2 , ME and NSE) of the 75 accepted runs on each variable was plotted
28 against values for each parameter as well as values for each parameter against values for each
29 other parameter. These plots were visually analysed to detect covariance between parameters

1 which were further analysed in step III and between parameters and performance which were
2 further analysed in step I c.

3 (I c) The best fit for one variable does not necessarily lead to the best fit for another variable.
4 Therefore, a further constraint was achieved by selecting each best 10 out of the 75 runs
5 independently for each of the variables and each parameter as listed in Table S9. According
6 the results from I b, different performance indices were used depending on the variable: R^2
7 was chosen in case of R_{eco} and GPP as effect on ME can be compensated by radiation use
8 efficiency (ϵ_L) in case of GPP and decomposition rate for the fast SOC pools (k_l) in case of
9 R_{eco} . Mean error was chosen in case of temperature, NSE for all other variables, including
10 winter R_{eco} and winter GPP. This procedure leads to several ranges for each parameter
11 producing the best performance depending on the variable and the site.

12 (I d) The ranges were merged together to a new range for each parameter, starting with the
13 highest value of the lower ends of all ranges and lasts to the lowest of the upper ends. These
14 ranges will be called “overlapping ranges” in the following, even though they did not overlap
15 in some few cases.

16 (II) Parameters might interact with one or more other parameters and counteract or even
17 compensate the effect of other parameters. Ranges for such parameters could be same or
18 overlapping between the sites, but the application of a single set of parameter values might
19 reveal that only site specific values for one or several of these parameters lead to acceptable
20 performance. To test this, for each site one of the 75 runs with the highest performance in R^2
21 of R_{eco} selected and ϵ_L and k_l adjusted until ME in GPP and R_{eco} was smaller than $|0.1| \text{ g C m}^{-2}$
22 day^{-1} . Afterwards, stepwise each parameter was set to the rounded mean value of the
23 overlapping range from I d and again ϵ_L and k_l adjusted until ME in GPP and R_{eco} was smaller
24 than $|0.1| \text{ g C m}^{-2} \text{ day}^{-1}$. If then the performance in R^2 of R_{eco} and GPP was not reduced by
25 more than 0.05 the modified parameter was kept at this value. Otherwise it was set back to the
26 previous value and further investigated in III. This procedure was repeated for all parameters
27 except ϵ_L and k_l .

28 (III) Parameters showing strong interactions or showing different valid ranges for the different
29 sites or variables were investigated by further multiple calibrations with 2500 to 5000 runs.
30 For each parameter only this particular parameter and very few other parameters which are
31 directly related to it were calibrated, while all others were kept constant to the values from
32 step II. Criteria for accepted runs were a mean error of $\max |0.3| \text{ g C m}^{-2} \text{ day}^{-1}$ in R_{eco} and

1 GPP, respectively in GPP and uppermost temperature case of p_{ck} , to accept 60 to 150 runs.
2 Such additional multiple calibrations were also performed if the previous results indicated an
3 optimal range outside the tested range. In this case the calibration range of the parameter was
4 increased.

5 Then steps I c, d and II were repeated for these additional calibration. If the performance in R^2
6 of R_{eco} and GPP was reduced by more than 0.05 the parameter was considered to be site
7 specific. Again, ϵ_L and k_l were adjusted until ME in GPP and R_{eco} was smaller than $|0.1| \text{ g C}$
8 $\text{m}^{-2} \text{ day}^{-1}$. This set of parameter values will be called common configuration (C1) in the
9 following.

10 (IV) Different combination of parameter values might lead to similar good results, which is
11 called equifinality (Beven, 2006). In those cases were step I to III indicated covariance
12 between parameters, several different combinations of parameter values leading to similar
13 good results (ME in GPP and R_{eco} smaller than $|0.1| \text{ g C m}^{-2} \text{ day}^{-1}$) were tested. Such runs
14 with a single set of parameter values are called single runs in the following and numbered
15 with C1 to C7 (Tab. S8).

16

17

18

19 Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18–36,
20 doi:10.1016/j.jhydrol.2005.07.007, 2006.

21 Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty
22 prediction, Hydrological processes, 6, 279–298, 1992.

23

24

25

26

1 **Tables**

2 Table S1. Dynamic forcing data

Site	Variable	Period	Resolution of measurement / as used for calibration	number of replicates
Lom	water table	mid 2006-2010	half-hourly/hourly	1
	meteorology (temperature, global radiation, precipitation, wind speed, relative humidity)	mid 2006-2010	half-hourly/hourly	1
Amo	water table	April 2007-2010	half-hourly/hourly	1
	meteorology (temperature, global radiation, precipitation, wind speed, relative humidity)	mid 2006-2010	half-hourly/hourly	1
Hor	water table	2004-2006	half-hourly/hourly	2
	meteorology (temperature, global radiation, precipitation, wind speed, relative humidity)	2004-2011	half-hourly/hourly	1
FsA and FsB	water table	2007-2011	biweekly, since April 2010 half hourly / hourly	1
	meteorology (temperature, global radiation, precipitation, wind speed, relative humidity)	2007-2011	half-hourly/hourly	1

3
4
5

1 Table S2. Dynamic data for calibrations and comparisons – methods and instruments

Site	Variable	Period	Resolution of measurement / as used for calibration	Method	replicates	Described in	number of data points
Lom	NEE	mid 2006-10	half-hourly/hourly	EC	1	Aurela et al., 2009)	34895
	R_{eco}	2007, 2009, 2010	half-hourly/hourly, summer only	automatic opaque chamber	2	Lohila et al., 2010	27853
	R_{eco} , GPP	mid 2006-10	half-hourly/hourly	empirical modelling from EC data	1	Aurela et al., 2009	15236
	winter R_{eco}	2006-2010	half-hourly/hourly	empirical modelling from night NEE EC data during Sept.-Nov.	1		6356
	soil temperature at -7 cm	mid 2006-10	half-hourly/hourly	automatic temperature sensors	1		34318
	soil temperature at -60 cm	mid 2006-10	half-hourly/hourly	automatic temperature sensors	1		34318
	LAI	2007-10	4-10 times each summer	optical canopy analyser	9-19		41
	Snow depth	mid 2006-10	hourly	automatic sensor	1		34316
Amo	NEE	mid 2006-10	half-hourly/hourly	EC	1	Drewer et al., 2010	38710
	R_{eco}	mid 2006-10	biweekly	manual opaque chamber	9	Dinsmore et al., 2010	57
	R_{eco} , GPP	mid 2006-10	half-hourly/hourly	empirical model from EC data	1	Drewer et al., 2010	43475
	winter R_{eco}	mid 2006-10	half-hourly/hourly	empirical modelling from night NEE EC data during Nov. -Apr.	1		5348
	soil temperature at -10 cm	mid 2006-10	half-hourly/hourly	automatic temperature sensors	1		35808
	soil temperature at -40 cm	mid 2006-10	half-hourly/hourly	automatic temperature sensors	1		35808
	LAI	2004	11 times	optical canopy analyser	2		11
	NEE	2004-10, except 2007	half-hourly/hourly	EC	1	Hendriks et al., 2007	49611
Hor	R_{eco}	2003-06	biweekly	manual opaque chamber	6		53
	R_{eco} , GPP	2004-10, except 07,09	half-hourly/hourly	empirical model from EC data	1	Reichstein et al., 2005, Papale et al., 2006	39420

