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Abstract. Eddy covariance data from four European grass-

land sites are used to probabilistically invert the CARAIB

(CARbon Assimilation In the Biosphere) dynamic vegeta-

tion model (DVM) with 10 unknown parameters, using the

DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis)

Markov chain Monte Carlo (MCMC) sampler. We focus on

comparing model inversions, considering both homoscedas-

tic and heteroscedastic eddy covariance residual errors, with

variances either fixed a priori or jointly inferred together

with the model parameters. Agreements between measured

and simulated data during calibration are comparable with

previous studies, with root mean square errors (RMSEs) of

simulated daily gross primary productivity (GPP), ecosys-

tem respiration (RECO) and evapotranspiration (ET) ranging

from 1.73 to 2.19, 1.04 to 1.56 g C m−2 day−1 and 0.50 to

1.28 mm day−1, respectively. For the calibration period, us-

ing a homoscedastic eddy covariance residual error model re-

sulted in a better agreement between measured and modelled

data than using a heteroscedastic residual error model. How-

ever, a model validation experiment showed that CARAIB

models calibrated considering heteroscedastic residual er-

rors perform better. Posterior parameter distributions derived

from using a heteroscedastic model of the residuals thus ap-

pear to be more robust. This is the case even though the

classical linear heteroscedastic error model assumed herein

did not fully remove heteroscedasticity of the GPP residuals.

Despite the fact that the calibrated model is generally capa-

ble of fitting the data within measurement errors, systematic

bias in the model simulations are observed. These are likely

due to model inadequacies such as shortcomings in the pho-

tosynthesis modelling. Besides the residual error treatment,

differences between model parameter posterior distributions

among the four grassland sites are also investigated. It is

shown that the marginal distributions of the specific leaf area

and characteristic mortality time parameters can be explained

by site-specific ecophysiological characteristics.

1 Introduction

Covering about 38 % of the European agricultural area and

8 % of the land surface (FAO, 2011), grassland is an impor-

tant land cover class in Europe, which shows a wide range

of different ecological characteristics. By stocking carbon,

temperate grassland might play an important role in climate

change mitigation in Europe (Soussana et al., 2004) and on

the world scale (O’Mara, 2012). Large uncertainties, how-

ever, remain in the estimation of the (source or sink) carbon

fluxes since those largely depend on farming management

options.

In environmental modelling, grassland growth models

have received less attention than the long-standing and highly

developed crop models. Since grasslands are agroecosystems

that can be considered either as agricultural or semi-natural

lands, grassland models were designed for two main pur-

poses: the simulation of forage and dairy or meat produc-

tion, and the simulation of the carbon fluxes at the land–

atmosphere interface. Several crop models were adapted for

grassland growth modelling (e.g., STICS; Ruget, 2009; Du-

mont et al., 2014, EPIC; Williams et al., 2008), especially

when the management of the grassland remained similar to

crop management, i.e., when the grassland was used for tem-
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porary forage production and was cut rather than grazed

by animals. Some other models were specifically developed

for grasslands (e.g., SPACSYS; Wu et al., 2007), sometimes

coupled with animal production models (e.g., PaSim; Graux

et al., 2013), whereas grassland models were also developed

from dynamic vegetation models (DVMs) such as LPJmL

(Bondeau et al., 2007), adapted from the LPJ model (Sitch

et al., 2003). Being process-based models, DVMs are well

suited for large-scale spatial simulations and can account for

a wide range of current and projected climatic conditions.

To be used for simulation-based decision making, a DVM

must be properly parametrized. Model parameter values can

be derived from (1) laboratory experiments as, e.g., the stom-

atal conductance described by the Ball–Berry model (Ball

et al., 1987), (2) in situ field measurements, or (3) model

inversion using calibration data measurements or (4) spa-

tialized databases (e.g., from remote sensing). Model inver-

sion (also referred to as calibration) consists of automati-

cally finding those model parameters that allow the model

to adequately reproduce the available observed data. The

collection of representative and high-quality data is thus of

paramount importance for inversion, as DVMs require an ad-

equate parametrization that is sufficiently representative of

the range of conditions over the spatial extent of the simu-

lation. Typically, DVMs use different sets of parameters that

are assigned to specific vegetation classes that grow together

over the same area or in geographically distinct biomes. Dy-

namic vegetation model inversion needs a sufficient num-

ber of sites with varying ecophysiological conditions that are

supposed to be representative of the considered vegetation

classes or biomes, but still well-delimited (Knorr and Kattge,

2005). Model inversion using continuous, gridded data (e.g.,

from remote sensing; Patenaude et al., 2008) could also help

in determining optimal parameters for large areas, but com-

putation time can be a limiting factor for such application.

Given the high number of eddy covariance experimental

sites across the world, eddy covariance measurements are

particularly appealing for inversion of the DVMs (Friend

et al., 2007). Furthermore, the long-standing rise in compu-

tational resources not only increased modelling capabilities

in terms of temporal and spatial resolution but also opened

new avenues for quantifying the uncertainty associated with

the estimated model parameters and its effect on model sim-

ulations. In particular, the Bayesian framework for inverse

modelling is increasingly used in the DVM community (e.g.,

Hartig et al., 2012). Bayesian methods such as Markov chain

Monte Carlo (MCMC) sampling aim to derive a representa-

tive set of all parameter combinations that are consistent with

the observed data and available prior information. This set of

parameters is referred to as the posterior distribution.

Nevertheless, eddy covariance data are known to be asso-

ciated with relatively large measurement uncertainties, im-

plying both systematic and random errors (see Aubinet et al.

(2012), chapter 7, for a comprehensive description of all

sources of eddy covariance uncertainties). As eddy covari-

ance data are the result of a long process chain, they can

be affected by instrumental measurement error (e.g., calibra-

tion and design errors), sampling errors due to the variabil-

ity of the fluxes in time and space and data treatment error

(e.g., due to the gap filling of missing data). Uncertainties

in eddy covariance data are also strongly dependent on the

time resolution of the fluxes, tending to diminish with time

aggregation (Richardson and Hollinger, 2005). It is crucial

to account for these random data uncertainties in the inver-

sion since an improper statistical treatment can cause the pa-

rameter posterior distribution to be strongly biased (e.g., Fox

et al., 2009). Quantifying random eddy covariance data er-

rors is not straightforward (Hollinger and Richardson, 2005;

Lasslop et al., 2008), but these errors are typically character-

ized by a variance that is proportional to the magnitude of the

data, i.e., they show heteroscedasticity (e.g., Lasslop et al.,

2008). Therefore, it has been suggested (Richardson et al.,

2008) that the measurement error variance can be modelled

as a linear function of the magnitude of the flux with a non-

null intercept, as random errors are non-null even when the

flux equals 0. However, while the random error can be taken

into account in the inversion, systematic measurement errors

can only be removed by instrument calibration.

In this study, data from eddy covariance stations over four

grassland sites are inverted for the CARAIB (CARbon As-

similation In the Biosphere) dynamic vegetation model pa-

rameters within a Bayesian framework. This is both the first

automatic calibration of the CARAIB model and its first ap-

plication to managed grassland modelling, which required

the adaptation of the model to grass cutting and grazing. The

main objective is to compare the modelling of the carbon and

water fluxes over the four grassland sites using four different

ways of treating the eddy covariance data errors during the

inversion. Both homoscedastic and heteroscedastic residual

error models are considered, either fixed beforehand or sam-

pled along with the model parameters. A second objective is

then to compare the site-specific posterior parameter distri-

butions obtained for the four grasslands, given their climatic,

ecological and management characteristics.

2 Materials and methods

2.1 Experimental sites and data

In this study, we focus on four long-term experimental sites

(see Table 1) that are semi-natural permanent grasslands:

Grillenburg, Germany (Prescher et al., 2010); Oensingen

(intensively managed), Switzerland (Ammann et al., 2007);

Monte Bondone, Italy, (Wohlfahrt et al., 2008) and Laque-

uille (extensively managed), France, (Klumpp et al., 2011).

