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Abstract. Plant canopies affect the canopy micrometeorol-

ogy, and thereby alter canopy exchange processes. For the

simulation of these exchange processes on a regional or

global scale, large-scale vegetation models often assume ho-

mogeneous environmental conditions within the canopy. In

this study, we address the importance of vertical variations in

light, temperature, CO2 concentration and humidity within

the canopy for fluxes of photosynthesis and transpiration of

a boreal coniferous forest in central Sweden. A leaf-level

photosynthesis-stomatal conductance model was used for ag-

gregating these processes to canopy level while applying the

within-canopy distributions of these driving variables.

The simulation model showed good agreement with eddy

covariance-derived gross primary production (GPP) esti-

mates on daily and annual timescales, and showed a rea-

sonable agreement between transpiration and observed H2O

fluxes, where discrepancies are largely attributable to a lack

of forest floor evaporation in the model. Simulations in which

vertical heterogeneity was artificially suppressed revealed

that the vertical distribution of light is the driver of verti-

cal heterogeneity. Despite large differences between above-

canopy and within-canopy humidity, and despite large gra-

dients in CO2 concentration during early morning hours af-

ter nights with stable conditions, neither humidity nor CO2

played an important role for vertical heterogeneity of photo-

synthesis and transpiration.

1 Introduction

Plant canopies intercept radiation and alter the circulation of

air and the exchange of energy at the land surface. The bio-

chemical processes taking place in the plants and the soil af-

fect the chemical composition of the air within the canopy.

These biogeophysical and biogeochemical alterations made

to the local environment in turn affect the canopy’s biochem-

istry and exchange processes, and thereby provide a feedback

to the growth of the canopy itself.

The extinction of light in the canopy results in a large

gradient of light conditions within the canopy, and the dif-

ferences get even more pronounced when considering shad-

ing, resulting in a directly lit leaf area and a leaf area that

is shaded (e.g. Cowan, 1968; Norman, 1975). Within-canopy

gradients of CO2 have been measured exceeding 50 ppm (e.g.

Buchmann et al., 1996; Brooks et al., 1997; Han et al., 2003).

Moreover, forest canopies alter the temperature and humid-

ity inside (Arx et al., 2012), with, in general, more moder-

ate temporal variations within the canopy compared to the

above-canopy environment.

Some of these types of heterogeneity have been captured

in stand-scale models: for light extinction, a layering of the

canopy can be applied (e.g. Monteith, 1965; Duncan et al.,

1967; Cowan, 1968; Norman, 1975), as well as a separation

of sunlit and shaded leaves (e.g. Duncan et al., 1967; Spit-

ters, 1986). Model studies have been performed investigating

the importance of forest structures for exchange processes

(Ellsworth and Reich, 1993; Falge et al., 1997).

The Farquhar model (Farquhar et al., 1980) and mod-

els based on that (e.g. Leuning, 1990; Collatz et al.,

1991), which describe leaf-level CO2 assimilation, form
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the basis of many canopy-scale photosynthesis mod-

els. Similarly, leaf-level stomatal conductance models

(e.g. Ball et al., 1987; Leuning, 1995) have been applied on a

canopy scale. For these canopy-scale applications, homoge-

neous conditions within the canopy are often assumed. This

simplification has a great advantage for the simulation of the

exchange processes: the canopy can be treated as a single big

leaf (the so-called “big-leaf approach”; Sinclair et al., 1976;

Sellers et al., 1992), and the upscaling from leaf-level pro-

cess rates to a canopy-integrated rate can be done linearly by

using the leaf area index of the canopy.

Although dynamic vegetation models typically apply leaf-

scale models to describe the processes on the canopy scale,

they vary greatly in the level of detail that they use to repre-

sent light extinction. The big-leaf approach described above

is adopted by some dynamic vegetation models (e.g.: LPJ,

Sitch et al., 2003; or Sheffield-DGVM, Woodward and Lo-

mas, 2004). Other dynamic vegetation models, or land sur-

face schemes within climate or Earth system models, include

a layering (e.g.: O-CN, Zaehle and Friend, 2010; or SEIB-

DGVM, Sato et al., 2007). In addition to a vertical layering,

Mercado et al. (2009) applied a distinction between sunlit

and shaded leaves as well in the JULES land surface scheme.

The layering described above is applied to determine light

extinction; none of the large-scale models applies vertical

gradients of humidity or CO2 concentration.

The assumption of homogeneous conditions within the

canopy warrants a critical assessment: the possible gradi-

ents under canopy conditions, as mentioned above, have the

potential to affect leaf photosynthesis and transpiration, and

thereby cause deviations from this linear relationship, which

affects the canopy-integrated values. In this study, we quan-

tify the importance of vertical heterogeneity in environmen-

tal drivers on the leaf scale for the simulation of stand-scale

fluxes of photosynthesis and transpiration for a coniferous

forest in central Sweden for 1999. Within-canopy profile

measurements were used to determine the heterogeneity in

driving variables (temperature, ambient CO2 concentration,

water vapour concentration and wind speed), and a detailed

light transfer model was applied to compute the distribution

of photosynthetic absorbed radiation (PAR). In the first part

of the study, model results are compared with observations.

In the second part, model simulations are described applying

average within-canopy or above-canopy conditions instead

of distributions, in order to assess the importance of hetero-

geneity for simulated GPP and transpiration. The importance

of within-canopy variability is compared with the variability

caused by diurnal and annual changes in driving variables.

2 Materials and methods

This study applies observations from the Norunda forest

site, a coniferous forest in central Sweden, 60◦05′11′′ N,

17◦28′46′′ E, altitude 45 m. The site is situated on a sandy

glacial till; the long-term mean annual temperature is

5.5 ◦C and annual precipitation is 527 mm yr−1 (Lundin

et al., 1999). The forest is dominated by Scots pine (Pinus

sylvestris) and Norway spruce (Picea abies) with occasional

broadleaf trees; the canopy is approximately 25 m high and

has a leaf area index (LAI) of 4.5. More details about the site

are found in Lundin et al. (1999).

For this site, a detailed photosynthesis-stomatal conduc-

tance model was applied to simulate canopy-scale photo-

synthesis and transpiration rates for 1999–2002. Simulated

fluxes were compared with the fluxes of CO2 and H2O mea-

sured with eddy covariance. The simulations for 1999 were

analysed further to address the importance of within-canopy

heterogeneity in the simulations.

2.1 Measurements

2.1.1 Canopy profile measurements

Profile measurements of CO2 and water vapour concentra-

tions, as well as air temperature and wind speed, were per-

formed at a number of levels within and above the canopy. In

this study we used the measurements within the canopy, as

well as the first measurement above, to derive the profile of

these properties within the canopy. The measurements from

8.5, 13.5, 19.0, 24.5 and 28.0 m above the forest floor were

used (Lundin et al., 1999; Mölder et al., 2000). In addition,

the concentrations of water vapour were measured at 0.7 m

above the forest floor as well. All concentrations were aver-

aged to half-hourly means.

For the simulation of within-canopy conditions, these pro-

files were linearly interpolated to represent the conditions.

The lowest measurement was considered representative of

the part of the canopy between the forest floor and the lowest

measurement height.