winter R _{eco}	2004-10, except 07,09	half-hourly/hourly	empirical modelling from night NEE EC data during Nov. -Apr.	1		3966	
soil temperature at -8 cm	mid 2004-mid 2011	half-hourly/hourly	automatic temperature sensors	1		48881	
soil temperature at -11 cm	mid 2004-mid 2011	half-hourly/hourly	automatic temperature sensors	1		48881	
LAI	2006-07	4 times a year	optical canopy analyser, weighted mean from 7 vegetation types	3	Hendriks, 2009	8	
above ground biomass	2005-07	4 times a year	0.16m ² clipped, dead leaves removed, weighted mean from 7 vegetation types	3	Hendriks, 2009	12	
Root biomass	2006-07	4 times a year	sieved soil cores of 1.15·10 ⁻⁴ m ³ , dead roots manually removed, weighted mean from 7 vegetation types	2	Hendriks, 2009	8	
FsA and FsB	NEE	2007-2011	3-4 weekly several measurements per day	manual transparent chamber	3	Drösler, 2005; Beetz et al., 2013; Leiber-Sauheitl et al., 2013	1161
	R _{eco}	2007-2011	3-4 weekly several measurements per day	manual opaque chamber	3	Drösler, 2005; Beetz et al., 2013; Leiber-Sauheitl et al., 2013	1161
	GPP	2007-2011	3-4 weekly several measurements per day	empirical model from chamber data	3	Drösler, 2005; Beetz et al., 2013; Leiber-Sauheitl et al., 2013	1161
winter R _{eco}	2007-2011	3-4 weekly several measurements per day	manual opaque chamber during Nov.-Apr.	3		357	
soil temperature at -2 cm	2007	half-hourly/hourly	automatic temperature sensors	1		36447	
soil temperature at -50 cm	2007	half-hourly/hourly	automatic temperature sensors	1		36447	
LAI	summer 2011-summer 2012	~3 weekly	optical canopy analyser	3		26	
Above ground biomass	2007-2011	4 weekly	0.04 m ² , since 2011 0.16 m ² , clipped and sorted into living and dead	3		43	

1 Table S3. List of main equations used in this study

Equation	No.	Definition
Plant biotic processes		
$C_{Atm \rightarrow a} = \varepsilon_L \cdot \eta \cdot f(T_l) \cdot f(CN_l) \cdot f(E_{ta} / E_{tp}) \cdot R_{s,pl}$	(1)	Rate of photosynthesis (g C m ⁻² day ⁻¹)
where ε_L is the radiation use efficiency and η is the conversion factor from biomass to carbon. $R_{s,pl}$ is the global radiation absorbed by canopy and $f(T_l)$, $f(CN_l)$, and $f(E_{ta} / E_{tp})$ limitations due to unfavourable temperature, nitrogen, and water conditions.		
$f(T_l) = \begin{cases} 0 & T_l < p_{mn} \\ (T_l - p_{mn}) / (p_{o1} - p_{mn}) & p_{mn} \leq T_l \leq p_{o1} \\ 1 & p_{o1} < T_l < p_{o2} \\ 1 - (T_l - p_{o2}) / (p_{mx} - p_{o2}) & p_{o2} \leq T_l \leq p_{mx} \\ 0 & T_l > p_{mx} \end{cases}$	(2)	Response function for leaf temperature
where p_{mn} , p_{o1} , p_{o2} and p_{mx} are parameters and T_l the leaf temperature.		
$f(CN_l) = p_{fixedN}$	(3)	Response function for fixed leaf C:N ratio
Where p_{fixedN} is a parameter.		
$f(E_{ta} / E_{tp}) = \frac{E_{ta}}{E_{tp}}$	(4)	Response function for transpiration
where E_{ta} and E_{tp} are actual and potential transpiration.		
$C_{a \rightarrow Leaf} = l_{c1} \cdot C_a$	(5)	Allocation of new assimilates to the leaves
where l_{c1} is a parameter and C_a the new assimilated carbon.		
$C_{a \rightarrow Root} = (1 - l_{c1}) \cdot C_a$	(6)	Allocation of new assimilates to the roots
where l_{c1} is a parameter and C_a the new assimilated carbon.		
$C_{respleaf} = k_{mrespleaf} \cdot f(T) \cdot C_{leaf} + k_{gresp} \cdot C_{a \rightarrow Leaf}$	(7)	Plant growth and maintenance respiration from leaves (g C m ⁻² day ⁻¹)
where $k_{mrespleaf}$ is the maintenance respiration coefficient for leaves, k_{gresp} is the growth respiration coefficient, and $f(T_a)$ is the temperature. The equation calculates respiration from stem, roots, and grains by exchanging $k_{mrespleaf}$ to $k_{mrespstem}$, $k_{mresproot}$, $k_{mrespgrain}$ and using the corresponding storage pools. Respiration from the old carbon pools is estimated with the same maintenance respiration coefficients as for respiration from new carbon pools.		
$f(T) = t_{Q10}^{(T - t_{Q10bas})/10}$	(8)	Temperature response function for maintenance respiration (-)
where t_{Q10} and t_{Q10bas} are parameters.		
$C_{Leaf \rightarrow Stem} = l_{LS} \cdot C_{Leaf}$	(9)	Reallocation of C from leaf pool to stem pool – here used as pool for senescent leaves.
where l_{LS} is a parameter and C_{Leaf} the carbon in the leaf pool.		
$C_{Leaf \rightarrow LitterSurface} = f(T_{sum}) \cdot f(A_i) \cdot s_{newleaf} \cdot C_{Leaf}$	(10)	Leaf C entering the surface litter pool
where $s_{newleaf}$ is a scaling factor. Stem C is calculated analogously with $s_{newstem}$.		

$$f(T_{Sum}) = l_{Lc1} + (l_{Lc2} - l_{Lc1}) \cdot \min \left(1, \frac{\max(0, T_{Sum} - t_{L1})}{\max(1, t_{L2} - t_{L1})} \right) \quad (11)$$

where t_{L1} , t_{L2} , l_{Lc1} and l_{Lc2} are parameters and T_{Sum} is the so called “dorming” temperature sum, $T_{DormSum}$. $T_{DormSum}$ is calculated at the end to the growing season when the air temperature is below the threshold temperature T_{DormTh} , as the accumulated difference between T_{DormTh} and Ta . T_{DormTh} is a parameter.