The four sites pertain to the global FLUXNET network and,

as such, a large number of studies were conducted using eddy

covariance data from these sites. The FLUXNET website

(http://fluxnet.ornl.gov/) provides lists of references per site.
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The four sites are located in western and central Europe

and experience different climate, altitude, soil and manage-

ment conditions. They can be classified according to the

De Martonne–Gottman aridity index, which is inversely re-

lated with the site aridity. Oensingen is the most inten-

sively managed site and the only one that is fertilized (about

200 kg N ha−1 yr−1). The other three sites are extensively

managed, with no organic or mineral fertilization. The last

two sites are mid-mountainous grassland, while the first two

sites are situated at a lower altitude. Only the grassland in

Laqueuille is grazed by animals during the growing season,

while the other three are hay meadows that are cut once or

several times a year. Note that, although grass cutting oc-

curred on the 13 June 2005 in Grillenburg according to the

given management data, it was not observed in the measured

eddy covariance fluxes because of gap filling of missing data.

As a result, this cut was neglected in the modelling.

The four grasslands are equipped with eddy covariance

stations for measuring ecosystem fluxes. Flux measure-

ments and field data sets were made available through a

coordinated task of the FACCE/MACSUR (Food Agricul-

ture Climate Change/Modeling European Agriculture with

Climate Change for food Security) knowledge hub, which

aims at performing an intercomparison of grassland mod-

els (Ma et al., 2014) by running several grassland mod-

els with the same field data sets collected under vari-

ous climatic and management conditions. Field data sets

hold the necessary information for feeding the grassland

model: hourly meteorological records of climatic variables,

soil physical parameters, management information such as

cutting dates or grazing charges, and initial conditions.

Daily eddy covariance data included net ecosystem ex-

change (NEE; g C m−2 day−1), gross primary productiv-

ity (GPP; g C m−2 day−1), ecosystem respiration (RECO;

g C m−2 day−1) and evapotranspiration (ET; mm day−1). It

is worth noting that only the NEE and ET are directly mea-

sured by the eddy covariance station (i.e., fluxes of CO2 and

H2O, respectively) and that GPP and RECO are derived from

these measurements.

In this study, only GPP, RECO and ET measurements were

used in the inverse modelling. Adding NEE measurements

would be ineffective as they are directly dependent on GPP

and RECO. GPP and RECO were used since they are di-

rectly linked with the photosynthesis and respiration pro-

cesses, respectively, while the influence of these two pro-

cesses is mixed in the NEE measurements. Other combi-

nations including the NEE were first tested but resulted in

poorer agreement between measured and modelled data. The

full data range including gap-filled data was inverted, since

these data are gap-filled according to specific protocols that

are standards in the eddy covariance community.

2.2 The CARAIB model

2.2.1 Description of the model

CARAIB is a physically based dynamic vegetation model

that was developed for the simulation of the carbon cycle

on the global scale (Warnant et al., 1994; Nemry et al., 1996;

Otto et al., 2002). It calculates the carbon fluxes through the

soil–vegetation–atmosphere continuum by simulating eco-

physiological processes: photosynthesis, carbon allocation to

plant pools, and autotrophic and heterotrophic respiration.

The CARAIB model has been used in numerous paleocli-

matology, vegetation and crop modelling studies. The reader

is referred to the aforementioned references for a full model

description.

For C3 plants, photosynthesis is computed according to the

model of Farquhar et al. (1980). The stomatal conductance

governing the flux of CO2 through the stomata is described

on the leaf scale with the Ball–Berry approach (Ball et al.,

1987), using the model of Leuning (1995) with further adap-

tations from Van Wijk et al. (2000) to account for soil wa-

ter stress affecting the stomatal conductance. Photosynthesis

and respiration processes are computed at 2-hour time steps

on a half-day basis, and the model assumes a symmetry with

respect to solar noon time; that is, computation of these pro-

cesses is made for half the day and further aggregated using

a daily time step. Other processes, e.g., related to soil hydrol-

ogy or carbon allocation, are computed on a daily basis.

In this study, a single plant functional type (PFT) is con-

sidered (BAG 22 as defined in Laurent et al., 2004, 2008)

corresponding to the flora that can be encountered in Eu-

ropean grasslands, i.e., species of Poaceae and Asteraceae.

The model was adapted for simulating the grassland sites by

adding management functions for grass cutting and grazing.

Grass cutting is modelled by the removal of a part of the

plant carbon mass so that the model matches given values of

leaf area index after cutting. Grazing is modelled such that a

given fraction of the plant carbon mass is removed every day

according to the grazing charge. The dates of the grass cut-

ting and the duration of the grazing periods were known and

fixed in the simulations. Daily meteorological data recorded

at the experimental sites were used in the model, i.e., mini-

mal and maximal temperature, precipitation, solar radiation,

relative air humidity, and wind velocity. Although they can

affect vegetation modelling (Gottschalk et al., 2007; Riving-

ton et al., 2006; Zhao et al., 2012), uncertainties in the mete-

orological data were not considered in this study.

Thirty-three parameters per PFT are set in CARAIB.

These parameters govern photosynthesis, plant physiology

process (e.g., specific leaf area, carbon-to-nitrogen ratio),

allocation of carbon and residence times in the differ-

ent pools of carbon, including plants and soil pools, land

surface–atmosphere interactions (albedo, roughness length),

and tolerance to extreme conditions (thresholds and response

times). During the model development, parameter values in
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CARAIB were mainly taken from the literature (Warnant,

1999) and further compared with observed values (remote

sensing, field data and paleorecords). So far, no model inver-

sions were performed with the CARAIB model.

2.2.2 Choice of parameters

In this study, 10 model parameters were sampled (Table 2).

They were chosen according to their presupposed importance

– that is, the model sensitivity to these parameters – and be-

cause some parameter values were already known in the mea-

sured data from the experimental sites. Default values that

were defined during the model development and used in pre-

vious research are given in Table 2. These parameters govern

the main processes of the model, namely, the photosynthesis,

the respiration and carbon transfer between carbon pools:

– The slope g1 and the intercept g0 (µmol m−2 s−1) of the

stomatal conductance as described in Leuning (1995)

are directly related to the photosynthesis since they gov-

ern the stomatal conductance. They are thus related to

the gross primary productivity (GPP) and evapotran-

spiration (ET) with respect to the meteorological con-

ditions. While most of ecological models, including

CARAIB, use an empirical approach for stomatal con-

ductance, derived from the Ball–Berry model, Medlyn

et al. (2011) recently reconciled the empirical approach

with the theoretical background based on the optimal

stomatal behaviour (Farquhar et al., 1980), which states

that there is a trade-off for stomata between maximizing

carbon gain (photosynthesis) and minimizing water loss

(transpiration). These new developments in the theoreti-

cal understanding of the empirical relationship push for-

ward the necessity to measure or calibrate the stomatal

conductance parameters under different environmental

conditions. Although single values of these parameters

are used for regional or global modelling of C3 plant

photosynthesis (e.g., Sitch et al., 2008), it is known that

stomatal conductance parameters actually vary through

time and space according to the environmental condi-

tions and plant species.

– The specific leaf area (SLA; m2 g C−1) is defined in

CARAIB as the leaf area per unit of carbon mass of

the plants. It is used in the model to convert the assim-

ilated mass of carbon into leaf area index. Besides its

role in the model, SLA is often studied as a plant trait

that is used for predicting the plant resource use strategy

or for clustering plants species into functional groups.

Maximizing the photosynthesis while minimizing leaf

respiration, high-SLA leaves (thin leaves) are produc-

tive but also more vulnerable and short-lived (Wilson

et al., 1999). They are thus better adapted to resource-

rich environment, where leaves can be quickly recon-

structed (Poorter and De Jong, 1999). On the other hand,

low-SLA leaves (thick leaves) are often encountered

in drought-adapted (Marcelis et al., 1998) or shade-

tolerant species (Evans and Poorter, 2001) and for the

lower, self-shaded leaves of a plant. SLA is also known

to vary over the course of the season and according to

the leaf age (Wilson et al., 1999). Nevertheless, the con-

cept of SLA is sometimes problematic for some plant

species with complex plant geometry (Vile et al., 2005),

e.g., highly folded leaves or with a non-negligible part

of the photosynthetic tissues located on the stem, as is

the case among the Poaceae species. In these simula-

tions, SLA is defined for the PFT that is supposed to rep-

resent European grasslands, and, therefore, SLA should

actually be considered as an effective parameter among

the grassland species and for the whole plant body.