2.1.2 Flux measurements of H2O and CO2

Eddy covariance measurements of exchange of CO2 and

H2O were made at a height of 35 m (approximately 10 m

above the canopy) with a closed-path system (a LI-6262

gas analyser, LI-COR Inc. and a Gill R2 sonic anemome-

ter, Gill Instruments) at a frequency of 10 Hz. The high-

frequency flux measurements were aggregated to 30 min av-

erages. A detailed description of the eddy covariance set-

up and the flux calculations is given in Grelle and Lindroth

(1996) and Grelle et al. (1999).

Stable conditions prevailing during nighttime can cause

a build-up of CO2, and to a lesser extent H2O, within the

canopy (Goulden et al., 1996; Aubinet et al., 2005). This was

observed for the Norunda site as well (Feigenwinter et al.,

2010), and we corrected the flux measurements for this stor-

age of CO2 and H2O within the canopy with the help of the

profile measurements of CO2 and H2O concentrations (Bal-

docchi and Wilson, 2001). To do so, the profiles of CO2 and
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H2O below the sensor were interpolated between the obser-

vation levels for the 30 min interval before and after that of

the observed fluxes. The difference between the integrated

profiles for these two time periods, divided by the average

time between the two (60′), was assumed as storage flux Fstor

for the given time interval t :

Fstor,t =

∫ h
0
cz,t+1tdz−

∫ h
0
cz,t−1tdz

21t
, (1)

in which cz is the concentration of CO2 or H2O at height z

(expressed here in mol m−3), obtained from linear interpo-

lation of the profile data, and 1t is the time interval for the

aggregated measurements (30′).

Estimates of gross primary production (GPP) were derived

from the measured CO2 flux (net ecosystem exchange, NEE)

by subtracting ecosystem respiration. For this, the data were

distributed in 5 day periods, and for each period, the tem-

perature dependence of ecosystem respiration was computed

according to Reichstein et al. (2005) with a function (Lloyd

and Taylor, 1994) fitted through all nighttime fluxes within

a 15 day window centered around the 5 day period of con-

sideration. For some periods, nighttime respiration showed

little or no sensitivity to temperature, leading to subtraction

of (near-)constant respiration.

Periods with missing observations (either missing climate

data for the forcing, or missing flux data for comparison)

were omitted from the analysis.

Grelle (1997) showed that the flux footprint of the 35 m

level was well within the homogeneous ca. 100 year old

mixed pine/spruce forest surrounding the tower in all direc-

tions. Occasionally the nighttime flux footprint extended be-

yond the homogeneous part of the forest into younger stands,

ca. 50 years old, but still consisting of mixed coniferous for-

est.

2.1.3 Auxiliary measurements

Apart from the within-canopy properties, above-canopy con-

ditions were used. Photosynthetically active radiation (PAR)

was measured with a LI-1905Z PAR sensor (LI-COR Inc.).

Measurements of diffuse radiation were not available for the

studied period, but measurements of diffuse radiation with

a BF-3 sunshine sensor (Delta-T Devices Ltd) that started

in 2004 were applied to derive a relationship between the

fraction of diffuse radiation at the surface and the fraction

of the top-of-atmosphere radiation that reached the surface

(described below, Sect. 2.2.1).

In addition to the eddy covariance measurements of the

H2O flux, which represents the canopy’s evapotranspiration,

measurements of tree transpiration were performed in 1999

for a nearby site (500 m distance) using the tissue heat bal-

ance technique (Čermák et al., 1973). The site is younger

(approximately 50 years old) than the footprint of the tower,

but climatological and hydrological conditions were similar

to those in the footprint, and it has a similar species compo-

sition and leaf area. Details of the sapflow measurements are

given in Lagergren and Lindroth (2002).

2.2 Model description

2.2.1 Light distribution

Because within-canopy measurements for light interception

did not exist for this site, and because an accurate represen-

tation of the light interception requires a considerably larger

distribution than the measurements at certain heights in the

canopy as done for the other forcing data, a detailed radiation

transfer scheme was constructed to simulate light distribution

(Appendix A), which was used to simulate the distribution of

PAR within the canopy. The scheme uses existing theory on

light extinction and reflection, while using the assumptions

made in large-scale models. It separates vertical layers, and

sunlit and shaded fractions of the leaves within these lay-

ers. Moreover, within each fraction and layer, the leaf angle

distribution (assuming an isotropic or spherical distribution)

is represented by a grid of azimuth and zenith angles. For

each of the leaf orientations in the sunlit and shaded fractions

within each of the layers, absorption, reflection and transmis-

sion are computed with a two-way scheme computing the

downward and upward scattering within the canopy with an

angular distribution. Based on the separation between sunlit

and shaded leaf areas, it provides a probability density func-

tion of absorbed PAR for each of the layers. The scheme does

not account for clumping of leaves, nor does it account for

penumbral radiation. Details of the light distribution scheme

are provided in Appendix A.

The light distribution model requires a separation between

direct and diffuse light. Observations of the diffuse flux were

not available for the study period, but observations of the dif-

fuse and total shortwave fluxes were available for June 2004

till December 2010. The latter were used to reparameterise a

relationship between the diffuse fraction (fdif, the ratio be-

tween diffuse and global radiation at the surface) and the

fraction of the top-of-atmosphere flux that is transmitted

through the atmosphere (ftrans, the ratio between the global

radiation at the surface and the global radiation at the top

of the atmosphere), described by Spitters et al. (1986). The

boundaries between the regimes in this relationship, which

were originally derived for De Bilt (Netherlands), did not

match the observations from the Norunda forest site.
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Table 1. Parameter values for the photosynthesis-stomatal conductance model.

Parameter Symbol Value Unit Reference

Maximum rate of electron transport at 298 K Jmax 144.× 10−6 molm−2 s−1 Thum et al. (2008)

Maximum rate of Rubisco activity at 298 K Vc,max 25.4× 10−6 molm−2 s−1 Thum et al. (2008)

Activation energy for electron transport E(J ) 88.0× 103 Jmol−1 Thum et al. (2008)

Activation energy for Rubisco activity E(Vc) 73.6× 103 Jmol−1 Thum et al. (2008)

Empirical curvature factor θ 0.7 Von Caemmerer (2000)

Slope in stomatal conductance equation k 9.0 Collatz et al. (1991)

Intercept in stomatal conductance equation b 0.01 molm−2 s−1 Collatz et al. (1991)

Therefore, the parameters describing these boundaries

were optimised by maximising the coefficient of determina-

tion of the function using the data for 2004–2010 (Fig. 1),

resulting in the following relationship:

fdif = 1 for ftrans < 0.27

fdif = 1–18.3(ftrans− 0.27)2 for 0.27≤ ftrans < 0.33

fdif = 1.67–2.20ftrans for 0.33≤ ftrans < 0.65

fdif = 0.23 for ftrans ≥ 0.65

(2)

Apart from the fraction of diffuse radiation, the model re-

quires a distribution of the diffuse light over sky azimuth

and zenith angles. For this, we applied a standard overcast

sky (Monteith and Unsworth, 1990), which has no azimuthal

preference for the light, for conditions under which all ra-

diation is diffuse (fdif = 1). For a high fraction of diffuse

radiation (0.8 < fdif < 1), a skylight distribution represent-

ing translucent high clouds (Grant et al., 1996) was applied,

which represents diffuse conditions, but which concentrates

part of the skylight in the solar direction. For lower fractions

of diffuse radiation (fdif ≤ 0.8), a clear sky distribution (Har-

rison and Coombes, 1988) was adopted.

