
Biogeosciences, 12, 1299–1315, 2015

www.biogeosciences.net/12/1299/2015/

doi:10.5194/bg-12-1299-2015

© Author(s) 2015. CC Attribution 3.0 License.

Constraining ecosystem carbon dynamics in a data-limited world:

integrating ecological “common sense” in a model–data fusion

framework

A. A. Bloom1,* and M. Williams1

1School of GeoSciences, University of Edinburgh, Edinburgh, UK
*now at: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

Correspondence to: A. A. Bloom (abloom@jpl.nasa.gov)

Received: 13 June 2014 – Published in Biogeosciences Discuss.: 29 August 2014

Revised: 7 January 2015 – Accepted: 23 January 2015 – Published: 3 March 2015

Abstract. Many of the key processes represented in global

terrestrial carbon models remain largely unconstrained. For

instance, plant allocation patterns and residence times of car-

bon pools are poorly known globally, except perhaps at a few

intensively studied sites. As a consequence of data scarcity,

carbon models tend to be underdetermined, and so can pro-

duce similar net fluxes with very different parameters and

internal dynamics. To address these problems, we propose

a series of ecological and dynamic constraints (EDCs) on

model parameters and initial conditions, as a means to con-

strain ecosystem variable inter-dependencies in the absence

of local data. The EDCs consist of a range of conditions on

(a) carbon pool turnover and allocation ratios, (b) steady-

state proximity, and (c) growth and decay of model carbon

pools. We use a simple ecosystem carbon model in a model–

data fusion framework to determine the added value of these

constraints in a data-poor context. Based only on leaf area

index (LAI) time series and soil carbon data, we estimate net

ecosystem exchange (NEE) for (a) 40 synthetic experiments

and (b) three AmeriFlux tower sites. For the synthetic exper-

iments, we show that EDCs lead to an overall 34 % relative

error reduction in model parameters, and a 65 % reduction

in the 3 yr NEE 90 % confidence range. In the application

at AmeriFlux sites all NEE estimates were made indepen-

dently of NEE measurements. Compared to these observa-

tions, EDCs resulted in a 69–93 % reduction in 3 yr cumu-

lative NEE median biases (− 0.26 to +0.08 kg C m−2), in

comparison to standard 3 yr median NEE biases (−1.17 to

−0.84 kg C m−2). In light of these findings, we advocate the

use of EDCs in future model–data fusion analyses of the ter-

restrial carbon cycle.

1 Introduction

Terrestrial ecosystem carbon exchange is a fundamental part

of the global carbon cycle link to biosphere processes. Atmo-

spheric CO2 measurements indicate the presence of a global

land C sink, i.e. uptake by the terrestrial biosphere exceeds

losses. However, relative to all major terms in the global car-

bon budget, the global land sink exhibits both the largest

inter-annual variability and the largest uncertainty (Le Quéré

et al., 2013). The terrestrial carbon budget uncertainty stems

largely from unknowns in the size, spatial distribution and

temporal dynamics of the major terrestrial carbon pools. As

a result, there is little agreement among modelled land sink

projections for the 21st century (Todd-Brown et al., 2013;

Friend et al., 2013), reflecting uncertainty in knowledge on

the current state of the terrestrial C cycle and its dynamics.

In recent years a growing volume of data from flux tow-

ers, satellites and plant trait databases has been used to con-

strain some of the key components of the terrestrial carbon

cycle (e.g. Baldocchi et al., 2001; Simard et al., 2011; Kattge

et al., 2011). In particular, a range of ecosystem carbon mod-

els and data sets have been brought together in model–data

fusion (MDF) frameworks to produce an enhanced analy-
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sis of ecosystem carbon cycling (e.g. Williams et al., 2005;

Fox et al., 2009; Carvalhais et al., 2010; Luo et al., 2011;

Ziehn et al., 2012; Smith et al., 2013). Where multiple data

streams are available, MDF approaches can provide an ex-

tensive insight into carbon pool dynamics, turnover rates and

carbon allocation fractions (Richardson et al., 2010; Keenan

et al., 2013). However, even at research-intensive sites, MDF

studies can produce a wide range of acceptable model pa-

rameter sets, due to underdetermination of the carbon bud-

get with available data. Some of these optimized parame-

ter sets, even though they generate realistic fluxes over short

timescales, are associated with major changes to larger car-

bon pools (soil, wood) that are nonsensical (Fox et al., 2009).

For regional- and global-scale model implementation, the

lack of in situ measurements amplifies this problem, some-

times referred to as equifinality (Beven and Freer, 2001). Ul-

timately, we need to overcome data limitations and underde-

termination by integrating models and ecosystem knowledge

in a common framework. This framework must ensure eco-

logically realistic outcomes, while still encompassing (i.e. ef-

fectively quantifying) the uncertainty associated with param-

eter estimation given observation errors (Hill et al., 2012).

Although a range of process-based models have been

used to represent the dynamics of the terrestrial carbon cy-

cle and land–atmosphere CO2 exchange (e.g. Sitch et al.,

2008; Schwalm et al., 2010), there are advantages in us-

ing simpler models to estimate ecosystem carbon state vari-

ables. Firstly, there is a trade-off between model complex-

ity, such as the number of model parameters, and a model’s

ability to reproduce observations (e.g. Akaike, 1974): there-

fore a low-complexity model is preferable when it can re-

produce ecosystem observations with comparable skill. Sec-

ondly, complex models are often computationally expensive,

and this is an inhibiting factor when using iterative methods

(such as Monte Carlo approaches) to estimate model parame-

ters and their uncertainty. Ideally, the key terms of ecosystem

carbon dynamics can be constrained by combining ecosys-

tem observations with a model of appropriate complexity in

a computationally efficient MDF framework.

Previous MDF studies have invariably relied on net

ecosystem exchange (NEE) measurements (real and syn-

thetic), along with other site-level observations (Williams

et al., 2009). In a global context, the FLUXNET flux-tower

network (Baldocchi et al., 2001) consists of hundreds of

flux tower sites where hectare-scale NEE measurements have

been made over the past two decades. In addition to NEE,

complementary site-level biometric data can help resolve

model parameters and state variables in an MDF context

(Richardson et al., 2010; Hill et al., 2012; Keenan et al.,

2013), alleviating the problem of underdetermination. How-

ever, the terrestrial biosphere will inevitably remain poorly

sampled by FLUXNET. Alternative estimates of NEE from

atmospheric CO2 measurements (e.g. Peters et al., 2010;

Feng et al., 2011) are only produced at continental-scale res-

olutions. Therefore, given the limited span of the FLUXNET

flux-tower network, are spatially resolved global carbon cy-

cle analyses limited by the sparsity of eddy flux and biomet-

ric data?

