


Supplement of

Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom *Phaeodactylum tricornutum*

W. Li et al.

Correspondence to: K. Gao (ksgao@xmu.edu.cn)

Supplementary legends

Figure S1. SOD (a) and CAT (b) activities (represented as units per 10^6 cells) of *P. tricornutum* grown at ambient (390 μatm , LC) or elevated CO_2 (1000 μatm , HC) under NO_3^- replete (110 $\mu\text{mol L}^{-1}$, HN) or limited (10 $\mu\text{mol L}^{-1}$, LN). Except CAT value in HC-LN that had only 2 replicates, other treatments were at least 3 replicates (n=3-7).

Supporting information

SOD and CAT activities represented as per 10^6 cells

When SOD and CAT were represented as per 10^6 cell, no significant differences were found between HN and LN treatments in both the LC (SOD, $P = 0.5486$; CAT, $P = 0.8119$) and HC (SOD, $P = 0.4162$; CAT, $P = 0.9876$) conditions. Though statistically no significant difference of SOD and CAT were found between HC and LC, it was worth mentioning that, HC treatments, the averaged SOD activity were decreased by 19.5% ($P = 0.4259$) and 13.0% ($P = 0.5573$), and decreased CAT activity by 24.2% ($P = 0.3417$) and 30.0% ($P = 0.1425$) in the HN and LN conditions, respectively, (Fig. S1).