The stem litter rate is calculated analogously with the parameters t_{S1} , t_{S2} , l_{Sc1} and l_{Sc2} :

$$f(A_l) = e^{l_{LaiEnh} \cdot A_l} \quad (12) \quad \text{Litter fall dependency of LAI}$$

where l_{LaiEnh} is a parameter and A_l the leaf area index

$$C_{Root \rightarrow Litter} = f(l_{Rc}) \cdot C_{Root} \cdot s_{newroot} \quad (13) \quad \text{Root C entering the soil litter pool of the corresponding layer}$$

where $s_{newroot}$ is a scaling factor. The root litter rate function, $f(l_{Rc})$, can be calculated with Eq. (11) by exchanging the parameters t_{L1} , t_{L2} , l_{Lc1} and l_{Lc2} to t_{R1} , t_{R2} , l_{Rc1} and l_{Rc2} .

$$C_{OldLeaf \rightarrow LitterSurface} = f(l_{Lc}) \cdot (C_{OldLeaf} - C_{RemainLeaf}) s_{oldleaf} \quad (14) \quad \text{Litter fall from roots, leaves and stems in the “old” biomass in perennial plants are calculated similarly to the “new” biomass but with the important exception that some of the old leaves may be retained}$$

where or $s_{oldleaf}$ is a scaling factor. The litter fall for stems and roots is calculated analogously.

$$C_{RemainLeaf} = C_{OldLeaf} \left(1 - \frac{1}{l_{life} - 1} \right) \quad (15) \quad \text{fraction of the whole } C_{OldLeaf} \text{ pool that will be excluded from the calculation of the litterfall from the old leaves}$$

where l_{life} is a parameter

$$C_{Leaf \rightarrow Harvest} = f_{leafharvest} \cdot C_{Leaf} \quad (16) \quad \text{amount of harvested carbon, removed from the system}$$

where $f_{leafharvest}$ is a parameter. Harvest from the stem pool is calculated analogously by exchanging $f_{leafharvest}$ with $f_{stemharvest}$. These parameters are also used to calculate the harvest fractions from the old stem and leaves perennials.

$$C_{Leaf \rightarrow LitterSurface} = f_{leaflitharv} \cdot (C_{Leaf} - C_{Leaf \rightarrow Harvest}) \quad (17) \quad \text{amount of plant parts, which are removed from the plant and enter the surface litter pool at harvest}$$

where $f_{leaflitharv}$ is a parameter. Similar flows are calculated for stem and roots by exchanging $f_{leaflitharv}$ to $f_{stemlitharv}$

$$C_{Mobile} = (C_{Leaf \rightarrow LitterSurface} + C_{OldLeaf \rightarrow LitterSurface}) \cdot m_{retain} \quad (18) \quad \text{Allocation to the mobile C pool for developing new leaves during litter fall}$$

where m_{retain} is an allocation coefficient.

$$C_{Mobile \rightarrow Leaf} = C_{Mobile} \cdot m_{shoot} \quad (19) \quad \text{Allocation from the mobile C pool at leafing (between GSI 1 and 2) as an additional supply. This process goes on as long as there is carbon left in the mobile pool.}$$

$$C_{Roots \rightarrow Leaf} = m_{Root} \cdot (C_{Roots} - C_{Leaf} \cdot r_{rl}) \quad (20) \quad \text{Allocation of C in the roots to leaves, taking place after a harvest event as long as root:leaf ratio is smaller than the value of the parameter } r_{rl} \text{ or until the plant goes to dormancy.}$$

Plant abiotic processes

$$R_{s,pl} = (1 - e^{-k_m \frac{A_l}{f_{cc}}}) \cdot f_{cc} (1 - a_{pl}) R_{is} \quad (21) \quad \text{Plant interception of global radiation (MJ m}^{-2} \text{ day}^{-1}\text{)}$$

where k_m is the light use extinction coefficient given as a single parameter common for all plants, f_{cc} is the surface canopy cover, a_{pl} is the plant albedo and R_{is} is the global radiation

$$f_{cc} = p_{c\max} (1 - e^{-p_{ck} A_l}) \quad (22) \quad \text{Surface canopy cover (m}^2 \text{ m}^{-2}\text{)}$$

Where $p_{c\max}$ is a parameter that determines the maximum surface cover and p_{ck} is a parameter that governs the speed at which the maximum surface cover is reached. A_l is the leaf area index of the plant.

$$A_l = \frac{B_l}{p_{l,sp}} \quad (23) \quad \text{Leaf area index (m}^2 \text{ m}^{-2}\text{)}$$

Where $p_{l,sp}$ is a parameter and B_l is the total mass of leaf.

$$L_v E_{tp} = \frac{\Delta R_n + \rho_a c_p \frac{(e_s - e_a)}{r_a}}{\Delta + \gamma \left(1 + \frac{r_s}{r_a} \right)} \quad (24) \quad \text{Potential transpiration } E_{tp} (\text{mm day}^{-1})$$

where R_n is net radiation available for transpiration, e_s is the vapour pressure at saturation, e_a is the actual vapour pressure, ρ_a is air density, c_p is the specific heat of air at constant pressure, L_v is the latent heat of vaporisation, Δ is the slope of saturated vapour pressure versus temperature curve, γ is the psychrometer 'constant', r_s is 'effective' surface resistance and r_a is the aerodynamic resistance.

$$r_s = \frac{1}{\max(A_l g_l, 0.001)} \quad (25) \quad \text{Stomatal resistance (s m}^{-1}\text{)}$$

where g_l is the leaf conductance.

$$g_l = \frac{R_{is}}{R_{is} + g_{ris}} \frac{g_{max}}{1 + \frac{(e_s - e_a)}{g_{vpd}}} \quad (26) \quad \text{Stomatal conductance per leaf area (m s}^{-1}\text{)}$$

where g_{ris} , g_{max} and g_{vpd} are parameter values, g_{maxwin} corresponds to g_{vpd} in winter. R_{is} , is the global radiation and $(e_s - e_a)$ the vapour pressure deficit.

Soil carbon and nitrogen processes

$$C_{DecompL} = k_l \cdot f(T) \cdot f(\theta) \cdot C_{Litter} \quad (27) \quad \text{Decomposition of the fast C pools (g C m}^{-2} \text{ day}^{-1}\text{)}$$

Where k_l is a parameter and $f(T)$ and $f(\theta)$ are response functions for soil temperature and moisture in the certain layer.

$$C_{DecompH} = k_h \cdot f(T) \cdot f(\theta) \cdot C_{Humus} \quad (28) \quad \text{Decomposition of the slow C pools (g C m}^{-2} \text{ day}^{-1}\text{)}$$

Where k_h is a parameter and $f(T)$ and $f(\theta)$ are response functions for soil temperature and moisture in the certain layer.

$$f(T) = t_{Q10}^{(T - t_{Q10bas})/10} \quad (29) \quad \text{Response function for soil temperature (-)}$$

Where t_{Q10} and t_{Q10bas} are parameters and T the soil temperature in the certain layer.