NEE, the difference between photosynthesis and ecosys-

tem respiration, is a function of the dynamics of all carbon

pools over a range of timescales. In the absence of NEE

observations, model NEE estimates depend on a knowledge

of carbon pool sizes and model parameter values. In real-

ity, carbon pools and model parameters (especially those re-

lated to plant allocation fractions and pool turnover rates) are

poorly constrained, and therefore NEE estimates are subject

to a comparably large uncertainty. Nonetheless, fundamental

knowledge on ecosystem behaviour can potentially be used

to overcome the lack of location-specific data or parameter

values. For example, while parameters related to phenology,

C allocation and turnover may vary across multiple orders

of magnitude (Kattge et al., 2011; Fox et al., 2009), these

parameters are strongly correlated (e.g. Sloan et al., 2013),

and the range of possible parameter configurations is there-

fore limited. Such examples include correlations between

leaf lifespan and leaf mass per area (Wright et al., 2004),

leaf area index and total foliar N (Williams and Rastetter,

1999), and between foliar and root biomass (Sloan et al.,

2013). These correlations can confine parameter searches

to a smaller hyper-volume. Equally, while ecosystems ex-

hibit a large range of non-steady-state dynamic behaviours,

strong inter-relationships are expected between inputs, out-

puts, carbon pool magnitudes and turnover rates (Luo and

Weng, 2011). Richardson et al. (2010) introduced the con-

cept of reality constraints (or internal model constraints) on

carbon pool dynamics within a carbon cycle MDF analysis:

such constraints on the model state can potentially be used

to improve estimates of model parameters. Here we propose

that a broad range of model parameter combinations can be

discarded when phenology, carbon allocation, turnover rates

and pool dynamics are considered ecologically “nonsensi-

cal”. We seek to address the following question: can we im-

prove ecosystem model parameter and NEE estimates by in-

corporating ecological “common sense” into carbon cycle

MDF analyses?

In this paper we propose a series of ecological and dy-

namic constraints (EDCs) on model parameters: these in-

clude turnover and allocation parameter inter-relations, car-

bon pool dynamics and steady-state proximity conditions

(Sect. 2). We quantify the added value of imposing EDCs in

synthetic and real-data MDF contexts using a simple ecosys-

tem carbon model, by measuring bias and confidence interval

reductions of carbon cycle analyses relative to independent

data (Sect. 3). Finally, we discuss the prospects and limita-

tions of our approach, as well as the implications of a wider

EDC implementation in terrestrial carbon cycle MDF meth-

ods (Sect. 4).
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Table 1. DALEC2 model parameters, descriptions, and minimum–maximum parameter values: the corresponding DALEC2 equations are

fully described in Appendix A.

Parameter Description Range

fauto autotrophic respiration fraction 0.3–0.7

flab fraction of GPP allocated to labile C pool 0.01–0.5

ffol fraction of GPP allocated to foliage 0.01–0.5

froo fraction of GPP allocated to fine roots 0.01–0.5

fwoo
1 fraction of GPP allocated to wood 0.01–0.5

θwoo woody C turnover rate 2.5× 10−5–10−3 d−1

θroo fine root C turnover rate 10−4–10−2 d−1

θlit litter C turnover rate 10−4–10−2 d−1

θsom soil organic C turnover rate 10−7–10−3 d−1

θmin litter mineralization rate 10−2–10−5 d−1

2 temperature dependence exponent factor 0.018–0.08

donset leaf onset day 1–365

dfall leaf fall day 1–365

ceff canopy efficiency parameter 10–100

clma leaf mass per area 10–400gCm−2

clf annual leaf loss fraction 1/8–1

cronset labile C release period 10–100 day

crfall leaf-fall period 20–150 day

Ct
lab

labile C pool at time t 20–2000gCm−2

Ct
fol

foliar C pool at time t 20–2000gCm−2

Ctroo fine root C pool at time t 20–2000gCm−2

Ctwoo above- & below-ground woody C pool at time t 100–105 gCm−2

Ct
lit

litter C pool at time t 20–2000gCm−2

Ctsom soil organic C pool at time t 100–2× 105 gCm−2

1 fwoo is equivalent to 1 – fauto – ffol – flab.

2 Methods

Here we present a series of EDCs for a daily box budget ter-

restrial C cycle model, the Data Assimilation Linked Ecosys-

tem Carbon model version two (DALEC2). Within an MDF

context, we test the added value of implementing EDCs. Our

aims are (1) to quantify our ability to estimate DALEC2 pa-

rameters and NEE within a synthetic framework, and (2) to

validate our ability to estimate NEE at three temperate forest

AmeriFlux sites. We use simulated and real observations of

(a) satellite-derived leaf area index (LAI) and (b) soil organic

carbon from the Harmonized World Soil Database (HWSD,

Hiederer and Köchy, 2012) in our MDF analyses. The choice

of these two data sets serves as an analogue for the limited

ecosystem carbon data sets available on a global scale.

2.1 DALEC2

DALEC has been extensively used in MDF frameworks (e.g.

Williams et al., 2005; Quaife et al., 2008; Richardson et al.,

2010, amongst others). In particular, a range of MDF ap-

proaches were used in the REFLEX project, where ecosys-

tem observations were assimilated into DALEC to produce

carbon state analyses (Fox et al., 2009). Here we use the

DALEC2 ecosystem carbon balance model, which combines

components of DALEC evergreen and DALEC deciduous

(Williams et al., 2005; Fox et al., 2009) into a single model.

Gross primary production (GPP) in DALEC2 is determined

from the aggregated canopy model (Williams et al., 1997),

and is allocated to the biomass pools (foliar, labile, wood,

and fine roots) and to autotrophic respiration (Ra); degraded

carbon from biomass pools goes to two dead organic mat-

ter pools with temperature-dependent losses (heterotrophic

respiration, Rh). The net ecosystem exchange is summarized

as NEE= Ra+Rh−GPP. The C flow in DALEC2 is deter-

mined as a function of 23 parameters (including six initial

carbon pool states, Table 1). We henceforth refer to the 23

parameters required to initiate DALEC2 as a parameter vec-

tor x. DALEC2 C pools and fluxes are iteratively calculated

at a daily time step: the DALEC2 model equations are fully

described in Appendix A. We henceforth refer to the ensem-

ble of all model state variables (such as daily NEE, GPP, res-

piration terms and carbon pool trajectories) as DALEC2(x).

2.2 Ecological and dynamic constraints

In previous work, DALEC MDF approaches (Williams et al.,

2005; Fox et al., 2009; Richardson et al., 2010; Hill et al.,
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2012) did not explicitly impose any conditions on the inter-

relationships between model parameters, therefore parameter

prior information had only consisted of prescribed parameter

ranges. In reality, broader ecological knowledge can be in-

formative in terms of the inter-relationships between param-

eter values. For example, long-term leaf turnover rate must be

faster than woody biomass turnover (e.g. Norby et al., 2002):

such a relationship can provide a relative constraint on model

parameter values, without imposing any further constraints to

the prior parameter ranges (Table 1).

Here we propose a sequence of ecological and dynamic

constraints (EDCs) on DALEC2 parameters and pool dynam-

ics. For any given DALEC2 parameter vector x, all EDCs

presented in this section (henceforth EDC 1, EDC 2, etc.)

are implemented. The probability of parameters (henceforth

PEDC(DALEC2(x))) is 1 if all EDCs are met, otherwise

PEDC(DALEC2(x))= 0. All DALEC2 parameters (alloca-

tion fractions fauto, flab, ffol, froo, fwoo; turnover rate param-

eters θwoo, θroo, θlit, θsom, θmin, 2; canopy parameters donset,

dfall, ceff, clma, clf, cronset, crfall; carbon pools at time t Ctlab,

Ctfol, Ctwoo, Ctsom, Ctlit, Ctsom) are described in Table 1.

2.2.1 Turnover constraints

We impose the following constraints on the relative sizes of

turnover rates:

EDC 1: θsom < θlit, (1)

EDC 2: θsom < θmin, (2)

EDC 3: clf > 1− (1− θwoo)
365.25, (3)

EDC 4: (1− θroo)
N >5Ni=1(1− θsome

2Ti ), (4)

where Ti are daily temperature values during an N -day time

window (e.g. 3 years). These constraints ensure the turnover

rate ratios are consistent with knowledge of the carbon

pool relative residence times (e.g. Gaudinski et al., 2000;

Norby et al., 2002; Trumbore, 2006). In particular, we ex-

pect a faster litter turnover in contrast to soil organic matter

(SOM) turnover (EDC 1), a faster conversion rate of litter to

SOM relative to SOM turnover (EDC 2), the annual leaf loss

fraction is greater than the annual woody biomass loss frac-

tion (EDC 3), and a faster fine root turnover in contrast to

SOM turnover (EDC 4).