– The characteristic mortality time (year) of the plant in

normal τ and in stress conditions τs is, respectively, the

characteristic time for the renewal of the plant (τ ) and

the time it takes for the plant to die in stress condi-

tions (τs). The stress conditions occur when tempera-

tures reach either low or high extreme values, for soil

water content below a certain threshold or for low irra-

diance values. The default values were 0.667 year for τ ,

meaning a renewal of the plant within 8 months, and

0.083 year for τs, meaning a characteristic mortality

time in stress conditions of 1 month.

– Two carbon-to-nitrogen ratios are defined for the pho-

tosynthetic active carbon pool of the plant (C /N1) and

for the remainder of the plant (C /N2). The nitrogen

content of the leaves play a crucial role in the photo-

synthesis, and increasing nitrogen content (decreasing

C /N) fosters photosynthetic activity. A low C /N ra-

tio in plant usually occurs together with high nitrogen

content in soils, that is, a resource-rich environment.

– Three parameters govern the rates of the soil het-

erotrophic respiration: γ 1 for the respiration of the

“green litter“, γ 2 for the respiration of the “non-green

litter” and γ 3 for the respiration of the soil organic car-

bon.

2.3 Probabilistic inversion methodology

2.3.1 Inverse problem

To acknowledge that measurements and modelling errors are

inevitable, the inverse problem is commonly represented by

the stochastic relationship

F(z)= d + e, (1)

where F is a deterministic, error-free forward model that ex-

presses the relation between the uncertain parameters z and

the measurement data d and where the noise term e lumps

measurement and model errors.
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Table 1. Grassland sites and periods of simulations.

Coordinates Altitude Management Fertili- De Martonne– Calibration Validation

sation Gottman index years years

Grillenburg, DE 13.50◦ E, 50.95◦ N 380 m cutting (1–3 yr−1) no 32 2004–2006 2007–2008

Oensingen, CH 7.73◦ E, 47.28◦ N 450 m cutting (3–5 yr−1) yes 38 2002–2005 2006–2008

Monte Bondone, IT 11.03◦ E, 46.00◦ N 1500 m cutting (1 yr−1) no 35 2003–2005 2006–2007

Laqueuille, FR 2.73◦ E, 45.63◦ N 1040 m grazing no 41 2004–2007 2008–2010

Inversions were performed within a Bayesian framework,

which treats the unknown model parameters z as random

variables with the posterior probability density function (pdf)

p(z|d) given by

p(z|d)=
p(z)p(d|z)

p(d)
∝ p(z)L(z|d), (2)

where p(z) denotes the prior distribution of z and L(z|d)≡

p(d|z) signifies the likelihood function of z. The normal-

ization factor p(d)=
∫
p(z)p (d|z)dz is obtained from nu-

merical integration over the parameter space so that p(z|d)

scales to unity. The quantity p(d) is generally difficult to es-

timate in practice but is not required for parameter inference.

In the remainder of this study, we will focus on the unnor-

malized posterior p(z|d)∝ p(z)L(z|d). For numerical sta-

bility, it is often preferable to work with the log-likelihood

function, `(z|d), instead of L(z|d). If we assume the error

e to be normally distributed, uncorrelated and with an un-

known constant variance, σ 2, the log-likelihood function can

be written as

`(z|d)=−
N

2
log(2π)−

N

2
log(σ 2)−

1

2σ 2

N∑
i=1

[
di −Fi (z)

]2
, (3)

where σ can be fixed beforehand or sampled jointly with the

other model parameters z.

The homoscedasticity (i.e., constant variance) assumption

for e may be excessively strong in many cases. Considering

the residual errors, e, to be heteroscedastic, Eq. (3) becomes

`(z|d)=−
N

2
log(2π)−

N∑
i=1

log(σi )−
1

2

N∑
i=1

[
di −Fi (z)

]2
σ 2
i

, (4)

where the σi represents the individual residual error standard

deviations that can be gathered into a vector σ . Here also, σ

can either be fixed beforehand or sampled along with z (see

Sect. 2.3.4).

2.3.2 Multi-objective likelihood function

In this work, we chose three types of eddy covariance data for

the calibration: d1 (GPP), d2 (RECO) and d3 (ET). We fur-

ther assume that the corresponding residual errors, e1, e2 and

e3, are uncorrelated, leading to the following multi-objective

log-likelihood function:

`(z|d1,2,3)= `(z|d1)+ `(z|d2)+ `(z|d3). (5)

The weighting between the three components of `
(
z|d1,2,3

)
is an important issue. The constant (σ ) and non-constant (σi)

standard deviations in Eqs. (3) and (4), respectively, basically

weight the respective influences of e1, e2 and e3 on the log

likelihood defined by Eq. (5). Distinct homoscedastic or het-

eroscedastic residual error models must be specified for e1,

e2 and e3. This was done for both the homoscedastic and

heteroscedastic cases either by specifying the residual error

standard deviations beforehand or by jointly inferring these

standard deviations along with the model parameters.

2.3.3 Homoscedastic and heteroscedastic error models

Based on prior knowledge of the measurement errors, the

homoscedasticity assumption simply reduces to assigning

values to σ1, σ2 and σ3 in Eqs. (3) and (5). These val-

ues were fixed to 3 g C m−2 day−1 for the GPP measure-

ments, 1.5 g C m−2 day−1 for the RECO measurements and

1 mm day−1 for the ET measurements. As stated earlier, mea-

surement errors associated with eddy covariance fluxes are,

however, typically found to be heteroscedastic, with a vari-

ance that is assumed to be linearly related to the magnitude

of the measured data (Richardson et al., 2008):

σd,i =
1

2
σ0,d

(
di

d
+ 1

)
, (6)

where the variable d denotes either GPP, RECO, or ET mea-

surements, i = 1, · · ·,N are measurement times and σ0,d is

equivalent to σ1, σ2 or σ3 in the homoscedastic case. We re-

fer to the inversions based on these homoscedastic and het-

eroscedastic error models as HO1 and HE1, respectively. It is

worth noting that by fixing the standard deviations to known

measurement errors, one implicitly assumes that the model is

able to describe the observed system up to the observation er-

rors. This might not be realistic in environmental modelling,

where models are always fairly simplified descriptions of a

much more complex reality.

2.3.4 Joint inference of the homoscedastic and

heteroscedastic error model parameters

Still under the Gaussianity assumption, a more advanced

treatment of the residual error models considers the simul-

taneous inference of the standard deviations with the model

parameters, i.e., it considers the standard deviation of the
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residual errors as unknowns. Doing so assumes that residual

errors are expected to be a mixture of both model (equations

and inputs) and observational errors. For the homoscedastic

case, this simply consists of jointly sampling σ1, σ2 and σ3

along with the model parameters, z.

The heteroscedastic error model then becomes

σd,i = adi + b, (7)

where the a and b coefficients are to be jointly inferred

with z from the measurement data. Using Eq. (7) thus leads

to the addition of six variables to the sampling problem:

a1, a2, a3, b1, b2 and b3. We refer to the joint inversions

of these homoscedastic and heteroscedastic error models as

HO2 and HE2, respectively. In these inversions, a total pre-

dictive uncertainty around the model values can be computed

by adding to the modelled data a random noise drawn from

a normal distribution with mean 0 and standard deviation σ

sampled from its posterior distribution (HO2) or computed

by Eq. (7; HE2).

The simultaneous inference of model parameters with ho-

moscedastic or heteroscedastic error model parameters re-

quires the definition of their prior probability distributions.