$$f(\theta) = \min \begin{cases} p_{\theta_{satact}} & \theta = \theta_s \\ \left(\frac{\theta_s - \theta}{p_{\theta_{Upp}}} \right)^{p_{\theta_p}} (1 - p_{\theta_{satact}}) + p_{\theta_{satact}}, & \theta_{wilt} \leq \theta \leq \theta_s \\ \left(\frac{\theta - \theta_{wilt}}{p_{\theta_{Low}}} \right)^{p_{\theta_p}} & \\ 0 & \theta < \theta_{wilt} \end{cases} \quad (30) \quad \text{Response function for soil moisture (-)}$$

where $p_{\theta_{Upp}}$, $p_{\theta_{Low}}$, $p_{\theta_{satact}}$, and p_{θ_p} are parameters and the variables, θ_s , θ_{wilt} , and θ , are the soil moisture content at saturation, the soil moisture content at the wilting point, and the actual soil moisture content, respectively.

$$C_{\text{LitterSurface} \rightarrow \text{Litter}_1} = l_{ll} \cdot C_{\text{LitterSurface}} \quad (31)$$

where l_{ll} is a parameter and $C_{\text{LitterSurface}}$ the carbon in the surface litter pool.

$$C_{\text{Litter} \rightarrow \text{CO}_2} = (1 - f_{e,l}) \cdot C_{\text{DecompL}} \quad (32)$$

where $f_{e,l}$ is a parameter

$$C_{\text{Litter} \rightarrow \text{Humus}} = f_{e,l} \cdot f_{h,l} \cdot C_{\text{DecompL}} \quad (33)$$

where $f_{e,l}$ and $f_{h,l}$ are parameters

$$C_{\text{Litter} \rightarrow \text{Litter}} = f_{e,l} (1 - f_{h,l}) \cdot C_{\text{DecompL}} \quad (34)$$

where $f_{e,l}$ and $f_{h,l}$ are parameters

$$C_{\text{Humus} \rightarrow \text{CO}_2} = f_{e,h} \cdot C_{\text{DecompL}} \quad (35)$$

where $f_{e,h}$ is a parameter

Soil heat processes

$$q_h = -k_h \frac{\partial T}{\partial z} \quad (36) \quad \text{Soil heat flux (J m}^{-2} \text{ day}^{-1}\text{)}$$

where k_h is the conductivity, T is the soil temperature and z is depth.

$$q_h(0) = k_{ho} \frac{(T_s - T_1)}{\Delta z / 2} + C_w(T_s) q_{in} + L_v q_{vo} \quad (37) \quad \text{Upper boundary condition for soil heat flow (J m}^{-2} \text{ day}^{-1}\text{)}$$

where k_{ho} is the conductivity of the organic material at the surface, T_s is the surface temperature, T_1 is the temperature in the uppermost soil layer, q_{in} is the water infiltration rate, q_{vo} is the water vapour flow, and L_v is the latent heat.

$$k_{ho} = h_1 + h_2 \theta \quad (38) \quad \text{Heat conductivity of the organic material at the surface}$$

where h_1 and h_2 are empirical constants

$$T_{ss} = \frac{T_1 + aT_a}{1 + a} \quad (39) \quad \text{Soil surface temperature under the snow pack, during periods with snow cover (}^{\circ}\text{C)}$$

where the index 1 means the top soil layer, and the snow surface temperature is assumed to be equal to air temperature. a is a weighting factor depending on snow thickness and conductivity in the snow pack and in the uppermost soil layer.

$$T_{LowB} = T_{a\text{mean}} - T_{a\text{amp}} e^{\frac{z}{d_a}} \cos \left((t - t_{ph}) \omega - \frac{z}{d_a} \right) \quad (40) \quad \text{Temperature at the lower boundary for heat conduction (}^{\circ}\text{C)}$$

where $T_{a\text{mean}}$ and $T_{a\text{amp}}$ are parameters, t is the time, t_{ph} is the phase shift, ω is the frequency of the cycle and d_a is the damping depth.

Soil water processes

$$q_w = -k_w \left(\frac{\partial \psi}{\partial z} - 1 \right) - D_v \frac{\partial c_v}{\partial z} \quad (41)$$

The total water flow, q_w , is the sum of the matrix flow, q_{mat} and the vapour flow, q_v , (mm day^{-1})

where k_w is the unsaturated hydraulic conductivity, ψ is the water tension, z is depth, c_v is the concentration of vapour in soil air and D_v is the diffusion coefficient for vapour in the soil

$$\frac{\partial \theta}{\partial t} = -\frac{\partial q_w}{\partial z} + s_w \quad (42)$$

The general equation for unsaturated water flow follows from the law of mass conservation and eq. (41)

where θ is the soil water content and s_w is a source/sink term for e.g. horizontal in and outflow or root water uptake.

$$S_e = \left(\frac{\psi}{\psi_a} \right)^{-\lambda} \quad (43)$$

Water tension ψ according to Brooks & Corey (1964), between the threshold values ψ_x and ψ_{mat} .

where ψ_a is the air-entry tension, λ is the pore size distribution index and S_e the effective saturation.

$$S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} \quad (44)$$

Effective saturation S_e , between the threshold values ψ_x and ψ_{mat} .

where θ_s is the porosity, θ_r is porosity content and θ is the actual water content.

$$\frac{\log \left(\frac{\psi}{\psi_x} \right)}{\log \left(\frac{\psi_{\text{wilt}}}{\psi_x} \right)} = \frac{\theta_x - \theta}{\theta_x - \theta_{\text{wilt}}} \quad (45)$$

for $\psi_x < \psi < \psi_{\text{wilt}}$

The relation between water content and tension above the threshold ψ_x

where θ_x is the threshold water content at the threshold tension, ψ_x , θ_{wilt} is the water content at wilting point, defined as a tension of 15 000 cm water, i.e. ψ_{wilt} .

$$\psi = \psi_{\text{mat}} - \frac{(\theta - \theta_s + \theta_m)}{\theta_m} \psi_{\text{mat}} \quad (46)$$

for $\psi_s < \psi < \psi_{\text{mat}}$

In the range close to saturation, i.e. from θ_s to θ_m a linear expression is used for the relationship between water content, θ , and water tension, ψ

where ψ_{mat} is the tension that corresponds to a water content of $\theta_s - \theta_m$.

$$k_w^* = k_{\text{mat}} S_e^{\left(\frac{n+2+\frac{2}{\lambda}}{n+2} \right)} \quad (47)$$

Unsaturated hydraulic conductivity k_w^* (mm day^{-1})

where k_{mat} is a parameter corresponding to the saturated matrix conductivity and n is a parameter accounting for pore correlation and flow path tortuosity.

$$k_w^* = 10^{\left(\log(k_w^*(\theta_s - \theta_m)) + \frac{\theta + \theta_s + \theta_m}{\theta_m} \log \left(\frac{k_{\text{sat}}}{k_w(\theta_s - \theta_m)} \right) \right)} \quad (48)$$

Total conductivity close to saturation (above the threshold ψ_x), to account for the conductivity in the macro pores.