The detailed light extinction model (Appendix A) requires

a distribution of the light between absorption, reflection and

transmission at the leaf level. For this, the fractions 0.85, 0.09

and 0.06 were used, respectively, values provided by Ross

(1975) for mean green leaves.

2.2.2 Flux model

A combined photosynthesis-stomatal conductance model

was constructed, similar to the algorithms used in many

large-scale ecosystem models (e.g. in ORCHIDEE; Krinner

et al., 2005). The model combines a Farquhar-type photo-

synthesis model (Farquhar et al., 1980) with a Ball–Berry

type stomatal conductance model (Ball et al., 1987). How-

ever, in contrast to typical large-scale models, we treat it here

as a leaf-level model, and do the upscaling from leaf level to

canopy level explicitly by accounting for the heterogeneity

in environmental drivers within the canopy (see Sect. 2.1.1).

Leaf-level photosynthesis is simulated as the minimum of

the Rubisco-limited CO2 assimilation rate Ac and the elec-
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Figure 1. Relationship between the relative amount of incoming ra-

diation at the surface (as a fraction of top-of-atmosphere radiation)

ftrans and diffuse fraction fdif. Shown are data between June 2004

and December 2010. Data points with surface fractions≤ 0 or> 1,

as well as data points with diffuse fractions< 0.1 or> 1.25, were

omitted. The original relationship by Spitters et al. (1986) (dashed,

R2
= 0.61) as well as the reparameterised relationship (full line,

R2
= 0.66) are displayed.

tron transport-limited CO2 assimilation rate Aj following

Farquhar et al. (1980) and Von Caemmerer (2000):

A=min(Ac,Aj) (3)

Because of the comparison with the NEE-derived photosyn-

thesis flux, which has all respiration components subtracted,

there is no accounting for the leaf’s dark respiration in the

computation of Ac or Aj.

The Rubisco-limited rate Ac is simulated as a function of

CO2 concentration and O2 concentration with temperature-

dependent Michaelis–Menten constants for carboxylation

and oxygenation (Von Caemmerer, 2000), and is dependent

on the maximum Rubisco rate Vc,max (Table 1):

Ac =
(Ci −0∗)Vc,max

Ci +Kc(1+
O
Ko
)
. (4)

Here, Ci is the leaf-internal CO2 concentration, O is the

leaf-internal O2 concentration (assumed constant at 21 %),
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Table 2. Overview of the simulations performed for this study.

Abbreviation Description PAR CO2 Temperature Humidity

Reference simulation

HET Full heterogeneity simulation Profile Profile Profile Profile

Homogeneous conditions for one parameter

HOM_PAR Homogeneous PAR Canopy average Profile Profile Profile

HOM_PAR_LAYER Profile, but homogeneous PAR within layer Layer-averaged profile Profile Profile Profile

HOM_CO2 Homogeneous CO2 (canopy average) Profile Canopy average Profile Profile

HOM_CO2_AC Homogeneous CO2 (above-canopy concen-

tration, 28.0 m)

Profile Above-canopy Profile Profile

HOM_TEM Homogeneous temperature Profile Profile Above-canopy Profile

HOM_HUM Homogeneous humidity Profile Profile Profile Canopy average

HOM_HUM_AC Homogeneous humidity (above-canopy

concentration, 28.0 m)

Profile Profile Profile Above-canopy

HOM_HUM_IC Homogeneous humidity (within-canopy

concentration, 8.5 m)

Profile Profile Profile Within-canopy

Homogeneous conditions for all parameters except one

HET_PAR Homogeneous in canopy except for PAR Profile Canopy average Canopy average Canopy average

HET_CO2 Homogeneous in canopy except for CO2 Canopy average Profile Canopy average Canopy average

HET_TEM Homogeneous in canopy except for temper-

ature

Canopy average Canopy average Profile Canopy average

HET_HUM Homogeneous in canopy except for humid-

ity

Canopy average Canopy average Canopy average Profile

Diurnally averaged conditions for all parameters except one

DHET_PAR Homogeneous in diurnal cycle except for

PAR

Profile Diurnally averaged profile Diurnally averaged profile Diurnally averaged profile

DHET_CO2 Homogeneous in diurnal cycle except for

CO2

Diurnally averaged profile Profile Diurnally averaged profile Diurnally averaged profile

DHET_TEM Homogeneous in diurnal cycle except for

temperature

Diurnally averaged profile Diurnally averaged profile Profile Diurnally averaged profile

DHET_HUM Homogeneous in diurnal cycle except for

humidity

Diurnally averaged profile Diurnally averaged profile Diurnally averaged profile Profile

Annually averaged conditions for all parameters except one

AHET_PAR Homogeneous in annual cycle except for

PAR

Profile Annually averaged profile Annually averaged profile Annually averaged profile

AHET_CO2 Homogeneous in annual cycle except for

CO2

Annually averaged profile Profile Annually averaged profile Annually averaged profile

AHET_TEM Homogeneous in annual cycle except for

temperature

Annually averaged profile Annually averaged profile Profile Annually averaged profile

AHET_HUM Homogeneous in annual cycle except for

humidity

Annually averaged profile Annually averaged profile Annually averaged profile Profile

0∗ is the CO2 compensation point, and Kc and Ko are the

Michaelis–Menten constants for carboxylation and oxygena-

tion, respectively, which are temperature dependent (Von

Caemmerer, 2000). The electron transport-limited CO2 as-

similation rate Aj depends primarily on the electron trans-

port rate J at the leaf level, as well as on the leaf-internal

CO2 concentration (Von Caemmerer, 2000):

Aj =
(Ci −0∗)J

4Ci + 80∗
. (5)

The electron transport rate J is determined from the empiri-

cal function describing J as a function of the absorbed irra-

diance I (corrected for spectral quality and leaf absorbance)

and the maximum electron transport rate Jmax (Table 1), ap-

plying an empirical curvature factor θ (Farquhar et al., 1980;

Von Caemmerer, 2000):

J =
I + Jmax−

√
(I + Jmax)2− 4θIJmax

2θ
. (6)

The photosynthetic parameters determined by Thum et al.

(2008), who used stand-scale eddy covariance measurements

from Norunda for 2001 to parameterise their model, were

adopted (Table 1).

Leaf-level stomatal conductance, gs, is simulated follow-

ing Ball et al. (1987) with a modification by Collatz et al.

(1991) as a function of the CO2 assimilation rate, leaf sur-

face CO2 concentration cs and leaf surface relative humidity

hs:

gs = b+ k
A hs

cs

. (7)

The values for the intercept b and the dimensionless slope k

in this relationship are taken from Collatz et al. (1991) (Ta-

ble 1). The leaf’s aerodynamic conductance, gb, is described

as a function of leaf size and wind speed, following Goudri-

aan (1977).

The mutual interaction between photosynthesis and stom-

atal conductance (stomatal conductance is affected by the

CO2 assimilation rate A, and CO2 assimilation is affected

www.biogeosciences.net/12/237/2015/ Biogeosciences, 12, 237–256, 2015
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by the leaf-internal CO2 concentration and thus by stomatal

conductance) is determined iteratively by solving a squared

function of the stomatal conductance gs applying bisection.