Based on the available prior information, uniform (flat) pri-

ors are used for the 10 model parameters contained in z (see

Table 2). We follow two guidelines for specifying the prior

densities of the error model parameters. First, we would like

to obtain posterior standard deviations that are as small as

possible within the range permitted by the model and mea-

surement data errors in order to get the lowest possible data

misfits. Second, the magnitudes of the different prior dis-

tributions should reflect the desired weights of the differ-

ent data types within the multi-objective inference. These

weights translate the modeller’s relative preferences among

the three modelling objectives in Eq. (5). We therefore use

normal distributions with mean 0 truncated at 0 to avoid neg-

ative values. The prescribed weights then correspond to the

different standard deviations of these normal distributions:

p(X)=
1

σXB
φ

(
X−µX

σX

)
∝ φ

(
X−µX

σX

)
, (8)

where the X variable is either σj , aj or bj for j = 1,2,3;

where the value of σX expresses the modeller’s preference

for objective j compared to the other objectives (the smaller

σX, the larger the relative weight of objective j ); where φ (·)

signifies the probability density function of the standard nor-

mal distribution; where µX is set to 0 for maximizing the

prior density of X towards small values; and where the con-

stant B depends on the lower (v) and upper (w) limits of the

truncation interval

B =8

(
w−µX

σX

)
−8

(
v−µX

σX

)
, (9)

in which 8(·) denotes the cumulative distribution function

of the standard normal distribution.

This treatment of multi-objective Bayesian inference is

in line with the work of Reichert and Schuwirth (2012),

who further considered different statistical models for model

and observation errors. Overall, this resulted in four differ-

ent ways of treating the eddy covariance data uncertainties:

fixed homoscedastic (HO1) and heteroscedastic (HE1) error

models and jointly inferred homoscedastic (HO2) and het-

eroscedastic (HE2) error models. Using the HO1 and HE1

models led to a total of 10 inferred parameters, whereas using

the HO2 and HE2 models resulted into a total of 13 and 16

inferred parameters, respectively. Table 2 lists the marginal

prior distributions used for all sampled parameters. The up-

per and lower bounds of these distributions were either set

to their maximal and minimal physically possible values or

determined on the basis of expert knowledge.

2.3.5 Markov chain Monte Carlo sampling

The goal of the inference is to estimate the posterior distri-

bution p(z|d) where the 10-, 13- or 16-dimensional z vector

contains all sampled parameters and d signifies the condi-

tioning data: d =
{
d1,2,3

}
herein. As an exact analytical so-

lution of p(z|d) is not available, we resort to Markov chain

Monte Carlo (MCMC) simulation to generate samples from

this distribution. The basis of this technique is a Markov

chain that generates a random walk through the search space

and iteratively finds parameter sets with stable frequencies

stemming from the posterior pdf of the model parameters

(see, e.g., Robert and Casella, 2004, for a comprehensive

overview of MCMC simulation).

The MCMC sampling efficiency strongly depends on

the assumed proposal distribution used to generate transi-

tions in the Markov chain. In this work, the state-of-the-

art DREAM(ZS) (ter Braak and Vrugt, 2008; Vrugt et al.,

2009; Laloy and Vrugt, 2012) (DiffeRential Evolution Adap-

tive Metropolis) algorithm is used to generate posterior sam-

ples. A detailed description of this sampling scheme includ-

ing convergence proof can be found in the literature cited and

is thus not reproduced herein.

Convergence of the MCMC sampling to the posterior dis-

tribution is monitored by means of the potential scale reduc-

tion factor of Gelman and Rubin (1992), R̂. For each param-

eter of interest, this statistic compares the average within-

chain variance to the variance of all the chains mixed to-

gether. The smaller the difference between these two vari-

ances, the closer to 1 the value of the R̂ diagnostic. Values

of R̂ smaller than 1.2 are commonly deemed to indicate con-

vergence to a stationary distribution. In this study, posterior

distributions of the parameters were drawn from the point

where all parameters achieved R̂ < 1.2. This is more con-

servative than the conventional practice of stopping the in-

ference when R̂ < 1.2 for every parameter. The mean accep-

tance rate of the proposed samples, AR (%), is an important

sampling property and is thus also reported. An excessively

small fraction of accepted candidate points indicates poor
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Table 2. Default values and prior distributions of the 10 model parameters and prior distributions of the statistical parameters of the ho-

moscedastic and heteroscedastic error models. The label U means a uniform distribution, TG signifies a zero-mean Gaussian distribution

truncated at 0 to avoid negative values and SD denotes the prescribed standard deviation of a TG distribution.

Parameter Units Default value Prior type Range SD

Model parameters

g1 9 U [1,20] N/A∗

g0 mol m−2 s−1 0.01 U [0.005,0.03] N/A

SLA m2 g C−1 0.025 U [0.01,0.08] N/A

τ year 0.667 U [0.5,2] N/A

τs year 0.0833 U [0.01,0.5] N/A

C /N1 16 U [5,40] N/A

C /N2 32 U [10,80] N/A

γ 1 20 U [5,40] N/A

γ 2 10 U [5,40] N/A

γ 3 0.2 U [0,1] N/A

Homoscedastic error model parameters (for HO2 inversions only)

σGPP g C m−2 day−1 N/A TG [0,54] 9

σRECO g C m−2 day−1 N/A TG [0,27] 4.5

σET mm day−1 N/A TG [0,18] 3

Heteroscedastic error model parameters (for HE2 inversions only)

aGPP N/A TG [0,27×YGPP] 4.5×YGPP

aRECO N/A TG [0,13.5×YRECO] 2.25×YRECO

aET N/A TG [0,9×YET] 1.5×YET

bGPP g C m−2 day−1 N/A TG [0,27] 4.5

bRECO g C m−2 day−1 N/A TG [0,13.5] 2.25

bET mm day−1 N/A TG [0,9] 1.5

∗ Not applicable.

mixing of the chains due to too wide a proposal distribution.

In contrast, a very large acceptance rate signals too narrow

a proposal distribution, causing the chains to remain in the

close vicinity of their current locations. The optimal value

for AR depends on the proposal and target distributions, but

a range of 10–30 % generally indicates good performance of

DREAM(ZS).

3 Results

3.1 Parameter estimation

3.1.1 Parameter samplings and convergence of the

algorithm

The DREAM(ZS) algorithm was run with four parallel

chains, initialized by sampling the prior parameter distribu-

tion (Table 2). As an example, Fig. 1 shows sampling trajec-

tories of DREAM(ZS) parametrized with four chains for the

SLA parameter and inversion HO1 at the Oensingen site. The

R̂ convergence statistic becomes< 1.2 for each parameter af-

ter about 20 000 forward model runs, and the AR over the last

0 5000 10000 15000 20000 25000
0

0.02

0.04

0.06

0.08

S
LA

 [m
2 gC

−
1 ]

Model evaluations

Figure 1. Sampled values of the specific leaf area (SLA) by

DREAM(ZS) parametrized with four chains for the Oensingen site

and the fixed homoscedastic error model (inversion HO1). The ver-

tical dashed line indicates when convergence has been reached ac-

cording to the R̂ statistic.
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50 % model evaluations is about 18 %. Overall, convergence

was achieved for all MCMC trials after some 15 000–30 000

forward runs with AR values in the range of 10–30 %, ex-

cept for the inversions associated with the Laqueuille site that

showed AR values as low as 5 %.

3.1.2 Posterior parameter distributions

Figure 2 presents marginal posterior histograms of the 10

model parameters for all experimental sites, considering the

inferred homoscedastic error model (inversion HO2). In the

remainder of this document, results are mainly detailed for

this inversion scenario, since it generally led to the lowest

data misfit statistics in calibration. For some parameters (e.g.,

SLA and C /N1), the marginal posterior distributions are

narrow compared to the prior parameter range. This indicates

a large sensitivity of the model to the considered parameter.

In contrast, some other parameters such as γ 2 are poorly

resolved, demonstrating a relative insensitivity. Asymmet-

ric edge-hitting distributions are also observed such as for

C /N1 and C /N2 in Monte Bondone. In a Bayesian inver-

sion of eddy covariance data obtained from a forest site,

Braswell et al. (2005) found that 7 out of 26 marginal pa-

rameter distributions were edge-hitting. Extending the prior

parameter ranges would lead to unphysical or implausible pa-

rameter values. Edge-hitting distributions reveal model inad-

equacies and/or large systematic measurements errors. For

some parameters, posterior distributions were fairly distinct

from the default values that were used in previous studies

(Table 2), such as high g1 values. Values of the characteris-

tic mortality time τ also generally increased compared to the

default value.

