

Supplement of

Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships

M. Moreno-de las Heras et al.

Correspondence to: M. Moreno-de las Heras (mariano.moreno-de-las-heras@durham.ac.uk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1	In this document we provide the Maple 9.5 (Maplesoft, Waterloo, Canada) codes used in the
2	paper (Code 1) to simulate dryland biomass dynamics for an herbaceous and a shrub species,
3	and (Code 2) to decompose single time series of NDVI into partial components for
4	herbaceous and shrub vegetation applying the reference vegetation-type characteristic
5	antecedent rainfall series for herbs and shrubs ($ARain_{hv}$ and $ARain_s$, respectively). We also
6	provide two supplementary figures: (i) Supplementary Fig. 1 that presents the results of our
7	model sensitivity analysis, and (ii) Supplementary Fig. 2 that presents detailed NDVI-
8	antecedent rainfall correlograms obtained for each growing cycle of vegetation growth (April-
9	March) in the reference Black Grama and Creosotebush SEV LTER Core Sites.
10	
11	
12	
13	
14	Contents:
15	Code 1Page 2
16	Code 2Page 6
17	Supplementary Fig. 1Page 10
18	Supplementary Fig. 2Page 11
19	

1	Code 1:	Dynamic Vegetation Model
2		
3	Input files (location: C:\DataFolder\):
4	1. Daily rain	fall: Rain.txt
5	Data is store	d in columns 1 and 2 for dates and rainfall, respectively.
6		
7	Output files	s (location: C:\DataFolder\):
8	1. Temporal	series of herbaceous and shrub biomass: Biomass.txt
9	Data is store	d in columns 1, 2 and 3 for dates, herbaceous and shrub biomass, respectively.
10	2. Temporal	series of herbaceous and shrub biomass graph: Biomass.png (green, herbaceous
11	biomass; rec	l, shrub biomass; blue, daily rainfall).
12		
13	Procedure:	
14	1. We load t	he Maple packages required for the subsequent calculations.
15	> with(lin	nalg): with(plots): with(LinearAlgebra): with(Statistics): with(plottools):
16		
17	2. We load t	he daily rainfall data file.
18	> droot :=	= "C:\\DataFolder\\":
19	drain := :	ImportMatrix(cat(droot, "Rain.txt"), source = delimited, delimiter = " ", datatype
20	= anythin	g):
21	dates := I	mportMatrix(cat(droot, "Rain.txt"), source = delimited, delimiter = "",
22	datatype=	-string):
23		
24	3. We define	a rainfall function (rainFunct) made by rainfall event pulses.
25	> rainn :=	convert(Column(drain, 2), list):
26	revent :=	[NULL]; raint := 0:
27	for i to n	ops(rainn) do
28	prec := c	onvert(rainn[i], float):