The transpiration flux E is computed from the gradient

between the water vapour concentrations in the stomata (as-

sumed to be saturated, Hi) and the outside air (Ha) using the

stomatal and aerodynamic resistances for water vapour (de-

noted as g′s and g′b, respectively) in series:

E = (Hi−Ha)(g
′
s+ g

′

b). (8)

Driving variables for the model are PAR, CO2 concentration,

humidity, temperature and wind speed. The model applies

the simulated distributions of light (Sect. 2.2.1) and the ob-

served vertical profiles of CO2, humidity, temperature and

wind speed (Sect. 2.1.1). The observed vertical distribution

of leaf area (Sect. 2.3) was used to integrate the leaf-scale

photosynthesis and transpiration rates into the stand scale.

2.3 Simulation set-up

The photosynthesis-stomatal conductance model described

above was applied to simulate leaf-level photosynthesis and

transpiration in the canopy of the Norunda forest site. To do

so, the canopy was distributed in 25 vertical layers of 1 m

thickness, to which leaf density was prescribed according to

the LAI profile for the site derived from the vertical leaf area

distribution in the tree crowns (Morén et al., 2000) combined

with an extensive stratified sampling of tree heights and tree

crown lengths (Håkansson and Körling, 2002). Within these

layers, the sunlit and shaded parts of the needles were sepa-

rated as described above, and within each of these two frac-

tions, a spherical leaf angle distribution was represented by

4× 4 leaf normal azimuth and zenith angles. These 16 leaf

angle classes were distributed over the hemisphere so that

each of the 16 classes represents an equal fraction (1/16) of

the full distribution.

The light distribution model (Sect. 2.2.1 and Appendix A)

was applied to simulate the leaf-level absorption of photo-

synthetically active radiation (PAR). For each layer, the con-

centrations of water vapour and CO2, as well as the tempera-

ture and wind speed, were obtained from linear interpolation

of the within-canopy measurements (Sect. 2.1.1). These con-

ditions varied between the layers, whereas the different leaf

angle classes within one layer were considered to have the

same temperature, wind speed and atmospheric concentra-

tions of CO2 and H2O. Because of the varying PAR between

the classes, stomatal conductance, and thereby leaf-internal

CO2 concentration, were able to vary between these as well.

Apart from these simulations in which the heterogeneity

within the canopy was represented explicitly (hereafter re-

ferred to as simulation HET), a number of simulations were

performed in which these conditions were averaged spa-

tially, thereby removing part of the vertical heterogeneity.

For these simulations, the conditions were prescribed to the

(LAI-weighted) canopy average instead of the distribution,

or in some cases to the above-canopy (h= 28.0 m) or within-

canopy (h= 8.5 m) value. A complete overview of the simu-

lations performed in this study is given in Table 2.

Moreover, the importance of vertical heterogeneity in forc-

ing parameters was compared with the annual and diurnal

variability in the forcing with the help of two sets of sim-

ulations in which this temporal variability was artificially

removed for all parameters except one. These simulations

were driven without annual heterogeneity (labelled as AHET

in Table 2, applying an annually averaged vertical profile

and diurnal cycle) for all parameters except one. Similarly,

the simulations without diurnal heterogeneity (labelled as

DHET, applying average daily conditions while maintaining

the annual cycle and vertical profile) had the diurnal hetero-

geneity removed for all parameters except one. The simu-

lated temporally varying vertical profiles of CO2 assimilation

and transpiration were averaged per day and integrated over

the canopy (AHET), averaged per half-hourly period of the

day and integrated over the canopy (DHET), or averaged over

both days and hours for each layer in the profile (HET), and

the distributions (presented as percentiles) were computed.

3 Results

3.1 Comparison with observations

Photosynthesis and transpiration from the simulation in

which the heterogeneity was accounted for (HET, Table 2)

were compared with the photosynthesis derived from the ob-

served CO2 flux and with the observed H2O flux, respec-

tively, for the years 1999–2002.

The annual cycle of photosynthesis (Fig. 2a) was generally

well captured by the model. The day-to-day variability was

represented, with individual days with low photosynthesis re-

sulting primarily from low incoming radiation on these days

(not shown). A marked decrease in photosynthesis was ob-

served for a 2 week period in 1999 starting from 28 July (days

209–223), likely as a result of a preceding period of drought,

coinciding with low soil moisture values (not shown; Lager-

gren and Lindroth, 2002). This decrease was not captured by

the model, because the impact of soil moisture conditions

is not accounted for. The diurnal cycle for photosynthesis

(Fig. 3a) was captured well by the model for all seasons, ex-

cept for winter, when the model considerably overestimated

photosynthesis. A similar 2 week drought occurred in 2001,

starting at the end of June (Fig. 2a).

The annual cycle of transpiration (Fig. 2b) showed a rea-

sonable agreement with the observed H2O flux (which con-

sists of both evaporation and transpiration). In general, the

observed flux was considerably higher than the simulated

one in winter and spring (February–June), which can likely

be attributed to a high contribution of evaporation to the

H2O flux in spring, coinciding with the snow melt period.

Transpiration estimates for 1999 from sapflow measurements
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(applying the tissue heat balance method, Lagergren and Lin-

droth, 2002) showed a later onset of transpiration (Fig. 2b

and c), in better agreement with the simulated rates. The di-

urnal cycle of transpiration (Fig. 3b) showed this overesti-

mation for winter and spring in the daytime, with a particular

mismatch for the winter season, when simulated transpira-

tion was negligible. For summer and autumn, however, the

average diurnal cycle was captured well by the model, with

a slight underestimation between 6 a.m. and noon.

Three 5 day periods were selected as case studies (Fig. 4),

which are analysed below with respect to their within-canopy

variations under environmental conditions (Fig. 4a–d). Case

1 (18–22 May 1999) was selected to represent large within-

canopy gradients of humidity and temperature. Case 2 (24–

28 August 1999) represents large changes in sky conditions,

and therefore large changes in the vertical distribution of

light. Case 3 (8–12 September 1999) exhibits large gradi-

ents of atmospheric CO2 concentration within the canopy.

For these cases, the dynamics of canopy-scale photosynthe-

sis and transpiration (Fig. 4g and h) were captured well by

the simulation model. Negative fluxes of CO2 assimilation in

the observations (Fig. 4g) are due to the method used to sep-

arate the net CO2 flux into CO2 assimilation and ecosystem

respiration, and represent the noise in the observation-based

flux.

These cases were analysed in detail, after which the im-

pact of heterogeneity was assessed at the annual level. Be-

cause of the small needle diameter, the leaf boundary layer is

shallow, and the simulated exchange processes turned out to

be insensitive to wind speed. Therefore, the analysis below

will concentrate on humidity and temperature, PAR and CO2

concentration.
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Figure 4. Overview of vertical gradients in the canopy for three periods: 18–22 May 1999 (case 1), 24–28 August 1999 (case 2) and 8–12

September 1999 (case 3). Shown are gradients of (a) leaf-level absorbed photosynthetically active radiation (PAR), averaged per canopy layer,

(b) atmospheric CO2 concentration, (c) air temperature, (d) relative humidity, (e) simulated CO2 assimilation and (f) simulated transpiration,

as well as the canopy-integrated (g) CO2 assimilation and (h) transpiration, compared with observed fluxes (the canopy-integrated fluxes

in (g) and (h) are expressed per ground area). The gradient in PAR originates from detailed simulation of the light transfer in the canopy.