Table 3 shows the most likely parameter values for the

four experimental sites; these parameter values resulted in

the highest values of the log-likelihood function. Some of the

parameters present contrasting values between inversion sce-

narios and/or experimental sites, which may be related to the

different ecological characteristics of the sites as discussed in

section 4.3. Depending on the width of the posterior distribu-

tions, the most likely parameter values are well resolved or

largely uncertain. As a result, a comparison between the ex-

perimental sites must account for the posterior distributions

of the parameters.

3.2 Measured and modelled carbon and water fluxes

with calibration data

3.2.1 Measured and modelled data in Monte Bondone

As the parameter sampling resulted in posterior distributions

of the parameters instead of single values, ensembles of pos-

terior modelled signals can be represented as a graph. In

Fig. 3, measured and modelled eddy covariance data are de-

picted for the experimental site of Monte Bondone for inver-

sions with the inferred homoscedastic error model (inversion

HO2). The posterior ranges of the modelled signals are rep-

resented by the dark grey shaded areas for the prediction un-

certainty due to parameter uncertainties and by the light grey

shaded areas for the total predictive uncertainty (at 95 % con-

fidence level). This total prediction uncertainty is computed

using the standard deviation of the residual errors σ as sam-

pled by the inversions and, therefore, cannot be computed for

the NEE. The site of Monte Bondone was chosen here since

there is one single cut a year (indicated by the vertical arrows

in Fig. 3) that is clearly identifiable, which facilitates the in-

terpretation of the fluxes. The dates of cutting corresponded

to a sudden drop in the GPP in the middle of the year, which

was followed by a gradual increase. They were also observed

in the NEE graphs, with a sudden increase in the NEE.

There was overall good agreement between measured and

modelled signals. It is worth noting that the posterior ranges

of modelled data were not constant over time and were not

related to the magnitude of the signals. The ranges due to

parameter uncertainties were relatively small and did not en-

compass the measured data. Overall, it could be observed that

measured eddy covariance data have stronger dynamics than

the modelled signals, meaning that the CARAIB model can-

not follow the fast fluctuations of the GPP (and other sig-

nals) over time. In particular, the model could not simulate

the highest peaks in GPP well.

3.2.2 Measured and modelled data across sites

Considering the other three experimental sites (Fig. 4), there

was a similar agreement between measured and modelled

signals, although the sites displayed different behaviour in

terms of GPP as their management varies: there are several

cuts per year in Grillenburg and Oensingen, while Laqueuille

is a grazed meadow. In general, the peaks in GPP cannot be

simulated well by the model. The modelled GPP seemed av-

eraged out when compared to the measured signals, as ob-

served before in Monte Bondone (Fig. 3a).

All the graphical comparisons between measured and

modelled signals could not be shown but are summarized

in Table 4 for the homoscedastic and heteroscedastic cases,

and with the fixed and inferred error models, using the root

mean square error (RMSE), the R2 and the Nash and Sut-

cliffe (1970) model efficiency criterion (E) between mea-

sured and modelled signals. The latter criterion takes values

from −∞ to 1. A value of 1 means a perfect match between

measurements and model simulations, a value of 0 indicates

that the mean of the observed data is as accurate as the mod-

elled values, and an efficiency less than 0 occurs when the

mean of the observed data reproduces the observations better

than the modelled values. The maximum log-likelihood value

“ml” that was obtained by the algorithm is also indicated.

Note that performance criteria were also computed for the

NEE, although these data were not used in the model inver-

sions. Overall, the best agreement was found for the Monte

Bondone site and the worst for the Laqueuille site. The low-
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Table 3. Most likely CARAIB model parameter values for all inversion scenarios.

Grillenburg Oensingen Monte Bondone Laqueuille

Fixed homoscedastic error model inversions (HO1)

g1 16.8 7.3 18.8 18.6

g0 (mol m−2 s−1) 0.0265 0.00507 0.00637 0.0248

SLA (m2 g C−1) 0.0126 0.0234 0.0155 0.0197

τ (year) 1.99 1.27 1.98 1.49

τs (year) 0.0861 0.0526 0.0212 0.023

C /N1 5 6.69 5.02 5.43

C /N2 78.6 19.9 10.6 11

γ 1 5.07 39.1 38.2 26.1

γ 2 5.1 39.9 38.8 36.9

γ 3 0.73 0.507 0.421 1.49× 10−5

Fixed heteroscedastic error model inversions (HE1)

g1 3.45 8 19.8 20

g0 (mol m−2 s−1) 0.027 0.00544 0.0297 0.0299

SLA (m2 g C−1) 0.0161 0.0151 0.0142 0.0191

τ (year) 1.96 1.7 1.96 0.746

τs (year) 0.0202 0.0687 0.0153 0.0234

C /N1 5.11 5.1 5 5

C /N2 77.9 20.3 10.2 10

γ 1 8.09 39.5 31.4 38.8

γ 2 5.96 37.4 30.9 24.8

γ 3 0.358 0.806 0.981 0.688

Inferred homoscedastic error model inversions (HO2)

g1 15.6 7.46 16.8 14.5

g0 (mol m−2 s−1) 0.00945 0.00549 0.0258 0.0104

SLA (m2 g C−1) 0.0133 0.0193 0.0142 0.0483

τ (year) 1.98 1.65 1.99 0.65

τs (year) 0.0682 0.0583 0.0735 0.0102

C /N1 5.57 5.43 5 15.6

C /N2 77 20.2 10 52.7

γ 1 6.25 37.2 20.8 39.6

γ 2 5.26 35.5 27.3 5.58

γ 3 0.257 0.471 0.361 0.000272

Inferred heteroscedastic error model inversions (HE2)

g1 11.3 9.4 19.8 12.7

g0 (mol m−2 s−1) 0.0276 0.00635 0.0298 0.0234

SLA (m2 g C−1) 0.018 0.0158 0.0142 0.0797

τ (year) 1.69 1.8 1.27 0.822

τs (year) 0.01 0.0892 0.0141 0.0104

C /N1 6.67 5.4 5.1 20.6

C /N2 22.9 15.5 14.9 10.1

γ 1 7.83 21.7 20.6 38.5

γ 2 6.14 21.9 19.1 9.79

γ 3 0.503 0.896 0.145 0.505
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Figure 2. Posterior distributions of the CARAIB model parameters sampled by the DREAM(ZS) algorithm with the inferred homoscedastic

error model (HO2 inversions) for all sites. The default values (see Table 2) are depicted with a cross and the most likely values with a star.

The x axes cover the whole prior ranges.
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Figure 3. Measured and modelled GPP (g C m−2 day−1) (a), RECO (g C m−2 day−1) (b), ET (mm day−1) (c) and NEE (g C m−2 day−1) (d)

at the Monte Bondone site for the inferred homoscedastic error model (inversion HO2). The ranges of the prediction uncertainty due to

parameter uncertainty and the 95 % total predictive uncertainty (only for GPP, RECO and ET) are depicted by the dark and light grey shaded

areas, respectively. Vertical arrows indicate the dates of the grass cutting.
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Figure 4. Measured and modelled GPP (g C m−2 day−1) for the Grillenburg (a), Oensingen (b) and Laqueuille (c) experimental sites. See

Fig. 3 (a) for Monte Bondone. The ranges of the prediction uncertainty due to parameter uncertainty and the 95 % total predictive uncertainty

are depicted by the dark and light grey shaded areas, respectively. Vertical arrows indicate the dates of the grass cutting (Grillenburg and

Oensingen) and horizontal arrows the periods of grazing (Laqueuille).

est model efficiencies E were found for the NEE, which is

not surprising since these data were not accounted for in the

model inversions. While the ml values were generally the

highest for the heteroscedastic inversions HE2, RMSE ap-

peared larger for these inversions.