where k_{sat} is the saturated total conductivity, which includes the macro pores, and $k_w^*(\theta_s - \theta_m)$ is the hydraulic conductivity below $\theta_s - \theta_m$ (i.e. at ψ_{mat}) calculated from eq (47)

$$k_w = (r_{AOT} + r_{AIT} T_s) \max(k_w^*, k_{\text{minuc}}) \quad (49)$$

Actual unsaturated hydraulic conductivity after temperature corrections

where r_{AOT} , r_{AIT} and k_{minuc} are parameter values. k_w^* is the conductivity according to eqs (47) and (48)

1 Table S4. Calibrated parameters

Symbol	Name	unit	Eq.	Definition	Min	Max
g_{maxwin}	CondMaxWinter	m s^{-1}	(26)	maximal conductance of fully open stomata to calculate the potential transpiration of plants during winter	0.002	1
g_{ph}	GSI Post Harvest(1)	-		growth stage to which the plant is set back after harvest	1.3	3
k_{gresp}	GrowthCoef(1)	day^{-1}	(7)	rate coefficient for growth respiration of the plant (respiration relative to amount of assimilates)	0.13	0.25
k_l	RateCoefLitter1	a^{-1}	(27)	rate coefficient for the decay of SOC in the fast pools		0.003
$k_{mresleaf}$	MCoefLeaf(1)	day^{-1}	(7)	rate coefficient for maintenance respiration of leaves (respiration relative to leaf biomass)	0.015	0.035
$k_{mresroot}$	MCoefRoot(1)	day^{-1}	(7)	maintenance respiration coefficient for root (respiration relative to root biomass)		0.003
$k_{mresstem}$	MCoefStem(1)	day^{-1}	(7)	maintenance respiration coefficient for stem (respiration relative to stem biomass)		0.013
k_{rn}	RntLAI	-	(21)	extinction coefficient in the Beer's law used to calculate the partitioning of net radiation between canopy and soil surface	0.52	1
l_{cl}	Leaf c1(1)	g C^{-1}	(5)	fraction of new assimilates which is allocated to the leaves	0.52	0.55
l_{l1}	RateCoefSurf L1	day^{-1}	(31)	fraction of the above ground residues that enter the litter 1 pool of the uppermost soil layer	0.002	0.008
l_{LaiEnh}	LAI Enh Coef(1)	-	(12)	scaling factor for enhanced leaf litter fall rates when higher LAI values are reached	0.0016	0.6
l_{Lc1}	LeafRate1(1)	day^{-1}	(11)	rate coefficient for the leaf litter fall before the first threshold temperature sum t_{L1} is reached		0.05
l_{Lc2}	LeafRate2(1)	day^{-1}	(11)	rate coefficient for the leaf litter fall after the second threshold temperature sum t_{L2} is reached	0.1	0.3
l_{LS}	C Leaf to Stem(1)	-	(9)	scaling factor for reallocation of C from leaf to stem after the plant reached maturity growth state	0.015	0.025
l_{Rc1}	RootRate1(1)	day^{-1}	(13)	rate coefficient for the litter fall from roots before the first threshold temperature sum t_{R1} is reached		0.015
l_{Rc2}	RootRate2(1)	day^{-1}	(13)	rate coefficient for the litter fall from roots after the second threshold temperature sum t_{R2} is reached	0.01	0.05
l_{Sc1}	StemRate1(1)	day^{-1}	(11)	rate coefficient for the litter fall from stems before the first threshold temperature sum t_{S1} is reached	0.003	0.1
l_{Sc2}	StemRate2(1)	day^{-1}	(11)	rate coefficient for the litter fall from stems after the second threshold temperature sum t_{S2} is reached	0.03	0.2
m_{retain}	Mobile Allo Coef	-	(18)	coefficient for determining allocation to mobile internal storage pool	0.4 ^a , 0.05 ^{bc} ,	0.8 ^{ab} , 0.45 ^d , 0.5 ^c ,

					0.01 ^d	
m_{Root}	RateCoef_fRoot(1)	-	(20)	speed at which reallocation of C from roots to leaves after harvest take place	0.005	0.04
m_{shoot}	Shoot Coef	-	(19)	coefficient for the rate at which C is reallocated from the mobile pool to the leaf at leafing	0.05	0.15
p_{ck}	Area kExp(1)	-	(22)	speed at which the maximum surface cover of the plant canopy is reached	0.5	1
$p_{l,sp}$	Specific LeafArea	g C m ⁻²	(23)	factor for calculating LAI from leaf biomass, which is actually the inverse of specific leaf area, i.e. leaf mass per unit leaf	44	49
p_{mn}	T LMin(1)	°C	(2)	minimum mean air temperature at which photosynthesis can take place	0.001	0.5
$p_{\theta p}$	ThetaPowerCoef	vol %	(30)	power coefficient in the response function of microbial activity in dependency of soil moisture	0.65	4.5
$p_{\theta Satact}$	Saturation activity	vol %	(30)	parameter in the soil moisture response function defining the microbial activity under saturated conditions	0.001	0.252, 1 ^f
$p_{\theta Upp}$	ThetaUpperRange	vol %	(30)	water content interval in the soil moisture response function for microbial activity	20, 8 ^f	77
r_{rl}	Root Leaf Ratio(1)	-	(20)	threshold value for the root:leaf ratio at which reallocation of C from roots to leaves takes place after an harvest event	5	6.5
$s_{newleaf}$	New Leaf(1)	-	(10)	scaling factor for litter fall from new leaves	0.15	0.25
$s_{newroot}$	New Roots(1)	-	(13)	scaling factor for litter fall from new roots	0.1	0.25
$s_{newstem}$	New Stem(1)	-	(10)	scaling factor for litter fall from new stems	0.1	0.15
T_{amean}	TempAirMean	°C	(40)	assumed value of mean air temperature for the lower boundary condition for heat conduction.	5.5 ^a , 10.5 ^{b,d} , 13 ^c	6.2 ^a , 15.5 ^{b,c} , 13 ^d
T_{DormTh}	Dormancy Tth	°C	(11)	threshold temperature for plant dormancy – if the temperature falls below this value for five consecutive days, the dormancy temperature sum starts to be calculated.	0.1	2.5, 5 ^f
$T_{EmergeSum}$	TempSumStart	°C		air temperature sum which is the threshold for start of plant development	0.5	10
$T_{EmergeTh}$	TempSumCrit	°C		critical air temperature that must be exceeded for temperature sum calculation	0.15	1
t_{L1}	LeafTsum1(1)	day°C	(11)	threshold temperature sum after reaching dormancy state for the lower leaf litter rate. When it is reached, l_{Lc1} starts to change towards the increased litter fall rate l_{Lc2}	10	20
t_{L2}	LeafTsum2(1)	day°C	(11)	threshold temperature sum after reaching dormancy state for the higher leaf litter rate. When it is reached, the full high litter rate is applied.	20	50
$T_{MatureSum}$	Mature Tsum	°C		temperature sum beginning from grain filling stage for plant reaching maturity stage	80 ^a , 320 ^b , 750 ^c , 1050 ^d	115 ^a , 450 ^b , 850 ^c , 1350 ^d
t_{Q10}	TemQ10	-	(8), (29)	response to a 10 °C soil temperature change on the microbial activity, mineralisation-immobilisation, nitrification and denitrification and plant maintenance	1.95	3.5