Gradients in CO2, air temperature and relative humidity were obtained from linear interpolation of measurements at 5–6 levels in and directly

above the canopy.

3.2 Heterogeneity in humidity and temperature

For the period of the first case study, 18–22 May 1999,

the CO2 assimilation flux was captured well by the model

(Fig. 4g), and the simulated transpiration flux was slightly

underestimated for 18 and 19 May, whereas it was captured

well for 20–22 May (Fig. 4h). During this 5 day period, there

were marked differences between the conditions above the

canopy and within the canopy (Fig. 5). In general, temper-

atures were up to 3 K higher above the canopy than within,

and relative humidity was up to 15 % lower. Differences were

largest during nighttime, e.g. in the nights between 18 and

19 and between 19 and 20 May (Fig. 5a and b), but even

in the early morning and late evening, while photosynthe-

sis occurred, differences were apparent. The pattern of stom-

atal conductance (Fig. 5c) followed primarily that of photo-

synthesis (Fig. 4e), which is the main cause of the similar-

ity in the vertical profiles of photosynthesis and transpiration

(Fig. 4f).

Variations in relative humidity have two opposing effects:

(1) a high relative humidity causes the stomatal conductance

to be high (Eq. 7) and thereby stimulates transpiration and

CO2 assimilation, and (2) under high relative humidity, the

humidity gradient between the substomatal cavity (which is

assumed to be saturated) and the air surrounding the leaf is

low, thereby hampering transpiration.

The simulation with homogeneous temperature

(HOM_TEM) or humidity (HOM_HUM) resulted in

very similar CO2 assimilation and transpiration compared

with the simulation applying heterogeneous conditions

(HET). Because the vertical variations in humidity and

temperature were relatively small, and the response is

reasonably linear, the deviations were not large (not shown).

However, when applying within-canopy (8.5 m, simula-

tion HOM_HUM_IC) or above-canopy (28 m, simulation

HOM_HUM_AC) humidity instead of the canopy-average

value (Fig. 5d), transpiration can be over- or underestimated

within the canopy (Fig. 5e–f), in particular in late evening,

night and early morning, in line with the observed gradients

for humidity (Fig. 5a). The lower humidity above the canopy,

which caused the largest deviations, resulted in an overes-

timation of transpiration of up to 80 % during the above-

mentioned time of the day (e.g., during the night from 19
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humidity (simulation HOM_HUM_IC).

to 20 May). Applying the above-canopy conditions yielded

reasonable results in the top of the canopy, but overesti-

mated transpiration in the lower canopy (Fig. 5e). The use

of within-canopy humidity caused reasonable results for the

lower canopy (with no deviations for the actual height of the

measurements, 8.5 m), but with the top of the canopy depict-

ing an underestimation of transpiration (Fig. 5f). From the

two opposing effects mentioned above, the changes in hu-

midity gradient were driving these deviations, whereas the

stomatal response had only a mild counteracting effect.

The deviations can be considerable during the period with

little or no daylight, but the difference disappeared during

daytime. Hence, the daily total transpiration was only slightly

affected, with 7 days exceeding an overestimation of 10 % in

the period April–September for the simulation with above-

canopy humidity, and 7 days exceeding an underestimation

of 10 % for the same period for the simulation with within-

canopy humidity. On an annual basis, the total overestima-

tion of the annual transpiration was 1.0 % in the simulation

with above-canopy humidity, and the underestimation was

1.6 % in the simulation with within-canopy humidity (not

shown). Effects of above-canopy or within-canopy temper-

ature rather than the temperature average yielded even lower

deviations in the simulated transpiration (not shown): an un-

derestimation of 0.5 % when using above-canopy tempera-

ture, and no difference when using within-canopy tempera-

ture. Because the changes in stomatal conductance were only

minor, the simulated CO2 assimilation flux was affected less

than the transpiration flux.

3.3 Heterogeneity in light absorption

Within-canopy heterogeneous light conditions were the most

important contribution to the within-canopy heterogeneity

of the simulated photosynthesis and transpiration rates. The

case study period 24–28 August 1999 (Fig. 4) showed

a marked difference in the vertical profiles of light absorption

(Fig. 4a), photosynthesis (Fig. 4e) and transpiration (Fig. 4f)

between clear days (e.g. 25 August) and overcast days (e.g.

27 August), resulting in canopy photosynthesis rates that dif-

fer greatly (Fig. 4g). These differences were largely caused

by the absolute amounts of radiation.

The angular distribution of the light is often counteract-

ing the impact of high levels of radiation. Figure 6a shows

that the dominant part of the radiation was direct for 25 Au-

gust, whereas there was only diffuse radiation on 27 August.

This distribution over direct and diffuse radiation affected the

efficiency of the canopy to assimilate: With large amounts
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of direct radiation, part of the canopy is light-saturated and

produces at its maximum rate. However, a large part of the

canopy, most notably the shaded leaves, receive consider-

ably lower amounts of radiation. In contrast, for overcast

conditions, e.g. those prevailing on 27 August, the light is

distributed more evenly in the canopy. This, combined with

the generally lower level of radiation, makes that less leaves

are under light-saturated conditions, and that the lower part

of the canopy receives more light and is contributing more to

the canopy photosynthesis.

The impact of sky conditions on the distribution of the

light affected the light use efficiency (LUE, which is defined

here as the CO2 assimilation flux per amount of absorbed

PAR) of the canopy, both within the vertical profile (Fig. 6b)

and for the canopy as a whole (Fig. 6e). Around noon on sun-

lit days, the absorption in the top of the canopy was high, and

the LUE in the top of the canopy was low, resulting in lower

canopy LUE values (Fig. 6e). In the early morning and late

evening hours of clear-sky days, as well as on overcast days,

the fraction of diffuse radiation was high and the absolute

amount of incoming PAR was low, resulting in a more even

distribution of the light in the canopy, and generally lower

photosynthesis rates. In contrast to the low absolute amounts,

the efficiency was higher, which resulted in improved canopy

LUE.

The light extinction scheme applied here distinguishes

leaf-level heterogeneity in light absorption caused by the dis-

tinction between sunlit and shaded leaves, the vertical lay-

ering of the canopy and the distribution of leaf angles. The

contribution of these factors to the heterogeneity in CO2 as-

similation, and thereby their impact on LUE, is illustrated

in Fig. 6b–d. Simulation HOM_PAR_LAYER, which did

not separate sunlit and shaded leaves or leaf angles, and

which obtains its heterogeneity only from the layering in

the canopy, had uniform conditions within the vertical lay-

ers, and represents a light extinction scheme that does not

account for sunlit-shaded leaves, as is often applied in large-

scale models. It resulted in considerably higher LUE values

(Fig. 6c), particularly in the lower part of the canopy, where

the distinction between sunlit and shaded leaves results in

a small proportion with high PAR levels and a large propor-

tion with very low levels. An even more equal distribution of

the light was obtained with simulation HOM_PAR (Fig. 6d),

which had no layering in the canopy either. This represents

the so-called big-leaf approach, as used in large-scale mod-

els that lack a vertical layering. It resulted in a homogeneous

distribution of the light, and in the highest LUE values for

the canopy (Fig. 6e).

The distinction between direct and diffuse radiation

and the effect of the solar angle on light extinction and
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distribution were important contributions to the within-

canopy heterogeneity. Apart from the generally higher levels

of radiation and hence CO2 assimilation obtained under high

solar angles, the radiation penetrated deeper into the canopy,

resulting in a more even distribution of the radiation (Fig. 7a)

and higher levels of CO2 assimilation further down in the

canopy (Fig. 7b) compared to cases with a low solar angle.