3.2.3 Homoscedastic and heteroscedastic eddy

covariance residual errors

Considering homoscedastic or heteroscedastic eddy covari-

ance residual errors resulted in different sampling of param-

eter posterior distributions and, therefore, different posterior

modelled signals. As an example, Fig. 5 shows the mea-

sured and modelled GPP with their posterior ranges for the

site of Monte Bondone in 2004, for both homoscedastic (a,
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Figure 5. Measured and modelled GPP (g C m−2 day−1) at the Monte Bondone site in 2004 for the fixed homoscedastic HO1 (a) and

heteroscedastic HE1 (b), inferred homoscedastic HO2 (c) and heteroscedastic HE2 (d) inversions. The measured GPP is depicted with a

constant (a) and variable (b) uncertainty range. For the HO2 and HE2 inversions, the 95 % total predictive uncertainty interval is depicted

using the light grey shaded areas. Standardized residuals and partial autocorrelation of residuals of GPP over the full simulation period are

depicted to the right of each graph.
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Table 4. Comparison between measured and modelled signals using most likely parameter values. The “ml” variable is the maximum value

of the log-likelihood function.

Grillenburg Oensingen Monte Bondone Laqueuille

RMSE E R2 RMSE E R2 RMSE E R2 RMSE E R2

Fixed homoscedastic error model inversions (HO1)

ml −5560 −7402 −5248 −8284

GPP (g C m−2 day−1) 1.797 0.726 0.791 2.231 0.600 0.757 1.742 0.755 0.831 2.151 0.521 0.751

RECO (g C m−2 day−1) 1.498 0.502 0.695 1.269 0.772 0.803 1.036 0.832 0.878 1.529 0.688 0.743

ET (mm day−1) 0.623 0.309 0.565 0.670 0.612 0.758 0.500 0.784 0.849 1.128 0.144 0.474

NEE (g C m−2 day−1) 1.774 −0.185 0.335 2.044 −0.115 0.449 1.424 −0.018 0.463 2.153 −0.382 0.219

Fixed heteroscedastic error model inversions (HE1)

ml −5324 −5961 −4879 −8078

GPP (g C m−2 day−1) 2.394 −0.018 0.706 2.405 0.353 0.767 1.932 0.585 0.814 2.679 0.001 0.695

RECO (g C m−2 day−1) 1.977 −0.802 0.634 1.346 0.709 0.791 1.281 0.641 0.869 1.638 0.503 0.727

ET (mm day−1) 0.597 0.329 0.597 0.665 0.582 0.784 0.488 0.781 0.854 1.122 0.031 0.498

NEE (g C m−2 day−1) 1.854 −1.491 0.198 2.086 −0.908 0.443 1.450 −0.501 0.429 2.138 −1.414 0.201

Inferred homoscedastic error model inversions (HO2)

ml −5161 −7074 −4550 −8321

GPP (g C m−2 day−1) 1.733 0.728 0.799 2.194 0.606 0.767 1.746 0.718 0.841 2.123 0.635 0.740

RECO (g C m−2 day−1) 1.560 0.393 0.673 1.300 0.773 0.796 1.037 0.837 0.876 1.561 0.523 0.739

ET (mm day−1) 0.616 0.316 0.573 0.664 0.608 0.767 0.498 0.784 0.850 1.282 0.222 0.394

NEE (g C m−2 day−1) 1.713 −0.139 0.367 2.034 −0.191 0.453 1.399 −0.332 0.478 2.052 −0.174 0.263

Inferred heteroscedastic error model inversions (HE2)

ml −4110 −6284 −3820 −7927

GPP (g C m−2 day−1) 1.929 0.669 0.744 2.306 0.467 0.762 1.875 0.645 0.811 2.225 0.475 0.737

RECO (g C m−2 day−1) 1.751 0.344 0.582 1.350 0.758 0.781 1.244 0.661 0.869 1.674 0.621 0.702

ET (mm day−1) 0.574 0.403 0.629 0.663 0.589 0.781 0.492 0.784 0.852 1.283 0.221 0.393

NEE (g C m−2 day−1) 1.652 0.002 0.384 2.071 −0.595 0.443 1.452 −0.246 0.433 2.217 −0.749 0.200

c) and heteroscedastic (b, d) cases. For the HO2 and HE2

inversions, the 95 % total predictive uncertainty is depicted

using the light grey shaded areas. The measurement uncer-

tainty is depicted only for fixed eddy covariance residual

error inversions (a, b) for clarity. The measurement uncer-

tainty is thus constant for the homoscedastic case (namely,

±3 g C m−2 day−1 for HO1), while it varies linearly accord-

ing to the GPP for the heteroscedastic case (HE1). These two

options led to different behaviours of the modelled GPP us-

ing the posterior distributions, which better approached the

high values of the measured data (in summer) in the ho-

moscedastic cases and better fit the low values (in winter)

in the heteroscedastic cases. Overall, in calibration, mod-

elled signals with parameter values from the homoscedas-

tic inversions were in a better agreement with the measured

data than with the parameters from the heteroscedastic in-

versions. The same observation was also made for the other

sites (not shown), as can also be observed in Table 4. How-

ever, the total predictive uncertainty range derived from the

HE2 inversions was more consistent, as, e.g., it avoids un-

realistic negative values of GPP. The standardized residuals,

which were computed as the difference between measured

and modelled data divided by the standard deviation of the

residual error, are depicted in Fig. 5 to the right of the GPP

graphs. Heteroscedasticity of the GPP residual errors was

fairly reduced but not fully removed by using the HE1 and

HE2 heteroscedastic residual error models. Indeed, the stan-

dardized residuals still showed some small but complex het-

eroscedastic patterns. Partial autocorrelation of the residuals

of the GPP was also depicted, and independence of the days

of simulation from one another was reached after a few days.

3.2.4 Sampling of the standard deviation of the

residual errors

Inversions with the sampling of the standard deviations of

the residual errors resulted in posterior distributions of the

standard deviation of the residual errors (HO2) and parame-

ters of Eq. (7; HE2). Most likely values of these distributions

(Table 5) depended on the experimental sites, being larger

for Laqueuille and Oensingen, which can be related to the

poorer agreement between measured and modelled data at

these sites. Although the sampled standard deviations of the

residual errors were lower than in the fixed inversions, there

were no large differences between the inversions with fixed
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Table 5. Most likely standard deviation of the residual errors (HO2)

and parameters of Eq. (7; HE2).

Grillenburg Oensingen Monte Bondone Laqueuille

Inferred homoscedastic inversions (HO2)

σGPP 1.81 2.29 1.79 2.22

σRECO 1.63 1.33 1.09 1.62

σET 0.632 0.682 0.519 1.31

Inferred heteroscedastic inversions (HE2)

aGPP 0.211 0.65 0.336 1.09

aRECO 0.12 0.334 0.162 0.514

aET 0.246 0.255 0.316 0.818

bGPP 0.406 0.297 0.423 0.239

bRECO 0.411 0.206 0.283 0.233

bET 0.273 0.255 0.12 0.175

model errors (HO1 & HE1) and inversions with inferred

model errors (HO2 & HE2), neither in terms of agreement

between measured and modelled signals (see Fig. 5 and Ta-

ble 4) nor in the parameter posterior distributions (Table 3).

3.3 Model validation

Parameter values from the posterior distributions were tested

for validation using eddy covariance data over different pe-

riods (for validation data sets, see Table 1). Figure 6 shows

measured and modelled GPP values over the periods of cal-

ibration and validation in Monte Bondone. Not surprisingly,

worse agreement between measured and modelled data is ob-

served than in the calibration period. However, it is observed

that the modelled GPP in validation in the HE2 inversions

follows better the measured signal than in the HO2 inver-

sions. Strikingly, at all the sites, the posterior parameter dis-

tributions derived from using the HE1 and HE2 heteroscedas-

tic models are found to induce a better model performance

in validation compared to the posterior distributions asso-

ciated with the use of the homoscedastic models (Table 6).

The difference between calibration and validation thus ap-

peared smaller when using most likely parameter values from

heteroscedastic inversions as compared to homoscedastic in-

versions. Among the different grassland sites, a similar per-

formance pattern as for the calibration experiment is ob-

served. Indeed, the Laqueuille site shows the worst perfor-

mance statistics for each type of measurement data, whereas

the Monte Bondone site overall presents the best fits to the

data (Table 6).