				respiration		
t_{Q10bas}	TemQ10Bas	°C	(8), (29)	base temperature for the microbial activity, mineralisation-immobilisation, nitrification and denitrification at which the response is 1	15	26
t_{R1}	RootTsum1(1)	day°C	(13)	threshold temperature sum after reaching dormancy state for the lower root litter rate. When it is reached, t_{Rc1} starts to change towards the increased litter fall rate t_{Rc2}	10	20
t_{R2}	RootTsum2(1)	day°C	(13)	threshold temperature sum after reaching dormancy state for the higher root litter rate. When it is reached, the full high litter rate is applied.	20	50
t_{S1}	StemTsum1(1)	day°C	(11)	threshold temperature sum after reaching dormancy state for the lower stem litter rate. When it is reached, t_{Sc1} starts to change towards the increased litter fall rate t_{Sc2}	10	20
t_{S2}	StemTsum2(1)	day°C	(11)	threshold temperature sum after reaching dormancy state for the higher stem litter rate. When it is reached, the full high litter rate is applied.	20	50
ε_L	PhoRadEfficiency	gDW MJ ⁻¹	(1)	radiation use efficiency for photosynthesis under optimum temperature, moisture and nutrients conditions	1.5 ^a , 2.3 ^b , 1.8 ^c , 2.5 ^d	2.6 ^{ab} , 3.2 ^{cd}

1 ^a at Lom

2 ^b at Amo

3 ^c at Hor

4 ^d at FsA and FsB

5 ^e Parameter uses opposite values to the linked parameter

6 ^f range tested in additional multiple runs

7

8

1 Table S5. Most important parameters with constant values

Symbol	Name	unit	Eq.	Definition	Value
Δz_{humus}	OrganicLayerThick	m		thickness of the humus layer as used as a thermal property	3 ^{abd} ; 2.5 ^c
a_{pl}	AlbedoLeaf	%	(21)	plant albedo	25
$f_{e,h}$	Eff Humus	day ⁻¹	(35)	fraction of decomposition products from the slow SOC pools being released as CO ₂	0.5
$f_{e,l}$	Eff Litter1	day ⁻¹	(32), (33), (34)	fraction of decomposition products from the fast SOC pools being released as CO ₂	0.5
$f_{h,l}$	HumFracLitter1	day ⁻¹	(32), (34)	fraction of decomposition products from the fast SOC pools that will enter the slow decomposition pools	0.2
$f_{leafharvest}$	FHarvest Leaf	-	(16)	the fraction of leaves that is harvested	0.85
$f_{leaflitharv}$	FLitter Leaf	-	(17)	fraction of the remaining leaves after harvest that enters the fast SOC pool	0.1
$f_{stemharvest}$	FHarvest Stem	-	(16)	the fraction of stem that is harvested	0.85
$f_{stemlitharv}$	FLitter Stem	-	(17)	fraction of the remaining stem after harvest that enters the fast C pool	0.1
g_{max}	CondMax	m ² s ⁻¹	(26)	the maximal conductance of fully open stomata	0.02
g_{ris}	CondRis	J m ⁻² day ⁻¹	(26)	the global radiation intensity that represents half-light saturation in the light response	
g_{vpd}	CondVPD	Pa	(26)	the vapour pressure deficit that corresponds to a 50 % reduction of stomata conductance	100
h_1	OrganicC1	-	(38)	empirical constant in the heat conductivity of the organic material at the surface	0.06
h_2	OrganicC2	-	(38)	empirical constant in the heat conductivity of the organic material at the surface	0.005
k_h	RateCoefHumus	day ⁻¹	(28)	rate coefficient for the decay of C in the slow SOC pools	2·10 ⁻⁸
k_{mat}	Matrix Conductivity	mm day ⁻¹	(47)	matrix conductivity in the function for unsaturated conductivity	1200 ^I , 300 ^{II}
k_{sat}	Total Conductivity	mm day ⁻¹	(48)	total conductivity under saturated conditions	1200 ^I , 300 ^{II}
l_{life}	Max Leaf Lifetime	a	(15)	maximum leaf lifetime	1
n	n Tortuosity	-	(47)	parameter for pore correlation and flow path tortuosity in the function for unsaturated hydraulic conductivity	1
p_{cmax}	Max Cover	m ² m ⁻²	(22)	maximum surface cover of plant	1
p_{fixedN}	FixedN	-	(3)	response for leaf C:N ratio	1
p_{mx}	PhoTempResMax	°C	(2)	maximum mean air temperature for photosynthesis	35
p_{ol}	PhoTempResOpt1	°C	(2)	lower limit mean air temperature for optimum photosynthesis	15
p_{o2}	PhoTempResOpt2	°C	(2)	upper limit mean air temperature for optimum photosynthesis	25
$p_{\theta Low}$	ThetaLowerRange	vol %	(30)	water content interval in the soil moisture response function for microbial activity, mineralisation–immobilisation, nitrification and denitrification.	13
r_{AIT}	TempFacLinIncreas	°C ⁻¹	(49)	The slope coefficient in a linear temperature dependence function for the hydraulic conductivity	0.023

r_{AOT}	TempFacAtZero	-	(49)	relative hydraulic conductivity at 0°C compared with a reference temperature of 20°C.	0.54
$s_{oldleaf}$	Old Leaf(1)	-	(14)	scaling factor for litter fall of old leaf	1
$s_{oldroot}$	Old Roots(1)	-	(14)	scaling factor for litter fall of old roots	1
$s_{oldstem}$	Old Stem(1)	-	(14)	scaling factor for litter fall of old stem	1
T_{aamp}	TempAirAmpl	°C	(40)	assumed value of the amplitude of the sine curve , representing the lower boundary condition for heat conduction	10
z	LowerDepth	m		depth of the border between the upper and lower horizon in respect to hydrological properties	0.3
η	Biomass to carbon	mol C g ⁻¹ dw	(1)	conversion factor from biomass to carbon	0.45
θ_m	Macro Pore	vol %	(46), (48)	macro pore volume	4 ^{lab} , 6.5 ^{lc} , 7.38 ^{ld} , 4 ^{IIab} , 8 ^{IIcd}
θ_r	Residual Water	vol %	(44)	residual soil water content	0.3 ^I , 0 ^{II}
θ_s	Saturation	vol %	(44), (46), (48)	water content at saturation	84 ^{lab} , 79 ^{lc} , 83 ^{ld} , 86 ^{IIab} , 90 ^{IIc} , 89 ^{IId}
θ_{wil}	Wilting Point	vol %	(45)	water content at wilting point	20 ^{lab} , 2 ^{lc} , 33 ^{ld} , 22 ^{II}
λ	Lambda	-		pore size distribution index	0.2 ^{ab} , 0.07 ^{ld} , 0.24 ^{lc} , 0.09 ^{IIcd}
ψ_a	Air Entry	cm	(43)	air-entry tension	8 ^{lab} , 3.8 ^{lc} , 12 ^{ld} , 10 ^{IIab} , 24 ^{IIcd}
ψ_x	Upper Boundary	cm	(45)	soil water tension at the upper boundary of Brooks & Corey's expression	8000