1	if $prec > 0$ then
2	revent := [op(revent), [i, prec]]:
3	raint := raint+prec:
4	fi:
5	od:
6 7	rainFunct := t \rightarrow sum(revent[jjk][2]*(-Heaviside(t-revent[jjk][1])+Heaviside(t-revent[jjk][1]+1)), jjk = 1 nops(revent)):
8	ndata := nops(rainn);
9	
10	4. We define the model equations.
11	> dB := gmax*(W-W0)*B/(W+kw)-m*B;
12	$dW := P^{*}(B+ki^{*}i0)/(B+ki)-c^{*}gmax^{*}(W-W0)^{*}B/(W+kw)-rw^{*}W;$
13	dsys := subs(W = W(t), B = B(t), [dB, dW]):
14	ecdif := [diff(B(t), t) = dsys[1], diff(W(t), t) = dsys[2]]:
15	
16 17	5. We define a time-evolution function (evolution) that calculates and stores biomass values for each day, integrating the model equations with the model parameter values.
18	> evolution := proc (param)
19	local stot, Biomasst, i:
20 21	<pre>stot := dsolve({op(subs(P = rainFunct(t), param, ecdif)), B(0) = 50, W(0) = .2}, numeric, maxfun = 0):</pre>
22	Biomasst := NULL:
23	for i to ndata do
24	Biomasst := op([Biomasst]), subs(stot(i), B(t)):
25	od:
26	RETURN(Biomasst)

```
1
         end proc:
 2
 3
      6. We define the parameter values and call the time-evolution function.
 4
         > herbParam := W0 = 0.05, kw = 0.45, ki = 180, i0 = 0.2, c = 0.1, rw = 0.1, gmax = 0.32,
 5
         m = 0.05:
 6
         shrubParam := W0 = 0.05, kw = 0.45, ki = 180, i0 = 0.2, c = 0.1, rw = 0.1, gmax = 0.12, m
 7
         = 0.03:
 8
         herbBiomass := evolution({herbParam}):
 9
         shrubBiomass := evolution({shrubParam}):
10
11
      7. We plot the time series of herbaceous and shrub biomass along with precipitation.
12
         > topl := 700:
13
         figherb := pointplot([seq([i, herbBiomass[i]], i = 1 .. nops([herbBiomass]))], connect =
14
         true, color = green):
         figshrub := pointplot([seq([i, shrubBiomass[i]], i = 1 .. nops([shrubBiomass]))], connect =
15
16
         true, color = red):
17
         figYears := [NULL]:
18
         for iy to 16 do
19
         figYears := [op(figYears), pointplot([[365*iy, 0], [365*iy, topl]], color = grey, connect =
20
         true, linestyle = 3)
21
         od:
22
         figPrecipt := NULL:
23
         for i to ndata do if drain[i][2] > 0 then
24
         figPrecipt := op([figPrecipt]), pointplot([[i, topl], [i, topl-4*drain[i][2]]], connect = true,
         color = navy, thickness = 3):
25
         fi:
26
27
         od:
```

1	figures:= display(figherb, figshrub, figYears, figPrecipt):
2	display(figures);
3	
4	8. We export the output files.
5	fout := cat(droot, "Biomass.txt"):
6	for i to ndata do
7	FileTools[Text][WriteLine](fout, cat(dates[i][1], " ", convert(herbBiomass[i], string), " ",
8	convert(shrubBiomass[i], string))):
9	od:
10	FileTools[Text][Close](fout):
11	<pre>plotsetup(png, plotoutput = cat(droot, "Biomass.png")):</pre>
12	display(figures);
13	plotsetup(default):
14	

1 Code 2: NDVI Decomposition Procedure

2	
3	Input files (location: C:\DataFolder\):
4	1. NDVI experimental data: case.txt
5	Data is stored in column 1.
6 7	2. Characteristic antecedent rainfall series for herbaceous and shrub vegetation ($ARain_{hv}$ and $ARain_s$, respectively): totalAR.txt
8	Data is stored in columns 1 and 2 for herbaceous and shrub vegetation, respectively.
9	3. Time in days from the initial date: totalT.txt
10	Data is stored in column 1.
11	
12	Output files (location: C:\DataFolder\):
13	1. Temporal series of herbaceous and shrub NDVI components: HScomponents.txt
14	Data is stored in columns 1 and 2 for herbaceous and shrub biomass, respectively.
15	2. Graph with the temporal series of herbaceous and shrub NDVI, along with the original total
16	NDVI signal: HScomponents.png (black, original signal; green, herbaceous component; red,
17	shrub component).
18	
19	Procedure:
20	1. We load the Maple packages required for the subsequent calculations.
21	> with(ExcelTools): with(plots): with(plottools): with(LinearAlgebra): with(Statistics):
22	
23	2. We define the NDVI bare soil component (0.12) and define a function, pair, to handle data
24	lists.
25	nsoil := 0.12;
26	pair := proc (x, y)
27	[x, y]
28	end proc