2.2.2 Root–Foliar C allocation constraints

Strong correlations are expected between foliar and fine root

carbon pools (e.g. Mokany et al., 2006; Sloan et al., 2013).

We constrain the C allocation and dynamics of the root and

foliar pools:

EDC 5 : 0.2froo < ffol+ flab < 5froo, (5)

EDC 6 : 0.2Cfol < Croo < 5Cfol, (6)

where Cfol and Croo are the mean foliar and fine root car-

bon pool sizes over the model run period. EDC 5 ensures

that the GPP allocated fraction to Croo and Cfol (directly or

via the labile C pool) are within a factor of 5 of each other.

EDC 6 ensures that the mean fine root and foliar pool sizes

are within a factor of 5 of each other.

2.2.3 Carbon pool growth

While we expect pools to potentially grow through time, we

assume no recent disturbance and therefore limit the relative

growth rate of pools. We constrain pool growth as follows:

EDC 7 :
C

year=n

pool

C
year=1

pool

< 1+Gmax

n− 1

10
, (7)

where C
year=1

pool is the mean carbon pool size in year 1, and

C
year=n

pool is the mean carbon pool size after n− 1years. We

choose a value of Gmax = 0.1, which is equivalent to a 10 %

yearly growth rate (or doubling of carbon over 10 yr) as the

maximum growth rate for each pool in EDC 7. This as-

sumption is conservative, given data on global forest biomass

growth rates (Baker et al., 2004; Luyssaert et al., 2008).

2.2.4 Carbon pool exponential decay trajectories

While carbon pools are expected to grow and contract

through time, in the absence of major and recent disturbance

events carbon pool trajectories are expected to exhibit grad-

ual changes on inter-annual timescales (e.g. Bellamy et al.,

2005). Under these circumstances, rapid exponential decay

in modelled DALEC2 carbon pools can only occur as a re-

sult of an ecologically inconsistent x. We examine the system

response within a 3-year period by imposing a constraint on

exponential pool trajectories (Fig. 1): we numerically fit an

exponential decay curve a+bect to all carbon pools, where t

is time in days, and a, b and c are the fitted exponential decay

parameters.

DALEC2 pool trajectories are rejected if the half-life of

carbon pool changes is less than 3 years, i.e.

EDC 8 : c <−
365.25× 3

log(2)
. (8)

We fully describe the numerical derivation of c in Ap-

pendix B.

2.2.5 Steady state proximity

For ecosystems with no recent disturbance events, we pro-

pose that each pool is within an order of magnitude of its

steady-state attractor. We use mean gross primary produc-

tion (Fgpp) as a proxy for long-term GPP to estimate the

steady-state attractors, C∞pool, of four carbon pools (SOM, lit-

ter, wood and root). The steady-state attractors for Csom, Clit,
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Figure 1. Exponential decay test (EDC 8) performed on nine example normalized Cpool trajectories over a 3 yr time span. The Cpool

trajectories are normalized such that Cpool = 1 at t = 0. Examples 1–5 were accepted (EDC 8= 1) and examples 6–9 were rejected (EDC 8=

0). The exponential decay fit (dashed line) is shown for pool trajectories where EDC 8= 0.

Cwoo and Croo are analytically derived as follows:

C∞som =
(fwoo+ (ffol+ froo+ flab)θmin)Fgpp

(θmin+ θlit)θsome2T
, (9)

C∞lit =
(ffol+ froo+ flab)Fgpp

θlite2T
, (10)

C∞woo =
fwooFgpp

θwoo

, (11)

C∞roo =
frooFgpp

θwoo

, (12)

where T is the mean annual temperature (◦C). For each pool,

we impose an order-of-magnitude constraint on the proxim-

ity of C∞pool from the initial Cpool value:

EDCs 9–12:
C0

pool

10
< C∞pool < 10C0

pool, (13)

where C0
pool is the initial Csom, Clit, Cwoo and Croo value for

EDCs 9, 10, 11 and 12 respectively.

The 12 presented EDCs are what we believe to be the most

ecologically suitable constraints on DALEC2 parameters and

state variables, and are based on broader ecological knowl-

edge of carbon dynamics. We discuss the advantages and the

limitations of the proposed EDCs in Sect. 4 of this paper.

2.3 Model–data fusion

Given LAI observations, soil organic carbon estimates, prior

parameter ranges (Table 1) and EDCs (Sect. 2.2), our aim

for each experiment is to estimate the probability distribu-

tion of parameters x. We assume no prior knowledge, other

than the parameter ranges shown in Table 1: we therefore pre-

scribe a uniform (i.e. non-informative) prior probability dis-

tribution onto all parameters. Within a Bayesian framework

(e.g. Hill et al., 2012; Ziehn et al., 2012), we combine the

above-mentioned information to derive the posterior proba-

bility density function of x, P(x|O), where

P(x|O)∝ P(O|x) ·Prange(x) ·PEDC(DALEC2(x)). (14)

P(O|x) is the probability of the observations given x,

Prange(x)= 1 if all parameters are within the ranges

prescribed in Table 1 (otherwise Prange(x)= 0), and

PEDC(DALEC2(x))= 1 if all EDCs are met (otherwise

PEDC(DALEC2(x))= 0). For N observations, we derive the

observation probability given x, P(O|x), as follows:

P(O|x)= e−
1
2

∑N
n=1(Mn−On)

2/σ 2
n , (15)

where On is the nth observation, Mn is the corresponding

state variable, and σ 2
n is the nth error variance for each ob-

servation (e.g. Xu et al., 2006): here we assume no error co-

variance between observation errors.

We employ an adaptive Metropolis Hastings Markov

Chain Monte Carlo (MHMCMC) approach to draw 5× 106

samples from P(x|O). This approach has been widely used

to estimate the probability density function of ecosystem

model parameters (Xu et al., 2006; Hill et al., 2012; Ziehn

et al., 2012; Caldararu et al., 2012; Smith et al., 2013; Keenan

et al., 2013, amongst others) and is ideal to explore parameter

space without a need to define normal prior distributions for

each parameter (e.g. Richardson et al., 2010). We repeat the

MHMCMC algorithm four times (i.e. four chains), to ensure

convergence between P(x|O) distributions from each chain.

www.biogeosciences.net/12/1299/2015/ Biogeosciences, 12, 1299–1315, 2015
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To minimize sample correlations we use 500 x samples from

the latter half of the accepted parameter vectors. We describe

the details of our MHMCMC approach in Appendix C.

2.4 Synthetic truth – DALEC2 analyses

To quantify our ability to estimate synthetic DALEC2

ecosystem states, we perform the MDF approach over a 3-

year period using LAI and SOM observations created from

a synthetic DALEC2 truth, based on known DALEC2 pa-

rameters. Our choice of synthetic DALEC2 states represents

globally spanning data sets of satellite LAI retrievals and soil

carbon map data. Based on 40 DALEC2 parameter combi-

nations, we create 40 synthetic data sets representing typi-

cal temperate forest carbon dynamics, with 3 years of semi-

continuous LAI data and one simulated soil organic carbon

estimate. We use the 3-year meteorology drivers (temperate

climate) from the REFLEX synthetic experiments (Fox et al.,

2009).