Similarly, the high levels of diffuse radiation obtained under

overcast conditions resulted in a more homogeneous distribu-

tion of the light because of the contributions from different

azimuth and zenith angles, resulting in a more even vertical

distribution of CO2 assimilation (Fig. 7).

This profound difference between clear and overcast con-

ditions was obtained as well when separating the daily CO2

assimilation flux over clear days (defined here as days with

more than 50 % of the radiation reaching the canopy directly)

and cloudy days (less than 50 % of the radiation reaching the

canopy directly): for clear days, lower efficiencies in CO2

assimilation with a given amount of light (Fig. 8) were ob-

tained; the light use efficiency is depicted here as the slope

in the figure. The model set-up depicting the full distribu-

tion of light in the canopy (simulation HET) was able to cap-

ture the efficiency for both the clear days and cloudy days,

and showed a marked difference between the two. The set-up

without heterogeneity in the canopy light distribution (sim-

ulation HOM_PAR) generally overestimated the efficiency

because of the equal distribution of light. Moreover, the dif-

ference in light use efficiency between clear days and cloudy

days was smaller. The model set-up used for HOM_PAR did

not differentiate between direct and diffuse radiation, but the

regression still depicted a difference because of the relative

importance of high PAR days to the clear day set, which gen-

erally show a lower efficiency.

On the annual scale, GPP was captured well by the sim-

ulation applying full heterogeneity (simulation HET), with

a slight overestimation of 3 % of the annual GPP compared

with the observations for the days for which data are avail-

able. The simulation without heterogeneity in the light distri-

bution (HOM_PAR) overestimated GPP by 44 % compared

to this full heterogeneity set-up, whereas the simulation with

a layering only (HOM_PAR_LAYER) overestimated GPP by

14 %.

3.4 Heterogeneity in CO2 concentration

Within the canopy, the ambient concentration of CO2 can

vary considerably, both in time and in the vertical (Fig. 4b).

Large gradients are formed under stable conditions dur-

ing nighttime, when CO2 assimilation has stopped, but het-

erotrophic and autotrophic respiration continue, while verti-

cal mixing is reduced in the canopy. These gradients disap-

pear quickly after sunrise, when the boundary layer growth

starts and initiates turbulent mixing. It is mainly during these

early morning hours that effects of a CO2 gradient in the

canopy on fluxes of CO2 assimilation and transpiration were

to be expected.

These large gradients were seen in the third case period

(Fig. 4b), and we will illustrate this impact by analysing

the dynamics of this gradient on 12 September 1999 in

more detail (Fig. 9). For this date, the CO2 gradient built

up during nighttime, and a gradient of more than 50 ppm

was maintained up to two hours after sunrise (Fig. 9c). Ig-

noring this gradient in the simulation of CO2 assimilation

by using a constant (canopy-average or above-canopy) CO2

concentration caused deviations of a few percents locally

(Fig. 9d), but its impact on the actual profile (Fig. 9e), or on

the canopy-integrated CO2 assimilation flux was negligible.

From 8.30 a.m. onwards, the gradient disappeared rapidly,

and had no further impact on CO2 assimilation during the

day (Fig. 9c–e).

Despite the substantial gradient in CO2 concentration, its

impact was small. This is because (1) photosynthesis largely

takes place at the top of the canopy, where the deviations of

the CO2 concentration from the above-canopy value is small

(Fig. 9c and e), (2) during the early hours, the solar angle

is low, so light does not penetrate deeply into the canopy,

hence the lower leaves can barely profit from the higher CO2

concentrations, (3) leaves compensate for higher CO2 con-

centrations with a closure of their stomata (Ball et al., 1987,

Eq. 7), which causes the gradient in stomatal concentrations

to be much lower than that of atmospheric concentrations.

The changes in the stomatal conductance in (3) have the

potential to alter transpiration as well. In the cases where
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photosynthesis is underestimated in the lower canopy, the

simulations yield an underestimation of transpiration as well

because of the lower CO2 concentration (not shown). How-

ever, similarly to the impact on photosynthesis, the change in

transpiration had only a marginal impact, and occured where

and when transpiration rates were small anyway.

The occurrence of CO2 gradients, predominantly during

nighttime and morning hours, has therefore a negligible im-

pact on canopy-integrated photosynthesis levels.

3.5 Comparison with annual and diurnal heterogeneity

The analysis above showed the vast dominance of light as

the cause of within-canopy heterogeneity of CO2 assimila-

tion and transpiration. A set of simulations that were forced

by within-canopy heterogeneity of only one of the driving

parameters (PAR, CO2, temperature and humidity, simula-

tions HET_PAR, HET_CO2, HET_TEM and HET_HUM)

illustrates this: Fig. 10a1 and b1 compare the observed vari-

ability in CO2 assimilation and transpiration fluxes within

the canopy between the full heterogeneity simulation (HET)

and the set of partial heterogeneity simulations. It clearly

shows that the simulation in which light was the only het-

erogeneous variable (HET_PAR) had comparable variability

for both CO2 assimilation and transpiration fluxes, whereas

the other simulations had a much smaller variability.

In order to compare the importance of vertical heterogene-

ity with that obtained from annual and diurnal changes in

the forcing, the variability was determined on the annual and

diurnal scale for the two additional sets of simulations in

which annual and diurnal heterogeneity in the forcing were

removed, respectively. Figure 10a2 shows that the annual

variability in the flux of CO2 assimilation is determined in

equal amounts by variations in PAR and temperature. For

the annual variability in transpiration, variability in humid-

ity played a dominant role, with minor contributions from

PAR and temperature as well (Fig. 10b2).

The diurnal variability of the CO2 assimilation flux was

largely dominated by PAR (Fig. 10a3), which is the obvious

driver of the daytime-to-nighttime difference in CO2 assimi-

lation. Moreover, temperature contributed to the diurnal vari-

ability as well. For diurnal variations in transpiration, PAR

and humidity changes played equal roles (Fig. 10b3).

Summarising, the within-canopy variability in fluxes of

CO2 assimilation and transpiration was of a similar order

of magnitude as the variability on annual or diurnal scales

(Fig. 10), though typically slightly less than the latter. PAR-

related variability within the canopy was of a similar magni-

tude as the PAR-related variability at the annual cycle.

4 Discussion

For the evaluation of the model, gross primary produc-

tion (GPP) was derived from the CO2 flux determined

with eddy covariance. To do so, respiration was sub-

stracted following Reichstein et al. (2005), however, the

nighttime fluxes for Norunda did not always show a clear
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temperature dependence. Moreover, the comparison between

the simulated canopy-scale transpiration and the H2O flux

determined with eddy covariance showed large deviations

in winter and spring, most likely caused by the contribu-

tion of evaporation to the flux, as supported by the improved

comparison between model and observations obtained with

sapflow measurements (Lagergren and Lindroth, 2002). Un-

fortunately, sapflow measurements were available only for

a nearby (distance approximately 500 m) site, and not for all

years used in the model evaluation.