1 ^a at Lom

2 ^b at Amo

3 ^c at Hor

4 ^d at FsA and FsB

5 ^I upper horizont

6 ^{II} lower horizont

7

8

1 Table S6. CoupModel switches - differences to default configuration

Modules	Options	Value
Abiotic driving variables	SoilDrainageInput	Simulated
Abiotic driving variables	SoilInfilInput	Simulated
Abiotic driving variables	SoilTempInput	Simulated
Abiotic driving variables	SoilWaterFlowInput	Simulated
Abiotic driving variables	SoilWaterInput	Simulated
Abiotic driving variables	WaterStressInput	Simulated
Drainage and deep percolation	DriveDrainLevel	Driving File
Drainage and deep percolation	PhysicalDrainEq	Linear Model
External N inputs	N Deposition	on
Gas processes	Methane Model	Detailed
Gas processes	Methane emission by plants	on
Gas processes	Methane oxidation by plants	on
Gas processes	Trace Gas Emissions	Direct Loss
Hidden	AboveTable	No
Hidden	TAirGlobRad	Used
Hidden	TimeResolution	Hourly
Hidden	TypeOfDrivingFile	Standard driving file
Interception	PrecInterception	on
Meteorological Data	CloudInput	Estimated(sunshine)
Meteorological Data	HumRelInput	Read from PG-file (first position)
Meteorological Data	PrecInput	Read from PG-file (first position)
Meteorological Data	TempAirInput	Read from PG-file (first position)
Meteorological Data	VapourAirInput	As relative humidity
Model Structure	Evaporation	Radiation input style
Model Structure	GroundWaterFlow	on
Model Structure	LateralInput	WaterShed approach
Model Structure	Nitrogen and Carbon	Dynamic interaction with abiotics
Model Structure	PlantType	Explicit big leafs
Model Structure	SnowPack	on
Model Structure	WaterEq	On with complete soil profile
Numerical	NitrogenCarbonStep	Independent
Plant	AlbedoVeg	Simulated
Plant	CanopyHeightInput	Simulated
Plant	LaiInput	Simulated
Plant	PlantDevelopment	Start=f(TempSum)
Plant	RootInput	Simulated
Plant Growth	Growth	Radiation use efficiency
Plant Growth	Harvest Day	PG File specified
Plant Growth	Litter fall dynamics	f(DormingTempSum)

Plant Growth	N ReAllocation	On
Plant Growth	N fixed Supply	on
Plant Growth	PlantRespiration	Growth and Maintenance
Plant Growth	ReAllocationToLeaf	On
Plant Growth	Winter regulation	On
Soil evaporation	Evaporation Method	Iterative Energy Balance
Soil evaporation	Surface Temperature	f(E-balance Solution)
Soil frost	FrostSwelling	Off
Soil heat flows	Convection flow	Not accounted for
Soil mineral N processes	Denitrification	Microbial based
Soil mineral N processes	Nitrification	Microbial based
Soil organic processes	Initial Soil Organic	Table

1

2

3

4

1 Table S7. Criteria for accepted runs in the basic calibration (I a). Lower and upper limits are
 2 separated by fore slash. In case of R^2 , the upper limit corresponds to the highest value
 3 achieved for this site. The criteria were selected to fit for around 75 runs and depend on the
 4 different performances achieved for the different sites.

Site	Accepted runs	$R_{\text{eco}} \text{ ME}$	$R_{\text{eco}} R^2$	GPP ME	GPP R^2	LAI ME	LAI R^2	Winter $R_{\text{eco}} \text{ ME}$	Winter GPP ME	NEE R^2	Root biomass ME
Lom	74	-0.15/0.15	0.72/0.9	-0.15/0.15	0.65/0.70	0.65/0.70	-0.2/0.2	-0.25/0.25	-0.25/0.25	-0.25/0.25	
Amo	64	-0.2/0.2		0.65/0.71	-0.2/0.2	0.65/0.68	-0.5/0.5	-0.4/0.4	-0.4/0.4	-0.4/0.4	
Hor	74	-0.5/0.5			-0.5/0.5			-2/2	0.48/0.53	0.48/0.53	-150/150
FsA	68	-0.85/0.85	0.5/0.73	-0.85/0.85	0.32	-0.3/0.3	0.58/0.75	-3/3	-1/1	-1/1	
FsB	67	-0.8/0.8	0.65/0.87	-0.8/0.80	0.35/0.42	-0.25/0.25	0.65/0.82	-2/2	-1/1	-1/1	