We select 40 synthetic parameter combinations by ran-

domly sampling parameter vectors x within the DALEC2 pa-

rameter space (Table 1), where (i) PEDC(DALEC2(x))= 1,

and (ii) x values are relevant to temperate forest ecosystems

(see Appendix D). We remove approximately 95 % of daily

LAI points to create an 8-day resolution semi-continuous

LAI time-series. We add noise to the remaining 3 yr synthetic

DALEC2 LAI: each LAI value is multiplied by a random

error factor of 2N(0,1), where N(0,1) is a random number

derived from a normal distribution with a mean of zero and

a standard deviation of 1. For each synthetic soil carbon ob-

servation, we multiply C0
som at t = 0 by a random error factor

of 2N(0,1). We fully explain the derivation of the synthetic ex-

periment parameter vectors, (henceforth s) in Appendix D.

We perform the MHMCMC and label the posterior param-

eter ensemble (4× 500× 40x samples) as xsSTA (standard

synthetic MDF) and xsEDC (synthetic MDF with EDCs). We

assign an uncertainty factor of 2 to all synthetic observa-

tions, hence On and Mn are log-transformed observations

and σn = log(2). For each posterior DALEC2 x, we deter-

mine the log-normalized parameter-space error ε(x) by com-

paring x with its corresponding synthetic truth vector s:

ε(x)=

√
N∑
n=1

(
log(x(n))−log(s(n))

log(x(n)max)−log(x(n)min)

)2

√
N

, (16)

where x(n) and s(n) represent the nth parameters of x and s,

theN is the number of parameters in x, and x(n)min, x(n)max

are the minimum and maximum parameter values (see Ta-

ble 1). To assess the parameter estimation capability for each

experiment, we derive the ε (x) for each parameter vector

in (a) xsSTA (b) xsEDC and (c) for uniformly random sam-

ples where Prange(x)= 1 (henceforth xsRAN). We refer to

the ensemble of ε(x) values for xsSTA, xsEDC and xsRAN as

E(xsSTA), E(xsEDC) and E(xsRAN). We quantify the overall

EDC associated error reduction (IEDC) as follows:

IEDC =

(
Ẽ(xsRAN)− Ẽ(xsEDC)

Ẽ(xsRAN)− Ẽ(xsSTA)
− 1

)
× 100%, (17)

where Ẽ represents the median of E for each posterior pa-

rameter ensemble. This allows us to assess the relative im-

provement of xsEDC over xsSTA parameter estimates against

the xsRAN “zero-knowledge” case. In addition, we deter-

mine the IEDC for two parameter subgroups: (a) directly

constrained parameters, and (b) indirectly constrained pa-

rameters. We assign clf, cronset, crfall, donset, dfall and C0
som

to parameter group A: these parameters can be directly in-

ferred from the LAI and soil organic carbon observations.

We assign the remaining parameters to parameter group B:

these can only be inferred from the DALEC2 model structure

and – potentially – EDCs. Finally we compare NEE from

DALEC2(xsEDC) and DALEC2(xsSTA) against the NEE

synthetic “truths” – DALEC2(s).

2.5 AmeriFlux – DALEC2 analyses

For the flux-tower experiments, we constrain DALEC2 pa-

rameters using (a) MODIS derived Leaf Area Index (LAI),

and (b) total soil carbon from the harmonized world soil

database (HWSD Hiederer and Köchy, 2011). We perform

daily resolution 3-year DALEC2 analyses for three forest

categories: evergreen needleleaf (ENF), deciduous broadleaf

(DBF) and mixed forest (MF). We chose one AmeriFlux

site from each forest type. To establish a suitable site

for our method we chose sites with NEE data spanning

across 3 years between 2001 and 2010. Our selected sites

for each forest type are Howland Forest (US-Ho1, ever-

green needleleaf forest, 45.2041◦ N, 68.7402◦W; Hollinger

et al., 1999), Morgan Monroe State Forest (US-MMS, de-

ciduous broadleaf forest, 39.3231◦ N, 86.4131◦W; Schmid

et al., 2000) and Sylvania Wilderness (US-Syv, mixed forest,

46.2420◦ N, 89.3476◦W; Desai et al., 2005). We chose tem-

perate sites with little expected water-stress, and with a ≤ 3

months of recorded below-freezing soil temperatures. These

criteria reflect the current capabilities of DALEC2, as hydro-

logical processes are not explicitly portrayed in the model.

For each AmeriFlux site, we extract the correspond-

ing MODIS LAI retrievals from the MOD15A2 LAI 8-

day version 005 1 km resolution product (downloaded from

the Land Processes Distributed Active Archive Centre

http://lpdaac.usgs.gov/): we only keep maximum quality flag

data. Standard deviations are provided for 1 km MODIS LAI

retrievals, however these (a) do not reflect the magnitude

variability in uncertainty, (b) often imply the existence of

negative LAI observations (σLAI > LAI) and (c) are occa-

sionally missing. While various MODIS LAI evaluations

have been performed (e.g. Sea et al., 2011; Serbin et al.,

2013), large-scale spatiotemporal LAI retrieval errors remain

poorly quantified. For the sake of simplicity, we assign a fac-

tor of 2 uncertainty (i.e. log(LAI)± log(2)) for each MODIS

Biogeosciences, 12, 1299–1315, 2015 www.biogeosciences.net/12/1299/2015/
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LAI observation. To minimize spatial discrepancies between

MODIS and AmeriFlux sites, each LAI observation is the

arithmetic mean of all available LAI retrievals within a 9-

pixel 3km× 3km area (centred on each AmeriFlux site).

Overall, we use 95, 120 and 119 LAI values at US-Syv, US-

Ho1 and US-MMS (5th–95th percentile ranges for LAI val-

ues are 0.4–5.8, 1.0–5.6 and 0.4–5.5 respectively).

For each site we extract total soil carbon density from the

nearest Harmonized World Soil Database 30 arc seconds res-

olution total soil carbon content (approx. 1 km at equator;

Hiederer and Köchy, 2011): the authors have performed mul-

tiple comparisons of the global HWSD against other prod-

ucts, however no pixel-scale uncertainties are provided. We

chose to assign an uncertainty factor of 2 on each site-scale

HWSD soil carbon estimate. The HWSD soil carbon values

are 2.3× 104, 2.3× 104 and 5.2× 103 gCm−2.

To limit our study to the use of globally spanning data

sets, we extract DALEC2 drivers from 0.125 ◦× 0.125 ◦

ERA interim meteorology (see Appendix A for details). The

DALEC2 analyses for each site are therefore completely in-

dependent from all site-level measurements (we note, how-

ever, that extensive meteorological and biometric data are

meticulously recorded across the AmeriFlux site network).

Therefore, we produce a fully independent ecosystem car-

bon cycle analysis, which can be evaluated against measured

NEE at each flux-tower site.

As done for the synthetic experiments, we perform

the MHMCMC approach at each site – with and with-

out EDCs – and label the posterior parameter ensembles

(4 chains × 500 x samples) as xaSTA (standard Ameri-

Flux MDF) and xaEDC (AmeriFlux MDF + EDCs). We

compare the DALEC2 NEE analyses, DALEC2(xaEDC) and

DALEC2(xaSTA) against NEE measurements at each Amer-

iFlux site.

2.6 EDC sensitivity test

To determine the sensitivity of our results to EDCs 1–12,

we repeat MDF estimates of xsEDC and xaEDC by imposing

only one EDC at a time (henceforth xsEDC(n) and xaEDC(n),

where n is the nth EDC). For the synthetic experiments, we

determine the relative contribution of the nth EDC by quan-

tifying the overall EDC associated error reduction (IEDC(n),

see Eq. 17) for each estimate of xsEDC(n). Given the large

computational cost of estimating xsEDC(n) for each EDC (40

synthetic experiments× 12 EDCs× 4 chains), we limit our

sensitivity analysis to IEDC estimates based on 4 (out of 40)

synthetic experiments.