The model simulated CO2 assimilation and transpiration

fluxes as a function of atmospheric conditions, but did not

account for soil conditions. Soil moisture limitations may af-

fect the stomatal conductance, and thereby the fluxes of CO2

assimilation and transpiration. Such water limitation occa-

sionally occurred in the forest site studied here, mainly dur-

ing summertime and for periods of up to 15 days (Jansson

et al., 1999; Grelle et al., 1999; Lagergren and Lindroth,

2002; Thum et al., 2007), but the non-water limited results

are representative of this site for most of the year. For other

sites, it may be considerably more important to capture this

response.

Despite these drawbacks, simulated and observed CO2 as-

similation fluxes showed a good agreement, and simulated

transpiration showed a reasonable agreement with the ob-

served evapotranspiration.

The heterogeneity set-up applied in this study captured

the main drivers of photosynthesis and transpiration in the
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Figure 10. Explanation of variability of simulated (a) CO2 assimilation and (b) transpiration for (1) vertical variability (n= 25), (2) annual

variability (n= 277) and (3) diurnal variability (n= 48). Shown are the distributions (box indicates the median and the 25–75 % percentile,

whiskers indicate full distribution) obtained from the full simulation, and from simulations that exhibit variability only for one parameter

(see text for details).

canopy, and showed that the vertical distribution of photo-

synthetically active radiation is the dominating source of ver-

tical heterogeneity. The importance of sky conditions for the

flux of CO2 assimilation has been studied in other coniferous

forests. Considerably higher photosynthetic light use effi-

ciency, and thereby a stronger net carbon sink, was observed

for cloudy days as compared with clear days for a Picea abies

stand in the Czech Republic (Urban et al., 2007), for two

Picea sitchensis stands in the UK (Dengel and Grace, 2010),

and for a Pinus sylvestris stand in Finland (Law et al., 2002),

in agreement with the results presented in this study.

Stomatal conductance was observed to be larger for cloudy

conditions than for clear conditions (Dengel and Grace,

2010), for which the enhancement of light absorption and

thereby photosynthesis is only one possible explanation: In

general, cloudy conditions coincide with a relatively low

vapour pressure deficit, which enhances stomatal conduc-

tance as well. Our results suggest that this is of little impor-

tance for the diurnal dynamics of photosynthesis, but it may

be more important for the seasonal dynamics (as addressed

by Dengel and Grace, 2010). Moreover, the higher contri-

bution of blue light to the radiation under diffuse conditions

has been suggested as an explanation for higher conductance

(Dengel and Grace, 2010), but this was not confirmed for

the Picea abies stand in Czech republic (Urban et al., 2012).

These effects of spectral differences cannot be studied with

our model in its current form, but may be interesting for fu-

ture model development.

Variability within the CO2 profile had little effect on

the simulated canopy CO2 assimilation rates in this study,

mainly due to the counteracting effects of changes in ambi-

ent CO2 and changes in stomatal conductance (and thereby

leaf-internal CO2). Brooks et al. (1997) estimated an increase

of 5–6 % in understorey CO2 assimilation due to the elevated

levels of CO2 resulting from respiration for two boreal for-

est sites in Canada. However, the understorey is not likely to

contribute substantially to the canopy GPP. Rough estimates

of ground vegetation net primary production for this site (un-

published results) indicate a contribution of less than 10% to

the total, which is in the range obtained for other Swedish

forest sites (Berggren et al., 2002). We expect the contribu-

tion to GPP to be of similar magnitude.

Similarly, the temperature gradients observed for this

site had little impact on the simulated photosynthesis

and transpiration. It needs to be noted that the hetero-

geneity in temperature used here was derived from air
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temperature measurements in a number of layers, and is thus

not entirely representative of leaf temperatures. Importantly,

leaf temperatures are affected by fluxes of radiation, and sun-

lit and shaded leaves may thus exhibit different temperatures.

Observations of individual leaf temperatures, and their dis-

tribution in the canopy, are rare, and in order to investigate

the importance of temperatures further, a leaf energy balance

model may be used to compute temperatures.

Apart from the variations in the environmental driving

variables, variations can occur in model parameters as well.

The vertical gradient in light availability causes plants to dis-

tribute the leaf nitrogen content, and thereby the photosyn-

thetic capacity, with a similar vertical gradient (Hirose and

Werger, 1987; Givnish, 1988); in models this effect is of-

ten translated into an assumed optimum vertical distribution

of nitrogen and photosynthetic capacity (De Pury and Far-

quhar, 1997). We have performed sensitivity tests applying

an exponentially decreasing Vc,max as suggested by De Pury

and Farquhar (1997), resulting in an enhanced vertical gradi-

ent in CO2 assimilation under all sky conditions, and a fur-

ther decrease in the light use efficiency. On the canopy scale,

the light use was affected equally under clear or cloudy days,

causing a reduction of 16 % in LUE.

Similarly, temporal variations of photosynthetic capacities

occur during the growing season, which was found for the

Norunda forest site as well (Thum et al., 2008). However,

Op de Beeck et al. (2010) found these seasonal variations to

be relatively unimportant for the simulation of net ecosystem

exchange in a Pinus sylvestris forest in Belgium. Apart from

the vertical heterogeneity, there is a difference in these pho-

tosynthetic parameters as well between tree species. Pinus

sylvestris has been observed to have generally higher rates

of CO2 assimilation than Picea abies, both for the Rubisco-

limited (Eq. 4) and for the electron transport-limited (Eq. 5)

regimes (e.g. Wullschleger, 1993; Thum et al., 2008). In the

current model, this separation, which requires the interac-

tion between two (or more) tree species to compute the light

transfer, cannot be accounted for. Moreover, such a separa-

tion would enhance uncertainties related to the parameterisa-

tion.

5 Conclusions

The simulations of fluxes of CO2 assimilation and transpira-

tion for a boreal coniferous forest in central Sweden revealed

that the gradient of PAR is the main driver of vertical het-

erogeneity within the canopy. Because of the concave shape

of the response of photosynthesis to light, averaging of PAR

in the canopy resulted in an overestimation of the photosyn-

thesis rate. The other driving variables tested here (tempera-

ture, CO2 concentration, humidity and wind speed) had little

impact on the canopy-integrated rates of photosynthesis and

transpiration, and these can be well represented by a canopy-

average value.

In models applied on regional or global scales, vertical

heterogeneity in the driving variables is largely ignored.

Whereas a canopy-average value is sufficient to represent

temperature, CO2 concentration and humidity, the distribu-

tion of PAR needs to be represented in more detail than

a big-leaf approach, a result in accordance with earlier stud-

ies (Roderick et al., 2001; Alton et al., 2007; Knohl and Bal-

docchi, 2008; Mercado et al., 2009). A more detailed repre-

sentation in large-scale models will enable a more realistic

treatment of the effects of sky conditions on photosynthesis.

Given the size of the vertical variability of the fluxes of

CO2 assimilation and transpiration within the canopy, which

was shown to be of similar magnitude as the variability oc-

curring on diurnal or annual timescales, the impact of forest

structure on microclimatic conditions should receive more at-

tention in large-scale models. For studies addressing changes

over decades or more, not only physiological changes should

be considered, but the changes in canopy structure and hence

in micrometeorological conditions may affect exchange pro-

cesses as well.
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Appendix A: Description of light extinction scheme

Light extinction was simulated with a numerical scheme

that builds on existing theory, representing the heterogene-

ity in the canopy due to sunlit and shaded fractions (which

was introduced by Duncan et al., 1967), vertical layering

(used for representing the vertical heterogeneity by e.g. Mon-

teith, 1965; Duncan et al., 1967; Cowan, 1968) and leaf an-

gle distribution (addressed with numerical approximations

by Goudriaan, 1977, 1988). However, in contrast to exist-

ing schemes, we refrain from averaging intermediate results

(e.g. the distribution of insolation levels obtained from vary-

ing leaf angles) over the canopy, so that the distribution ob-

tained represents the full distribution of light at the leaf level.