4 Discussions

4.1 Measured and modelled signals

Bayesian inversions over the four grassland sites resulted

in posterior distributions of parameters and posterior ranges

of modelled signals (GPP, RECO, ET and NEE). Consider-

ing the inversion scenario HO2, there was, in general, good

agreement between measured and modelled signals, with

RMSEs ranging from 1.73 to 2.19 g C m−2day−1 and R2 be-

ing between 0.74 and 0.84 in terms of GPP. Using a ded-

icated model for soil organic carbon dynamics, De Bruijn

et al. (2012) found an R2 of 0.68 for the modelling of the

NEE at the Oensingen site over the same years. Compar-

ing three large-scale lands surface models in simulating car-

bon fluxes over different ecosystems, Balzarolo et al. (2014)

noticed that grassland and crop sites were more difficult to

model compared to forest sites. Using data from 13 grassland

sites over Europe, including Laqueuille and Grillenburg, they

found average RMSEs between measured and modelled GPP

ranging from 2.45 to 3.57 g C m−2day−1 and R2 from 0.37

to 0.56. These larger discrepancies compared to our study

are mainly to be related to the fact that the large-scale mod-

els were used without site calibrations. Modelling of car-

bon fluxes was also performed at the Oensingen site over

the same years in Calanca et al. (2007), using a dedicated

grassland model, PaSim. In that study, no numerical compar-

ison between measured and modelled data was computed at

a daily resolution, but the relative departures between mea-

sured (eddy covariance) and modelled data were given by

year of simulation and ranged from −11 to −21 % in terms

of the annual sum of GPP. In our study, the annual relative de-

partures in the annual sum of GPP in Oensingen ranged from

0.7 to 9 % with the calibration data set and up to 63 % with

the validation data set. In a similar experiment involving the

inversion of eddy covariance data from forest sites, Fox et al.

(2009) found RMSEs between measured and modelled NEE

of 0.7 and 1.3 g C m−2day−1 for two different sites in cali-

bration and of 1.5 g C m−2day−1 in validation. These values

are lower than in our study, but the measured NEE data were

not used in the model inversion here, unlike in the inversions

in Fox et al. (2009).

It could be observed that measured eddy covariance data

have stronger dynamics than the modelled signals, that is,

modelled signals could not follow the fast fluctuations of the

measured signals and, in particular, simulate high GPP val-

ues. This could be related to the different time resolutions

between the model and data. The CARAIB model is based

on meteorological data averaged daily. However, photosyn-

thesis and respiration processes are computed at a 2-hour

time step before being aggregated to a daily resolution, and

the model assumes a symmetry with respect to solar noon

time (Otto et al., 2002) to save computation resource. More-

over, in the CARAIB model, solar fluxes are calculated as-

suming a constant cloudiness over the day and temperature

is varied using a sinusoidal function between the minimal

and maximal temperatures, which were fixed at midnight and

noon, respectively. These shortcomings were necessary to

save computation resources and to account for data scarcity

in global vegetation modelling. Eddy covariance data, how-

ever, are typically acquired at a time frequency of 5 or 10 Hz

(Aubinet et al., 2012) and can thus capture high-frequency
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Table 6. Validation of the calibrated model using most likely parameter values from the inversions.

Grillenburg Oensingen Monte Bondone Laqueuille

RMSE E R2 RMSE E R2 RMSE E R2 RMSE E R2

Fixed homoscedastic error model inversions (HO1)

GPP (g C m−2 day−1) 2.467 0.581 0.694 3.000 0.523 0.576 2.234 0.711 0.803 4.160 −0.307 0.690

RECO (g C m−2 day−1) 1.284 0.768 0.799 1.560 0.732 0.747 1.389 0.733 0.871 4.444 −2.363 0.607

ET (mm day−1) 0.642 0.520 0.602 0.732 0.662 0.700 0.504 0.839 0.848 1.198 0.226 0.382

NEE (g C m−2 day−1) 1.880 0.197 0.453 2.332 0.049 0.217 1.526 0.446 0.475 2.481 −0.176 0.171

Fixed heteroscedastic error model inversions (HE1)

GPP (g C m−2 day−1) 2.030 0.716 0.748 2.803 0.584 0.585 1.812 0.810 0.832 2.707 0.446 0.679

RECO (g C m−2 day−1) 1.221 0.790 0.871 1.535 0.740 0.747 0.960 0.873 0.881 3.101 −0.638 0.595

ET (mm day−1) 0.610 0.567 0.613 0.678 0.709 0.714 0.502 0.840 0.851 1.142 0.296 0.393

NEE (g C m−2 day−1) 1.972 0.117 0.281 2.206 0.149 0.194 1.415 0.524 0.536 2.339 −0.045 0.180

Inferred homoscedastic error model inversions (HO2)

GPP (g C m−2 day−1) 2.651 0.516 0.663 3.008 0.520 0.571 2.315 0.690 0.765 2.730 0.437 0.705

RECO (g C m−2 day−1) 1.335 0.749 0.777 1.614 0.713 0.735 1.398 0.730 0.849 2.050 0.284 0.646

ET (mm day−1) 0.639 0.525 0.603 0.710 0.682 0.705 0.502 0.841 0.850 1.364 −0.003 0.353

NEE (g C m−2 day−1) 2.010 0.082 0.451 2.337 0.045 0.203 1.598 0.393 0.414 2.047 0.200 0.309

Inferred heteroscedastic error model inversions (HE2)

GPP (g C m−2 day−1) 2.361 0.617 0.699 2.825 0.577 0.588 1.805 0.811 0.830 2.294 0.603 0.701

RECO (g C m−2 day−1) 1.220 0.790 0.815 1.549 0.735 0.749 0.974 0.869 0.883 2.472 −0.041 0.625

ET (mm day−1) 0.617 0.557 0.614 0.683 0.705 0.713 0.501 0.841 0.850 1.370 −0.013 0.351

NEE (g C m−2 day−1) 1.837 0.233 0.364 2.227 0.132 0.199 1.398 0.535 0.547 2.240 0.042 0.179

fluxes. Even though eddy covariance data were aggregated

over time to a daily time resolution, the high-frequency ac-

quisition rate ensures that effects of abrupt meteorological

events are recorded. Increasing the time resolution of the

CARAIB model would help to better simulate ecophysio-

logical processes at a high frequency. Alternatively, a simple

workaround to deal with the different time dynamics would

be to apply a filter based on a moving window of some days

in order to smooth measured (and modelled) eddy covari-

ance data before computing the statistical indicators, as done

in Calanca et al. (2007).

Another modelling limitation is that model parameters are

assumed as constant along the season, although plants traits

are known to evolve throughout the season and plants accli-

mate to specific climate conditions. As a result, the effect of

similar climatic conditions does not necessary result in simi-

lar eddy covariance measurements.

In general, there was poorer agreement between measured

and modelled signals (GPP, RECO, ET and NEE) in Laque-

uille than at the other experimental sites. This poorer agree-

ment can probably be related to the grazing instead of the

cutting that occurs in Laqueuille. Grazing was more difficult

to simulate because of the expert-knowledge conversion be-

tween the given cattle charge and the biomass removal. As a

result, grass cutting is better constrained in the model com-

pared to grazing, as was already shown in the Laqueuille ex-

perimental site by Calanca et al. (2007), who, however, used

the grassland model PaSim.

All the same, besides the average statistical indicators be-

tween measured and modelled signals, the performance of

the calibration might be also evaluated against specific sci-

entific or operational objectives. For instance, the accurate

modelling of the grass cutting or the computation of an-

nual budgets of carbon in grassland (e.g., Soussana et al.,

2007) might show different performances, depending on the

timescale on which the processes are analysed.