We compare 3 yr integrated DALEC2 NEE estimates and

AmeriFlux NEE measurements at all three sites (AmeriFlux

NEE measurement temporal gaps have been consistently ex-

cluded from DALEC2 3 yr NEE estimates). We determine

the DALEC2 3 yr NEE 50% confidence range (50% CR:

25th–75th percentile interval) reduction as follows:

(1−
RNEE,EDC(n)

RNEE,STA

)× 100%, (18)

where RNEE,EDC(n) and RNEE,STA are the 50% CR of

DALEC2(xaEDC(n)) and DALEC2(xaSTA) 3 yr NEE esti-

mates. Similarly, we calculate the 3 yr NEE bias reduction

(relative to AmeriFlux NEE measurements) as follows:

(1−
|BNEE,EDC(n)|

|BNEE,STA|
)× 100%, (19)

where BNEE,EDC(n) and BNEE,STA are the median biases of

DALEC2(xaEDC(n)) and DALEC2(xaSTA) 3 yr NEE esti-

mates.

3 Results

3.1 Synthetic experiments

The inclusion of EDCs resulted in substantial error reduc-

tions in posterior DALEC2 parameter and state variable

estimates. We found an overall reduction in the posterior

MHMCMC EDC parameter vector errors E(xsEDC), rela-

tive to both the standard MHMCMC errors E(xsSTA) and

the randomly sampled parameter vector errors E(xsRAN): we

found an improvement of IEDC = 34% associated with us-

ing EDCs (Fig. 2c). For the directly constrained parameters

(parameter group A) we found similar distributions for both

E(xsSTA) and E(xsEDC) errors relative to E(xsRAN) errors

(Fig. 2a), and similarly lower xsSTA and xsEDC errors val-

ues relative to xsRAN errors (Ẽ(xsSTA)= 0.19, Ẽ(xsEDC)=

0.21, Ẽ(xsRAN)= 0.42, group A: IEDC =−6%). For the

indirectly constrained parameters (group B), we found

significantly smaller xsEDC errors relative to xsSTA and

xsRAN (Ẽ(xsEDC)= 0.29, Ẽ(xsSTA)= 0.34, and Ẽ(xsRAN)

= 0.38), and hence improved estimates of s when we imple-

mented EDCs (group B: IEDC = 88%, Fig. 2b). We found

that EDCs 5 and 8 accounted for the largest error reduction

in DALEC2 parameter estimates (IEDC(5,8) ≥ 3%, Table 2),

followed by EDCs 6, 10 and 12 (IEDC(6,10,12) = 2%). EDC 7

led to an overall parameter error increase (IEDC(7) =−13%).

The remaining EDCs accounted for small or negative error

reductions.

We compared EDC total xsEDC, xsSTA and xsRAN live

biomass (Croo+Cfol+Clab+Cwoo) and dead biomass (Csom+

Clit) pool biases relative to their corresponding synthetic

truths (Fig. 2d–e). For dead biomass, both xsEDC and xsSTA

perform comparably better than xsRAN (Fig. 2e), as dead

biomass is mostly accounted for by the synthetic Csom ob-

servations: the xsEDC and xsSTA median bias factors (1.1,

0.91) are close to 1 (i.e. a bias of zero) relative to xsRAN me-

dian bias factor (0.04). For live biomass pools, xsEDC live

www.biogeosciences.net/12/1299/2015/ Biogeosciences, 12, 1299–1315, 2015
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Table 2. Synthetic experiment parameter error reduction, and AmeriFlux experiment 3 yr NEE 50% CR and bias reduction for MDF estimates

using individual EDCs, relative to the standard MDF estimates.

EDC Synthetic experiment AmeriFlux experiments

parameter error bNEE 50% CR reduction (bias reduction)

reduction (aIEDC(n)) US-Syv US-Ho1 US-MMS

1 −0% 27% (−11%) 19% (−13%) 3% (−11%)

2 −1% 39% (−26%) 29% (−25%) 14% (−19%)

3 0% 13% (−0%) 1% (3%) 0% (−7%)

4 −1% 30% (−14%) 22% (−14%) 9% (−17%)

5 8% 3% (−3%) 0% (−4%) 1% (−11%)

6 2% 10% (3%) −2% (6%) −1% (−3%)

7 −13% −15% (52%) −28% (76%) −25% (95%)

8 3% 34% (−36%) 37% (−9%) 16% (−66%)

9 1% −39% (89%) −50% (57%) −31% (100%)

10 2% 10% (19%) 6% (25%) 5% (18%)

11 −1% 10% (−0%) 1% (11%) 3% (1%)

12 2% 8% (−1%) 2% (0%) 3% (−6%)

ALL EDCs 34% 43%(69%) 48%(93%) 32%(93%)

a The parameter error reduction metric, IEDC(n), is described in Sect. 2.4. b The derivations of 3 yr NEE 50 % CR and

bias reductions are described in Sect. 2.6.

Figure 2. Aggregated parameter estimates xsSTA (standard sampling, blue) and xsEDC (EDC sampling, red) from deciduous and evergreen

synthetic LAI and soil organic carbon observations – these are compared against observation and EDC independent parameter samples xsRAN

(light grey). Normalized parameter space error (ε) probability density functions for (a) Group A (directly inferable) parameters, (b) Group B

(indirectly inferable) parameters and (c) all DALEC2 parameters. ε values for each parameter group were derived using Eq. (15). In panels

(d) and (e) the probability density functions of live biomass (foliar, labile, wood and roots) and dead biomass (litter and soil carbon) biases

against the synthetic truth parameters s are shown for xsRAN, xsSTA and xsEDC parameter estimates.

Biogeosciences, 12, 1299–1315, 2015 www.biogeosciences.net/12/1299/2015/
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v

Figure 3. Three-year mean DALEC2 net ecosystem exchange

(NEE) biases (relative to synthetic truth) aggregated across 40 syn-

thetic experiments at 0.5 gCm−2 d−1 intervals. The bias frequen-

cies are shown for DALEC2(xsSTA) (standard sampling, blue) and

DALEC2(xsEDC) (EDC sampling, red) relative to the synthetic

truth DALEC2(s) (black dashed line).

biomass bias estimates are smaller than xsSTA (Fig. 2d): the

xsEDC bias distribution (median = 1.20) is closer to 1 relative

to the xsSTA bias distribution (0.48), with respect to xsRAN

median bias (0.20). For total biomass estimates, we found

similar bias distributions relative to xsRAN (xsEDC median

bias factor = 1.22, xsSTA bias factor = 0.98): both bias fac-

tors are closer to 1 relative to xsRAN (bias factor = 0.16).

We found that incorporating EDCs resulted in a reduced

mode and 90 % confidence range (90% CR: 95th–5th per-

centile interval) for 3-year NEE biases (Fig. 3). We found

a 65 % reduction in the DALEC2(xsEDC) 3-year NEE bias

90 % CR (9.0 gCm−2 d−1), relative to the DALEC2(xsSTA)

3-year NEE bias 90 % CR (26.9 gCm−2 d−1). The 3-year

NEE bias modes for DALEC2(xsEDC) and DALEC2(xsSTA)

are 0.0 gCm−2 d−1 and –0.5 gCm−2 d−1 (at 0.5 gCm−2 d−1

intervals).