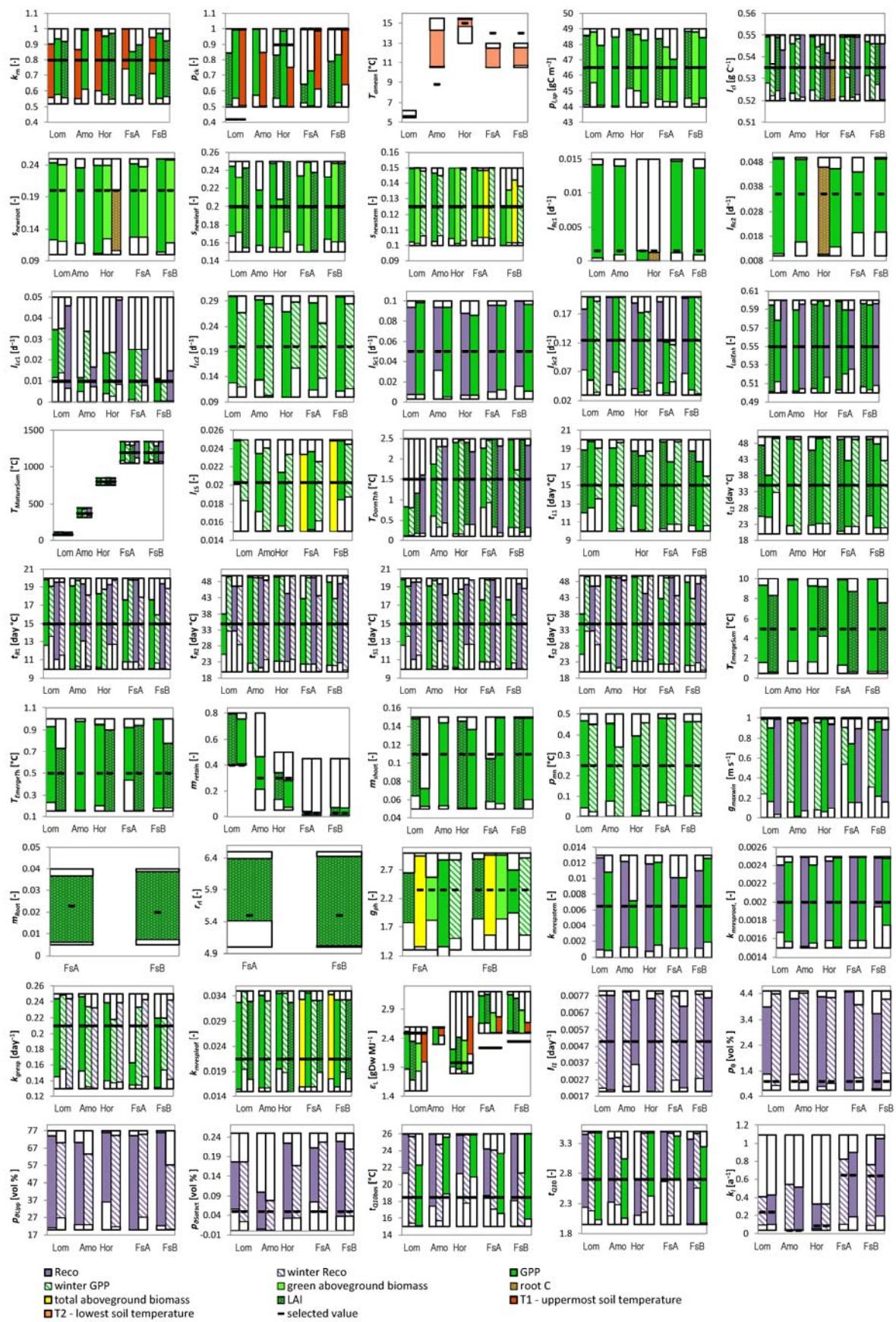
5

1 Table S8. Configurations of the selected single value representations C1-C7. Resulting values
2 for k_{II} and ε_L can be found in Figure 6.

Identifier	Description	t_{Q10} [-]	t_{Q10bas} [°C]	$p_{\theta Satact}$ [-]	$k_{mrespleaf}$ [day $^{-1}$]	C:N fast pool [-]	p_{ck} [-]
C1_basic	selected basic common configuration	2.7	18.5	0.05	0.017	27.5	0.42 ^a , 0.2 ^b , 0.9 ^c , 1 ^d
C2_↑plant_resp	higher ratio of plant to soil respiration	2.7	18.5	0.05	0.022	27.5	0.42 ^a , 0.2 ^b , 0.9 ^c , 1 ^d
C3_↑ $p_{\theta Satact}$	higher saturation activity	2.7	18.5	0.40	0.017	27.5	0.42 ^a , 0.2 ^b , 0.9 ^c , 1 ^d
C4_↑temp_response	steeper temperature response function	4.0	12.0	0.05	0.008	27.5	0.42 ^a , 0.2 ^b , 0.9 ^c , 1 ^d
C5_C3&C4	higher saturation activity and steeper temperature response	4.0	12.0	0.40	0.008	27.5	0.42 ^a , 0.2 ^b , 0.9 ^c , 1 ^d
C6_C:N_60	C:N of 60 for the fast decomposition pools	2.7	18.5	0.05	0.017	60	0.42 ^a , 0.2 ^b , 0.9 ^c , 1 ^d
C7_common_ p_{ck}	same p_{ck} value for all sites	2.7	18.5	0.05	0.017	27.5	1

3 ^a at Lom

4 ^b at Amo


5 ^c at Hor

6 ^d at FsA and FsB

1 Table S9. Variables and related parameter as used for further parameter constraint in step I c
 2 and III

Variable	Site	Parameter
R _{eco}	Lom, Amo, Hor, FsA, FsB	$l_{cl}, l_{Sc1}, l_{Sc2}, l_{Lc1}, l_{Lc2}, l_{LaiEnh}, T_{MatureSum}, T_{DormTth}, t_{RI}, t_{R2}, t_{SI}, t_{S2}, g_{maxwin}, k_{mrespstem}, k_{mresproto}, p_{0Satact}, p_{0Upp}, l_{l1}, p_{\theta}, k, T_{EmergeSum}, t_{Q10}, t_{Q10bas}$
GPP	Lom, Amo, Hor, FsA, FsB	$k_{rn}, p_{ck}, \varepsilon_L, p_{l,sp}, l_{cl}, s_{newroot}, s_{newstem}, l_{Rc1}, l_{Rc2}, l_{Sc1}, l_{Sc2}, l_{Lc1}, l_{Lc2}, l_{LaiEnh}, T_{MatureSum}, l_{LS}, T_{DormTth}, t_{L1}, t_{L2}, t_{RI}, t_{R2}, t_{SI}, t_{S2}, m_{shoot}, m_{retain}, T_{EmergeTh}, T_{EmergeSum}, p_{mn}, g_{maxwin}, g_{ph}, k_{mrespstem}, k_{mresproto}, k_{gresp}, k_{mrespleaf}, t_{Q10}, t_{Q10bas}$
winter R _{eco}	Lom, Amo, Hor, FsA, FsB	$t_{RI}, t_{R2}, t_{SI}, t_{S2}, k_{gresp}, p_{0Satact}, p_{0Upp}, l_{l1}, p_{\theta}, k_l, T_{EmergeSum}, t_{Q10}, t_{Q10bas}$
winter GPP	Lom, Amo, Hor, FsA, FsB	$l_{cl}, s_{newstem}, l_{Sc2}, l_{Lc1}, T_{MatureSum}, l_{LS}, T_{DormTth}, t_{L1}, t_{L2}, t_{RI}, t_{R2}, t_{SI}, t_{S2}, p_{mn}, g_{maxwin}, g_{ph}, k_{gresp}, k_{mrespleaf}$
upper most soil temperature	Lom, Amo, Hor, FsA, FsB	$k_{rn}, p_{ck}, \varepsilon_L$
lowest soil temperature	Lom, Amo, Hor, FsA, FsB	T_{amean}
LAI	Lom, Hor, FsA, FsB	$k_{rn}, p_{ck}, \varepsilon_L, p_{l,sp}, l_{cl}, s_{newleaf}, l_{LaiEnh}, T_{MatureSum}, T_{DormTth}, t_{L1}, t_{L2}, m_{shoot}, m_{retain}, T_{EmergeTh}, T_{EmergeSum}, m_{Root}, k_{mrespleaf}, r_{rl}, g_{ph}$
snow depth	Lom	
green above ground biomass	Hor, FsA, FsB	$\varepsilon_L, p_{l,sp}, s_{newroot}, s_{newleaf}, s_{newstem}, g_{ph}$
total above ground biomass	Hor, FsA, FsB	$s_{newstem}, l_{LS}, g_{ph}, k_{mrespleaf}$
root biomass	Hor	$l_{cl}, s_{newroot}, l_{Rc1}, l_{Rc2}$

3

1 Figure S1. Tested parameters and ranges of the basic calibration and for configuration C1 selected values. Each
2 solid bar show the range of the 10 out of 350'000 runs with the best performance index for a validation variable
3 (x-axis). Only those bars were shown where either a covariance between the performance on this variable and
4 the parameter were detected or expected due to model equations. Tested ranges are indicated by the grey frame
5 around the bar.