4.2 Eddy covariance residual errors

4.2.1 Homoscedastic and heteroscedastic eddy

covariance residual errors

Bayesian inversions were conducted considering ho-

moscedasticity and heteroscedasticity in the eddy covariance

residual errors. Figure 5 showed that accounting for het-

eroscedasticity in eddy covariance residual errors permit-

ted a better simulation of low-magnitude signals (winter),

but at the same time, it penalized the modelling of high-

magnitude signals (summer). Actually, it is worth remarking

that, in carrying out inversions considering heteroscedastic

measurement errors, we do not attempt to produce smaller

RMSEs between measured and modelled data compared to

homoscedastic scenarios since larger errors are considered

Biogeosciences, 12, 2809–2829, 2015 www.biogeosciences.net/12/2809/2015/



J. Minet et al.: Bayesian inversions of a dynamic vegetation model 2825

2003 2004 2005 2006 2007
−5

0

5

10

15

20

25

G
P

P
 [

g
C

 m
−

2
d

a
y−

1
]

H02 VALIDATIONCALIBRATION Measured

CARAIB

(a)

2003 2004 2005 2006 2007
−5

0

5

10

15

20

25

G
P

P
 [

g
C

 m
−

2
d

a
y−

1
]

HE2 VALIDATIONCALIBRATION Measured

CARAIB

(b)

Figure 6. Measured and modelled GPP (g C m−2 day−1) at the Monte Bondone site in calibration (2003–2005) and validation (2006–2007)

for the inferred homoscedastic HO2 (a) and heteroscedastic HE2 (b) inversions. The 95 % confidence interval of total predictive uncertainty

is depicted using the light grey shaded areas.

for high peaks in the signals. However, in validation, the

posterior parameter distributions derived from using the het-

eroscedastic residual error models outperform their counter-

parts derived from using the homoscedastic residual error

models. This important finding reveals that, despite inducing

larger RMSE values in calibration, the use of a heteroscedas-

tic residual error model leads to a more robust parameter es-

timation.

Since eddy covariance data are known to show het-

eroscedasticity, accounting for a heteroscedastic model of

the residual errors in the inversions is more conceptually

sound for ensuring unbiased parameter posterior distribu-

tions. However, we showed that considering a linear het-

eroscedastic model of the residual errors only partly removed

heteroscedasticity in the standardized residual values (Fig. 5b

and d). Other kinds of heteroscedastic models (i.e., non-

linear) might be tested, but the residual distributions did not

show any clear trend for all sites.

It is also worth noting that a substantial fraction of

the large residual errors is caused by the tendency of the

CARAIB model to underestimate the observed GPP sum-

mer peaks. As discussed above, this is related to a slower

temporal resolution of the model compared to that of the

measured data. To overcome this model inadequacy, further

model modifications are necessary to increase the time reso-

lution of the model. Another model improvement would be

to simulate varying model parameter values as a function of

the time of the year, since plant traits actually evolve over the

course of the seasons. However, this would come at the cost

of a large increase in model complexity.

4.2.2 Sampling of the standard deviation of residual

errors

Sampling the standard deviation of the residual errors, i.e.,

the inversions HO2 and HE2, resulted in similar param-

eter samplings and modelling as the inversions HO1 and

HE1, respectively. Some performance criteria were better

with the sampling of the residual standard deviations, while

others were not. As expected, the most likely standard de-

viations of the residuals errors were close to the RMSE

obtained in the inversions HO2. The benefit of these val-

ues is that they inform us about the level of the uncertain-

ties in the eddy covariance data with respect to the model

used to invert the data, e.g., uncertainties in GPP ranged

from 1.79 to 2.29 g C m−2 day−1, in RECO from 1.09 to

1.63 g C m−2 day−1 and in ET from 0.52 to 1.31 mm day−1.

They could be used to weight different eddy covariance data

in multi-objective inverse modelling.
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Figure 7. Posterior distributions of the specific leaf area (SLA,

dashed line) and characteristic mortality time in stress conditions

τs (plain line) for the four sites (HO2 inversions values), classified

as a function of increasing aridity by the De Martonne–Gottman

index (grey bars). The mean of the posterior distributions and the

most likely parameter values are depicted with a circle and a star,

respectively. The error bars stand for one standard deviation around

the mean.

4.3 Parameter values across sites

Posterior distributions of parameters showed contrasting val-

ues that could be linked to the characteristics of the exper-

imental sites. For instance, the specific leaf area (SLA) is

known to depend on many factors (Marcelis et al., 1998),

such as leaf age, temperature, light intensity, aridity and soil

nutrient content. Thick leaves (low SLA) are more adapted to

dry ecosystems due to their greater capacity to retain water.

Although none of the four grassland sites are strictly char-

acterized by a dry climate, it is interesting to note that the

posterior parameter distributions for SLA were negatively

correlated with the aridity, inversely expressed by the De

Martonne–Gottman index (Fig. 7), that is, SLA decreases

with increasing aridity. The largest SLA (thin leaves) were

found for Laqueuille, which can be related to the perma-

nent grazing that constantly regenerates young leaves, since

young leaves are characterized by high SLA. The large SLA

values in Oensingen can be related to more intensive man-

agement conditions (fertilization, more frequent cuts).

Contrarily to SLA, the characteristic mortality time in

stress conditions τs appeared to be positively correlated with

the site aridity (Fig. 7). A larger τs value means a larger wa-

ter stress resistance for the plants in Grillenburg and Monte

Bondone.

The values of g1 were drastically different between

Oensingen and the three other sites (Table 3). In addition,

for these three sites, the values appeared much higher com-

pared to the default values (g1= 9) and other values com-

monly encountered in the literature (Van Wijk et al., 2000;

Medlyn et al., 2011). It is known that g1 should increase with

humid conditions and temperature (Medlyn et al., 2011), as

it is positively related to the marginal water cost of carbon

gain. However, the high values of g1 here could not really be

related to a warmer or wetter climate as compared to Oensin-

gen. A possible explanation could be related to the different

dynamics of the model and the measurements, as already ex-

plained herein before. As the model cannot simulate the high

GPP values that are observed in the eddy covariance data, the

Bayesian algorithm could have compensated for this by sam-

pling high values of g1 that increase stomatal conductance.

More broadly, ecophysiological differences between the

grassland sites resulted in parameter posterior distributions

that can be either drastically different or common between

the sites (Fig. 2). If it appears that site-specific parameter val-

ues are needed, it means that the model has to be refined by

accounting for the ecophysiological dependence of the pa-

rameters. If not, generalized parameter values could be used,

meaning that they are independent of the site on which they

were determined or even independent of the plant species, as

recently claimed by Yuan et al. (2014). Determining a com-

mon set of the parameter distributions among the four sites

could be done either by (1) merging the four posterior distri-

butions after independent inversions of the data of each site

or (2) merging the eddy covariance data of the four sites in

one single MCMC sampling, as discussed in Kuppel et al.

(2012).

5 Conclusions

Bayesian inversions of the CARAIB dynamic vegetation

model were performed using eddy covariance data (GPP,

RECO, ET) at four experimental grassland sites. A specific

version of the CARAIB model was developed for this ap-

plication, with functions related to grassland management,

i.e., grass cutting and grazing. Posterior parameter and pre-

dictive distributions were compared for different statisti-

cal models of the eddy covariance residual errors: (1) as-

suming homoscedasticity or heteroscedasticity of the resid-

ual errors and (2) fixing beforehand or jointly inferring

the variances of the residual errors. There was, in general,

good agreement between measured and modelled signals for

the calibration data sets with RMSEs of daily gross pri-

mary productivity (GPP), ecosystem respiration (RECO) and

evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to

1.56 g C m−2 day−1 and 0.50 to 1.28 mm day−1, respectively.

Since the four sites belong to a long-standing network of

eddy covariance data measurements, comparisons with pre-

vious studies could be made.

Although the eddy covariance measurement errors are

known to be heteroscedastic, the use of a homoscedastic error

model led to a better model performance in calibration com-

pared to using a heteroscedastic error model. Nevertheless,
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a model validation experiment revealed that CARAIB mod-

els calibrated by means of a heteroscedastic error model out-

perform those calibrated assuming homoscedastic residual

errors. Posterior parameter distributions derived from using

a heteroscedastic model of the residuals are therefore more

sound and robust, even though heteroscedasticity could not

be fully removed. Therefore, our results support the use of

a heteroscedastic residual error model for inverting eddy co-

variance data and inferring posterior parameter distributions.

Systematic model–data discrepancies were also found for

the largest observed GPP values. This can be attributed to the

low temporal resolution of the photosynthetic processes in

the CARAIB model, among other model inadequacies. Mod-

elling performance varied among the four sites, with poorer

performances at Laqueuille because of the greater difficulty

of modelling grazing compared to grass cutting. Lastly, site-

specific posterior parameter distributions obtained for the

four grasslands were compared and discussed with respect

to grassland characteristics. Specific leaf area and character-

istic mortality time parameters appeared to be related to site

aridity.
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