3.2 AmeriFlux results

The DALEC2(xaEDC) analyses outperformed the standard

DALEC2(xaSTA) analyses at the AmeriFlux tower sites.

The inclusion of EDCs in DALEC2 analyses amounted to

overall NEE bias reductions at all sites (US-Syv, US-Ho1,

US-MMS, we henceforth present all site results in this or-

der). The aggregated DALEC2(xaEDC) median daily NEE

biases (−0.02, 0.13, −0.03gCm−2 d−1) are closer to the

AmeriFlux measured NEE by roughly one order of mag-

nitude in contrast to DALEC2(xaSTA) median NEE biases

(−0.52, −0.86, −1.15gCm−2 d−1). The aggregated daily

DALEC2(xaEDC) NEE 90 % confidence ranges at each site

Figure 4. DALEC2 daily NEE ensemble estimates at three Amer-

iFlux sites: Sylvania Wilderness (US-Syv, mixed forest, top two

rows), Howland Forest (US-Ho1, evergreen needleleaf, middle two

rows), and Morgan Monroe State Forest (US-MMS, deciduous

broadleaf, bottom two rows). For each site the DALEC2(xaEDC)

and the DALEC2(xaSTA) ensemble confidence intervals are de-

noted as EDC and STA, respectively. The DALEC2 analyses –

based on MODIS LAI retrievals, HWSD soil organic carbon es-

timates and ERA interim meteorological drivers – are completely

independent from all AmeriFlux site measurements.

(10.9, 10.1, 8.3 gCm−2 d−1) were all smaller (53–87 %)

than the corresponding DALEC2(xaSTA) NEE bias 90 %

CR (20.3, 18.3, 9.5 gCm−2 d−1). The reductions in bias are

consistent across the 3-year comparison period at each site

(Fig. 4).

Cumulative AmeriFlux NEE observations are com-

pared against corresponding DALEC2(xaSTA) and

DALEC2(xaEDC) NEE estimates (Fig. 5); AmeriFlux

NEE temporal gaps have been omitted from both DALEC2

and AmeriFlux derived cumulative NEE time series.

DALEC2(xaEDC) integrated NEE estimates outper-

formed DALEC2(xaSTA) NEE estimates at all three sites.

DALEC2(xaEDC) median NEE biases over the 3 yr period

(−0.26, 0.07, 0.08 kgCm−2) are smaller than the equivalent

DALEC2(xaSTA) biases (−0.84, −1.09, −1.18 kg C m−2),

with relative EDC bias reductions of 69 %, 93 % and 93 %.

The inclusion of EDCs also resulted in a reduction in NEE

confidence intervals: DALEC2(xaEDC) 50 % CR (1.17, 1.57,

1.16 kgCm−2) are 32–48 % smaller than the corresponding

DALEC2(xaSTA) 50 % CR (2.04, 3.00, 1.70 kgCm−2).

www.biogeosciences.net/12/1299/2015/ Biogeosciences, 12, 1299–1315, 2015
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Figure 5. Three-year mean DALEC2 cumulative NEE (kgCm−2)

compared against cumulative measured NEE at three AmeriFlux

sites: Sylvania Wilderness (US-Syv, mixed forest, left), Howland

Forest (US-Ho1, evergreen needleleaf, middle) and Morgan Mon-

roe State Forest (US-MMS, deciduous broadleaf, right). The stan-

dard analysis median and 50 % confidence ranges (CR) are shown

in blue, and the corresponding analyses with EDCs are shown in

red. AmeriFlux NEE measurements are denoted as a black line. The

DALEC2 analyses – based on MODIS LAI retrievals, HWSD soil

organic carbon estimates and ERA interim meteorological drivers –

are completely independent of all AmeriFlux site measurements.

Based on DALEC2(xaEDC(n)) 3 yr NEE estimates, EDC

10 resulted in a ≥ 18% bias reduction and a ≥ 5% 50 %

CR reduction at all three sites, relative to DALEC2(xaSTA)

(Table 2). EDCs 2 and 8 resulted in a > 10% 3 yr NEE 50 %

CR reduction and an increase in 3 yr NEE bias at all three

sites (NEE bias reduction ≤−22%). EDCs 7 and 9 resulted

in a ≥ 50% 3 yr NEE bias reduction and an increase in 3 yr

NEE 50 % CR at all three sites (NEE 50 % CR reduction

≤−15%).

4 Discussion

With the use of a simple model and globally available data,

i.e. leaf area dynamics and soil carbon observations, we have

demonstrated that the EDC approach provides an improved

ability to infer the magnitude of carbon fluxes, live carbon

pools and model parameters, in comparison to a standard pa-

rameter optimization approach (STA).

For ecologically relevant synthetic truths, EDCs provide

improved estimates of the DALEC2 parameters and state

variables. The EDC approach resulted in (a) parameter es-

timation error reductions, (b) NEE bias and confidence range

reductions, and (c) improved estimates of the live biomass C

pools, in contrast to the STA parameter and flux and C pool

estimates. While there is little difference between directly in-

ferable (Group A) estimated parameter errors between the

EDC and STA approach, using EDCs led to a marked re-

duction in estimated parameter error for indirectly inferable

(Group B) parameters. The indirectly inferred parameters

include allocation fractions, subsurface pools and turnover

rates, which are typically difficult to observe at field sites

and virtually impossible to observe remotely (i.e. at regional

scales).

By comparing DALEC2 analyses against independent

AmeriFlux NEE measurements over real ecosystems, we fur-

ther validated the advantages of using EDCs. At each Ameri-

Flux site, we found that EDCs led to an increased confidence

and a largely reduced NEE bias; our DALEC2 model anal-

yses suggests that the use of EDCs regionally and globally

could significantly enhance our ability to estimate ecosys-

tem state variables in the absence of direct observational con-

straints. In light of the large differences between Earth sys-

tem models (Todd-Brown et al., 2013; Friend et al., 2013),

we anticipate that EDCs may help constrain ecosystem car-

bon terms on global scales, where carbon pools and their res-

idence times are typically difficult or impossible to measure.

Together, EDCs 1–12 lead to overall improvements in

parameter estimates and AmeriFlux site NEE confidence

range/bias (Table 2): however, with the exception of EDC

10, when EDCs were tested individually, they did not lead

to comprehensive improvements. For example, EDC 8 alone

(no rapid exponential pool decay) resulted in large Ameri-

Flux site NEE confidence range reductions, as well as im-

proved synthetic parameter estimates; however, EDC 8 re-

sulted in higher AmeriFlux site NEE biases. Conversely,

EDC 9 (steady-state proximity of the soil carbon pool) re-

sulted in the largest AmeriFlux site bias reductions, while

NEE confidence was lower. EDC 5 (comparable fine root and

foliar/labile allocation) led to the largest parameter improve-

ments; however, the associated changes in AmeriFlux site

NEE estimates were relatively small. Our findings demon-

strate that robust improvements in carbon cycling parameter

and state variable estimates only arise when EDCs are used

collectively.

Here we developed a group of EDCs suitable to ecosys-

tems with no recent major disturbance. However, we note

that our EDCs can be adapted for a wider range of ecosystem

dynamics. For example, recently disturbed ecosystems may

be (a) rapidly recovering and (b) growing towards a steady

state where carbon pools are greater than one order of mag-

nitude from the initial carbon pools. Therefore a subset of

our EDCs (EDCs 7–12) can be adapted to better represent

ecological “common sense” in recovering ecosystems.