A1 Leaf angle distribution

Leaf orientation is represented by two dimensions: an az-

imuth angle φl (0≤ φl < 360◦) and a zenith angle θl (0≤

θl < 90◦) of the leaf normal. The distribution of leaf orien-

tation in these two dimensions is represented in a discrete

manner as a lattice with nlφ × nlθ combinations of azimuth

and zenith angles. The spacing in φ and θ is done so that

each combination (φl,θl) has an equal likelihood, and repre-

sents 1/(nlφnlθ ) of the complete leaf area. For the simula-

tions in this study, we applied a spherical (or isotropic) leaf

angle distribution, which is obtained with a uniform distribu-

tion (equal spacing) of the azimuth angles φl over the entire

360◦, and a spacing at equal distances between the cosines

of the angles for the zenith angles θl , so that the increasing

density towards the horizon compensates for the increasing

area of the sphere.

A2 Distribution of sunlight and skylight

In the model, sunlight is described as a point source with

a given azimuth and zenith angle φsun and θsun, respectively,

together with a photosynthetic quantum flux density Isun (in

mol m−2 s−1). Similar to the leaf angles, skylight is described

with a distribution of azimuth and zenith angles over the

hemisphere. In contrast to the leaf angle distribution, how-

ever, azimuth and zenith angles are spaced equally, resulting

in niφ × niθ combinations of (φs,θs), and the intensity for

each combination is given by Is(φs,θs). The distribution of

the light over sunlight (direct radiation) and skylight (diffuse

radiation), as well as the distribution of skylight over all an-

gles (φs,θs), is determined by sky conditions.

To accommodate upward scattering of light within the

canopy, a second hemisphere was introduced, which has the

same number and distribution of azimuth and zenith angle

classes.

A3 Light absorption

The canopy is represented by nh layers, and light absorption,

reflection and transmission in the canopy are calculated by

combining the direct radiation and the distribution of sky-

light radiation over the sky angles (Sect. A2) for each of the

leaf orientations (Sect. A1) in each layer, thus resulting in

a probability density function of leaf-level absorbed radia-

tion. Below, we will describe the processes at the leaf level

first, followed by a description of the aggregation of these

processes to canopy scale.

The leaf angle distribution is assumed to be spherical

(or isotropic), meaning that the leaf area in layer h, Lh, is

distributed equally over all leaf angle orientations (φl,θl),

which is commonly used to describe a generic canopy in

large-scale models (Cowan, 1968; Leuning et al., 1995) The

leaf area was divided into a sunlit and a shaded fraction (com-

putation of these fractions will be explained further down).

This leaf area intercepts a fraction of the radiation that comes

from a given direction (φs,θs) proportional to its area, and it

depends on the angle between the leaf normal and the direc-

tion of the radiation:

fint,s,l,h =
sinγs,l

cosθs

Lh

nlφnlθ
. (A1)

In this equation, the angle between beam and leaf, γs,l , can be

computed from the inner product of the vectors of the beam

and the leaf normal, which can be expressed based on their

azimuth angles φ and zenith angles θ (see e.g. Ross, 1981):

γs,l = arcsin(cosφs sinθs cosφl sinθl (A2)

+ sinφs sinθs sinφl sinθl + cosθs cosθl)

This intercepted fraction of the radiation, fint,s,l,h (Eq. A1)

is absorbed, reflected or transmitted by the leaf, which is

distributed according to constant fractions. To obtain the to-

tal amount of intercepted diffuse radiation by the leaf Idif,l,h

(which represents intercepted radiation by the leaf area with

orientation l in layer h), these fractions, multiplied by the

light intensities Idif, need to be integrated over all skylight

angles:

Idif,l,h =

ns∑
s=1

(fint,s,l,hIdif,s sinγs,l). (A3)

This integration is performed both for the upper hemisphere

and for the lower one to accommodate fluxes from below due

to scattering.

Similarly, the fraction of intercepted beam radiation can

be computed from Eq. (A1) by replacing the skylight angles

with sunlight angles, which results in the beam radiation in-

tercepted by a leaf with orientation l in layer h of

Isun,l,h = fint,sun,lIsun sinγsun,l . (A4)

The total amount of intercepted radiation by the leaf

area with orientation l in layer h, which can be written as

Isun,l,h+fsun,hIdif,l,h for sunlit leaves, and (1−fsun,h)Idif,l,h

for shaded leaves, is distributed over the sunlit and shaded
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leaf areas, respectively, to obtain the radiation intensity at the

leaf level:

Iint,sunlit,l,h =
Isun,l,h+ fsun,hIdif,l,h

fsun,hnlφnlθLh
(A5)

Iint,shaded,l,h =
Idif,l,h

nlφnlθLh
(A6)

The fractions of sunlit and shaded leaves are computed from

the same theory: the total interception of radiation in layer h

is calculated by integrating Eq. (A1) over all leaf angles:

fint,h =

nlφnlθ∑
l=1

fint,l(φl,θl). (A7)

The fraction of sunlit leaves for each layer h is computed

from the shading in the layers above, assuming the leaves

to be distributed randomly in space (no spatial aggregation),

similar to Monteith (1965):

fsun,h = (1− fint)
h−1. (A8)

This results in an exponential profile of the sunlit fraction in

the canopy.

The absorbed photon flux densities at the leaf level, ob-

tained from Eqs. A5 and A6, are used to compute CO2 assim-

ilation (see Sect. 2.2.2). The unintercepted radiation passes

the layer without adjustments to the angular distribution. The

radiation transmitted and reflected is distributed again over

the two hemispheres of diffuse radiation. The leaf surface is

assumed to be a Lambertian scatterer: the leaf reflects the

largest flux in the direction of the leaf normal, and trans-

mits the largest flux in the opposite direction. When the dif-

fuse light reaches the leaf surface from below, transmittance

points in the direction of the leaf normal, and reflectance in

the opposite direction.

These leaf-level processes can be aggregated to the canopy

level. For all leaf orientations j in all layers h, absorbance,

reflectance and transmittance from the layer as a whole can

be determined as described above. Within a layer, the scat-

tering in all directions of the upward and downward pointing

hemisphere is integrated over all leaf orientations, and these

amounts are added to the fluxes of diffuse radiation that pass

through the layer without interference with the leaves.

The distribution of this scattered light over the canopy is

solved iteratively by computing the total absorption of both

downward and upward pointing fluxes for all layers, first

from top to bottom, then from bottom to top. This is repeated

until the remaining scattered light within the canopy is lower

than a pre-defined minimum residual (0.001 %). This way of

distributing the light in the model canopy is relatively effi-

cient; it requires a few iterations to reach this residual.

The two-directional treatment of scattering is similar to

that used in the models by Norman et al. (1971) and Nor-

man (1975). The model described here contrasts with that

approach, however, in the explicit description of angular scat-

tering, and the numerical solution that is used to obtain that.
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