Ultimately, EDCs can be adapted to best represent ecolog-

ical knowledge in a variety of ecosystem carbon model MDF

applications, where the ecosystem observations are insuffi-

cient to constrain all model state variables (e.g. Fox et al.,

2009). For example, on regional and global spatial scales,

there is often no explicit knowledge on various model param-

eter values and their associated uncertainty. In such cases, our

EDC approach imposes inter-parameter constraints while si-

multaneously allowing a global parameter exploration across

several orders of magnitude (see Table 1). Hence EDCs al-

low us to incorporate ecologically consistent relationships

between parameters (i.e. allocation ratios, turnover ratios),

without the need to constrain otherwise unknown parameter

and state variables. Moreover, as an alternative to imposing

plant-functional-type priors, which risk being subjective and
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over-rigid, ecosystem trait inter-relationships derived from

plant trait data (e.g. Wright et al., 2004; Kattge et al., 2011)

could be incorporated as additional EDCs. Given a quanti-

tative knowledge of parameter inter-relationships, we also

note that a prior parameter variance–covariance structure –

in addition to EDCs – can also be used as an alternative or

complementary constraint on the model state and parameters.

Finally, we note that our choice of EDCs is open to adap-

tation and adjustment: we maintained relatively broad con-

straints (e.g. EDC 6 permissible root:foliar C range > one

order of magnitude), which can likely be refined through fur-

ther study.

In this study we limited our observational constraints to

globally spanning MODIS LAI retrievals and the HWSD soil

map. Given these two data sets, we have demonstrated that

EDCs lead to improved model parameter estimates and re-

duced NEE bias and confidence ranges. Nonetheless, based

on the posterior NEE probability density function, we are

unable to determine whether sites are net carbon sinks or

sources on annual timescales. However, an increasing num-

ber of continental and global scale biospheric data sets are

becoming available: these include a global canopy height

map by Simard et al. (2011), pan-tropical biomass maps by

Saatchi et al. (2011); Baccini et al. (2012) and a pan-boreal

carbon density map by Thurner et al. (2013). These prod-

ucts can potentially be used in conjuncture with MODIS LAI,

HWSD data and our EDC approach in a MDF framework to

better constrain terrestrial carbon cycle dynamics.

5 Concluding Remarks

We have addressed the underdetermined nature of the carbon

cycle problem by applying a group of widely applicable eco-

logical and dynamic constraints (EDCs) on an ecosystem car-

bon model in a model–data fusion (MDF) framework. Par-

ticularly where extensive in situ measurements are not avail-

able, EDCs can be used to incorporate ecological knowledge,

such as parameter inter-relationships and pool dynamics con-

straints, into ecosystem carbon model analyses. In a synthetic

data experiment, we found improved estimates of DALEC2

model parameters, live carbon pools and net ecosystem ex-

change (NEE) when using EDCs in DALEC2 MDF analyses.

By validating our DALEC2 MDF analyses against indepen-

dent AmeriFlux NEE measurements, we found that EDCs

led to a 69–93 % reduction in 3-year NEE biases. We in-

corporated 12 EDCs in DALEC2 analyses of temperate for-

est ecosystem carbon cycling: these EDCs can potentially be

adapted for a range of models and biomes. Moreover, addi-

tional EDCs can be derived to incorporate parameter inter-

relationships derived from regional or global plant trait data

sets into ecosystem carbon model analyses. Here we have

shown that EDCs can be used to constrain the poorly re-

solved components of the carbon cycle: we therefore advo-

cate the use of EDCs in future MDF analyses of the terrestrial

carbon cycle.
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Appendix A: DALEC2 model

The full DALEC2 model dynamics can be expressed as six

equations:

Ct+1
lab = (1−8onset(t,donset,cronset))C

t
lab+ flabF

t
gpp (A1)

Ct+1
fol = (1−8fall(t,dfall,crfall,clf))C

t
fol

+8onset(t,donset,cronset)C
t
lab+ ffolF

t
gpp (A2)

Ct+1
roo = (1− θroo)C

t
roo+ frooF

t
gpp (A3)

Ct+1
woo = (1− θwoo)C

t
woo+ fwooF

t
gpp (A4)

Ct+1
lit = (1− (θlit+ θmin)e

2Tt )Ctlit

+ θrooCtroo+8fall(t,dfall,crfall,clf)C
t
fol (A5)

Ct+1
som = (1− θsome

2Tt )Ctsom+ θwooCtwoo

+ (θmin)e
2TtCtlit. (A6)

The 23 free parameters and carbon pool symbols are summa-

rized in Table 1. The daily gross primary production F tgpp, is

derived from the aggregated canopy model (ACM, Williams

et al., 1997), and is a function of daily driver data M (day

of year, atmospheric CO2, minimum and maximum temper-

ature, and global radiation), and parameters Cfol, clma and

ceff (parameter ceff, the canopy efficiency, is a replacement

for the nitrogen × nitrogen use efficiency product in ACM).

The model is initiated with six initial carbon pool values

(C0
lab, C0

fol, C0
roo, C0

woo, C0
lit, C0

som) and these are iteratively

updated at a daily time step. The leaf onset (labile to foliar

pool C transfer) and leaf fall (foliar to litter pool C transfer)

functions, 8onset and 8fall are defined below:

8onset(t,donset,cronset)=

√
2
√
π
·

(
6.9088

cronset

)
· e
−

(
sin
(
t−donset−0.6245cronset

s

)
·

√
2s

cronset

)2

(A7)

8fall(t,dfall,crfall,clf)=

√
2
√
π

·

(
− log(1− clf)

crfall

)
· e
−

(
sin
(
t−crfall+ψf

s

)
·

√
2s

crfall

)2

, (A8)

where s = 365.25
π

. The 8fall continuous cyclical step func-

tion derivatives were derived such that (a)
∏t=365
t=1 (1−

8onset(t,donset,cronset))= 1− clf, (b) the maximum leaf loss

rate occurs annually at t% 365.25= dfall and (c) 68 % of leaf

loss occurs within cronset days and 95 % of leaf loss within

2crfall days.

The ψf is an offset term included to ensure that the max-

imum leaf loss rate, .i.e.
d2Cfol

dt2
= 0, occurs at t% 365.25=

dfall – it is a numerical solution to the following equation:

2
√
π · log(1− clf) ·ψ − e

−ψ2

= 0 (A9)

Figure A1. Schematic of the carbon fluxes in DALEC2. The green

arrow indicates the gross primary production (GPP). Red arrows

represent respiration fluxes: autotrophic respiration (Rauto) and het-

erotrophic respiration (Rhet). Blue arrows represent C allocation to

the labile (Clab), foliar (Cfol), wood (Cwoo) and fine root (Croo)

pools. Grey arrows represent the litterfall and decomposition fluxes

to the litter (Clit) and soil organic matter (Csom) pools.

where ψ =

√
2ψf
crfall

(we note that Eq. (A9) can be solved us-

ing a Lambert W function, where ψ =W(f (clf)); however,

Lambert W functions cannot be solved analytically). We cre-

ated a look-up function for ψ by fitting a sixth-order poly-

nomial between ψ and log(1−clf); the full polynomial is in-

cluded in the DALEC2 code. The 8onset is a special case of

the 8fall formula: it was derived such that 99.99 % of Clab is

transferred to Cfol annually at t% 365.25= donset and 68 % of

leaf onset occurs within cronset day. The 8 functions are ad-

vantageous in that (a) the daily turnover rates result in a con-

tinuous and specified loss of carbon throughout a known time

period, and (b) the functions are cyclical and hence do not

need to be reset, “switched on” or “switched off” through-

out the model run period. We also note that while we treated

donset and dfall as constant parameters, the 8 functions can

easily accommodate temporally variable definitions for leaf

onset and leaf fall. Total ecosystem respiration F trec and the

net ecosystem exchange F tnee fluxes are derived at each time

step and are shown below:

F trec = fautoF
t
gpp+ (θlitC

t
lit+ θsomCtsom)e

2Tt (A10)

F tnee = F
t
rec−F

t
gpp. (A11)

At time t leaf area index (LAI) is defined as

LAIt =
Ctfol

clma

. (A12)

A schematic of the carbon fluxes in DALEC2 is shown in

Fig. A1. The DALEC2 code is available upon request.

For AmeriFlux DALEC2 analyses we used daily meteo-

rological drivers for DALEC2 from 0.125 ◦× 0.125 ◦ ERA-

interim re-analyses. For each site we obtained coordinates

from ameriflux.ornl.gov. We downloaded 6 h temperature

and 12 h downward surface solar radiation data for all site

locations and years from apps.ecmwf.int/datasets. We av-

eraged temperature and radiation from the four nearest

0.125 ◦× 0.125 ◦ ERA-interim grid points. We obtained min-

imum and maximum temperatures from the 6 h ERA-interim

Biogeosciences, 12, 1299–1315, 2015 www.biogeosciences.net/12/1299/2015/
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temperature range. For M daily radiation values we used the

sum of the two 12 h radiation re-analyses.

Appendix B: Exponential Cpool decay

Exponentially decaying Ctpool trajectories can be approxi-

mated as Cexp = a+be
ct , where a, b and c are constants and

t is time in days. To implement EDC 8, we numerically esti-

mate parameter c: to derive c for each carbon pool trajectory

(Cpool) we derive (i) the gradient between yearly means for

years 1 and 2:

1C0 =

[

365×2∑
t=365+1

Ctpool−

365∑
t=1

Ctpool]

365
(B1)

and (ii) the gradient between the yearly means with a 1-day

offset:

1C1 =

[

365×2+1∑
t=365+1+1

Ctpool−

365+1∑
t=1+1

Ctpool]

365
(B2)

Parameter c can be expressed as

c = log(
1C1

1C0

). (B3)

In the case of a true exponential curve with a known value

of c, the numeric derivation of c shown in Eqs. (B1)–(B3) is

exact (i.e. within numerical precision of the true c). In cases

where there is no exponential decay, c is either positive or

complex. While Cexp is an approximation of Ctpool, in prac-

tice this approach is both computationally fast and effectively

able to identify rapid exponential decay (c <
log(2)

365.25×3
) trajec-

tories.

Appendix C: Adaptive MHMCMC algorithm

For the standard MDF parameter estimates the normalized

parameter probability is

P(x|O)= α ·P(O|x) ·Prange(x), (C1)

and for EDC MDF parameter estimates the normalized pa-

rameter probability is

P(x|O)= α ·P(O|x)·Prange(x)·PEDC(DALEC2(x)), (C2)

where α is a scaling constant ensuring
∫
(P (x|O))dx =

1. For each chain, we search for a random x0 starting

point where Prange(x0) ·PEDC(DALEC2(x0))= 1 (for stan-

dard runs we randomly sample x0 from Prange(x0)= 1).

Based on the Ziehn et al. (2012) algorithm, we then iterate

through the following steps:

1. xi+1 = xi + d;

2. Run DALEC2(xi+1);

3. If
P(xi+1|O)
P (xi |O)

>U(0,1), accept xi+1, and i = i+ 1;

where d is the step size. The ratio
P(xi+1|O)
P (xi |O)

is derived from

Eqs. (C1) and (C2) for standard and EDC MHMCMC it-

erations, respectively (therefore knowledge of α is not re-

quired). At each iteration, for each parameter dimension n,

d(n)= s(n)N(0,1), where s is the proposal distribution and

N(0,1) is a random number sampled from a normal distribu-

tion with mean = 0 and variance = 1. This sequence repeated

until 107 samples of x have been accepted. While any pro-

posal distribution s can be used, adapting the proposal distri-

bution can reduce the number of steps required to reach the

maximum probability parameter space. For the first 5× 106

samples, we adapt the proposal distribution s every 100 itera-

tions by (i) scaling s to ensure an acceptance rate of 23–44 %

(Ziehn et al., 2012), and (ii) scale individual dimensions of s

to ensure that 2sn > σx(n) where σx(n) is the nth parameter

standard deviation over 100 iterations. The P(x|O) distribu-

tion is then derived from the second 5× 106 samples.

The MHMCMC parameter sampling approach is then re-

peated four times (four chains): to determine whether all four

chains have converged to the same parameter distributions,

we use the Gelman–Rubin convergence criterion R, where

for each parameter R < 1.1 indicates an acceptable chain

convergence (Gelman and Rubin, 1992; Xu et al., 2006). If

the chains have not converged for all parameters, we sequen-

tially test all N chain combinations (where N ≥ 2) to (a)

repeat the GR criterion, and (b) determine the combination

with the maximum number of converged chains.

Appendix D: Temperate forest synthetic truths

The 40 synthetic experiments were created by search-

ing for parameter vectors s where PEDC(DALEC2(s))=

1. To create synthetic experiments parameter vectors

s relevant to temperate forest ecosystems – henceforth

PTF(DALEC2(s))= 1 – we imposed the following param-

eter and state variable conditions:

1. 60< donset < 150

2. 242< dfall < 332

3. cronset > 20

4. crfall > 30

5. clf > 0.25

6. 1< LAIt < 8

7. 3kgCm−2 < C0
woo < 30kgCm−2

8. 1kgCm−2 < C0
som < 100kgCm−2

9. F tgpp > 2gCm−2 d−1

www.biogeosciences.net/12/1299/2015/ Biogeosciences, 12, 1299–1315, 2015
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10. 5
6
<

LAIyear=3

LAIyear=1
< 6

5
.

For a given vector s, all conditions must be met when

PTF(DALEC2(s))= 1. The above-listed conditions ensure

that the selected s vectors broadly reflect canopy dynam-

ics (1–4), carbon pool sizes (5–6) mean photosynthetic up-

take (7) and limited year-to-year canopy changes (8) as-

sociated with temperate forest ecosystems (e.g. Fox et al.,

2009). We derive each parameter vector s by selecting a ran-

dom parameter vector s0 and incrementally adjusting it un-

til PEDC(DALEC2(s)) PTF(DALEC2(s))= 1. To represent

a range of canopy dynamics, we also imposed either (a) a de-

ciduous condition (where crfall >
10
11

) or (b) a mixed forest

or evergreen condition (where crfall <
10
11

), with a 50–50 %

probability for either constraint.

We simplistically simulate the 8-daily MODIS LAI data

and soil carbon map HWSD products from DALEC2(s) LAI

and Csom: we multiplied each soil organic carbon “truth” at

t = 0 (C0
som) by 2N(0,1), where N(0,1) is a random number

sampled from the normal distribution with mean = 0 and vari-

ance = 1.

For LAI synthetic observations, we only kept one in eight

LAI values, and created correlated gaps in the remaining LAI

data of random lengths until at least 50 % of the 8 daily data

is removed. Overall, between 65 and 68 LAI observations

are kept for each 3 yr synthetic experiment. Twenty-two pa-

rameter vectors are categorized as deciduous, and 18 as ev-

ergreen. Mean 3 yr F tgpp ranges from 2.04–8.79 gCm−2 d−1

(median= 4.75gCm−2 d−1) and mean 3 yr F tnee ranges from

−3.71 to 2.87gCm−2 d−1 (median=−0.72gCm−2 d−1).

Biogeosciences, 12, 1299–1315, 2015 www.biogeosciences.net/12/1299/2015/
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