1	
2	2. We load the data files and store data as lists. The following data lists are defined:
3	$dataAR1 = antecedent rainfall series for herbaceous vegetation (57-day period, ARain_{hv}$
4	series).
5	$dataAR2 = antecedent rainfall series for shrubs (145-day period, ARain_s series).$
6	dataT = time (measured in days from the beginning of the series).
7	dataNDVI = original NDVI time series.
8	dataNDVI0 = NDVI data list without the soil base line.
9	> droot := "C:\\ DataFolder \\":
10	dNDVI := ImportMatrix(cat(droot, "case.txt"), source = delimited, delimiter = " ",
11	datatype = anything):
12	totalAR := ImportMatrix(cat(droot, "TotalAR.txt"), source = delimited, delimiter = " ",
13	datatype = anything):
14	<pre>totalT := ImportMatrix(cat(droot, "totalT.txt"), source = delimited, delimiter = " "):</pre>
15	Ndata := op(rtable_dims(dNDVI)[1])[2]:
16	dataAR1 := [NULL]: dataAR2 := [NULL]: dataAR1N := [NULL]: dataAR2N := [NULL]:
17	dataT := [NULL]: dataNDVI := [NULL]: dataNDVI0 := [NULL]:
18	for i to Ndata do
19	dataAR1 := [op(dataAR1), evalf(totalAR[i][1])]; dataAR2 := [op(dataAR2),
20	evalf(totalAR[i][2])]; dataT := [op(dataT), evalf(totalT[i][1])]; dataNDVI :=
21	[op(dataNDVI), evalf(dNDVI[i][1])]; dataNDVI0 := [op(dataNDVI0), evalf(dNDVI[i][1]-
22	nsoil)]
23	od:
24	
25	4. We define a first-order least-squares optimization function (linearfit) that fits the partial
26	contribution of the herbaceous and shrub components to the time series of NDVI (filtered for

27 the base-line bare soil contribution, dataNDVI0) as a function of the vegetation-type specific

- 1 antecedent rainfall series that maximize the NDVI-precipitation relationships for herbaceous
- 2 vegetation (dataAR1, ARain_{hv} series) and for shrubs (dataAR2, ARain_s series).
- 3 >linearfit := proc (TAR1, TAR2, Tiemp, NDVIst)
- 4 local AInput, DOutput, fitlinear, dparam, i, sumres;
- 5 global Total;
- 6 AInput := zip(pair, TAR1, TAR2); DOutput := NDVIst;
- 7 fitlinear := LinearFit([ar1, ar2], AInput, DOutput, [ar1, ar2], output = solutionmodule);
- 8 dparam := fitlinear:-Results("leastsquaresfunction"); sumres := fitlinear:-
- 9 Results("residualsumofsquares");
- 10 Total := [NULL]; for i to Ndata do Total := [op(Total), subs(ar1 = AInput[i][1], ar2 =
- 11 AInput[i][2], dparam+nsoil)] od:
- 12 RETURN(dparam, sumres):
- 13 end proc:
- 14
- 15 5. We define a function that reassigns the predicted weights of the fitted vegetation
- 16 components (i.e. the percentage contribution of each vegetation type over the predicted totals
- 17 for any t_i) to match the original shape of the NDVI time series, obtaining the final NDVI
- 18 components for herbaceous vegetation and shrubs.
- 19 > linDecomp := proc (TAR1, TAR2, NDVIst, fit)
- 20 local Ntotal, j, i, pre1, pre2, ratio;
- 21 global Nherb, Nshrub;
- 22 Nherb := [NULL]; Nshrub := [NULL]; Ntotal := [NULL];
- 23 for i to Ndata do
- 24 pre1 := subs(ar1 = TAR1[i], ar2 = 0, fit); pre2 := subs(ar1 = 0, ar2 = TAR2[i], fit);
- 25 if $0 \le \text{pre1}$ and $0 \le \text{pre2}$ then ratio := NDVIst[i]/subs(ar1 = TAR1[i], ar2 = TAR2[i], fit);
- 26 Ngrass := [op(Nherb), pre1*ratio]; Nshrub := [op(Nshrub), pre2*ratio] elif pre1 < 0 and 0
- 27 <= pre2 then Nherb := [op(Nherb), 0]; Nshrub := [op(Nshrub), NDVIst[i]] elif pre2 < 0
- and 0 <= pre1 then Nherb := [op(Nherb), NDVIst[i]]; Nshrub := [op([Nshrub]), 0] else
- 29 print(errors); ratio := 1; Nherb := [op(Nherb), 0]; Nshrub := [op(Nshrub), 0] fi;
- 30 Ntotal := [op(Ntotal), Nherb[nops(Nherb)]+Nshrub[nops(Nshrub)]+nsoil] od;
- 31 RETURN(Nherb, Nshrub, Ntotal):
- 32 end proc:

1	
2	6. We call the fitting and reassigning functions.
3	lfit1 := linearfit(dataAR1, dataAR2, dataT, dataNDVI0);
4	HerbShrubLineal := linDecomp(dataAR1, dataAR2, dataNDVI0, lfit1[1]):
5	
6	7. We plot the time series of the NDVI signal (figOr), and the final NDVI components for
7	herbaceous vegetation (figHerb) and shrubs (figShrub).
8	figOr := PLOT(CURVES(convert(sort(zip(pair, dataT, dataNDVI)), list))):
9	figHerb := PLOT(CURVES(sort(sort(zip(pair, dataT, Nherb)))), COLOR(RGB, 0, 1, 0)):
10	figShrub := PLOT(CURVES(sort(sort(zip(pair, dataT, Nshrub)))), COLOR(RGB, 1, 0, 0)):
11	display(figOr, figHerb, figShrub);
12	
13	8. We export the output files.
14	fout := cat(droot, "HScomponents.txt"):
15	for i to Ndata do
16	FileTools[Text][WriteLine](fout, cat(convert(Nherb[i], string), " ", convert(Nshrub[i],
17	string))):
18	od:
19	FileTools[Text][Close](fout):
20	<pre>plotsetup(png, plotoutput = cat(droot, "HScomponents.png")):</pre>
21	display(figOr, figHerb, figShrub):
22	plotsetup(default):
23	

1

2 Supplementary Fig. 1. Sensitivity of simulated Olr values for herbaceous vegetation (a, 3 Olr_{hv}) and shrubs (**b**, Olr_s) to variations in model parameters i_0 (bare soil infiltration rate), r_w 4 (soil moisture evaporation/deep drainage rate), k_w (vegetation growth half saturation 5 constant), W_0 (permanent wilting point), c (plant-water-consumption coefficient), and k_i 6 (water infiltration half saturation constant). Parameter values applied in this study are shown 7 in the figure (i.e. reference values). Parameter variations to the reference values are 8 represented by the parameter multiplier (Mp), with Mp values <1 (and >1) showing 9 reductions (and increases) on parameter values. Maximum growth (g_{max}) and mortality (m)10 rates applied in the study for herbaceous vegetation and shrubs are detailed within the plots. 11 Notes: 12 Variations on W_0 , k_w , k_i , and c values have negligible effects on simulated Olr. Reductions on 13 bare soil infiltration (i_0) and increases on water loss by direct evaporation and/or deep

14 drainage (r_w) impact Olr_{hv} and Olr_s values, increasing time scale responses of vegetation to

15 antecedent precipitation, and ultimately amplifying the differences we obtained between

16 vegetation types.

2 Supplementary Fig. 2. Per annual growing cycle (April-March) NDVI-antecedent rainfall

3 correlograms for the (a) Black Grama and (b) Creosotebush SEV LTER Core Sites.

4 Notes:

5 Correlations between NDVI and antecedent precipitation are maximized using a rainfall

- 6 accumulation length of about 57 days for all annual cycles of vegetation growth in the Black
- 7 Grama Core Site (Supplementary Fig. 2a).
- 8 For the Creosotebush Core Site two different foci that maximize the correlation between
- 9 NDVI and antecedent rainfall can be detected: (i) one using a low rainfall accumulation
- 10 length (approx. 57 days) and (ii) another using a long rainfall accumulation length (approx.
- 11 145 days). The 145 days antecedent rainfall series generally shows a stronger correlation with
- 12 the NDVI than the 57 days antecedent rainfall series (cycles 2000-01, 2001-02, 2002-03,
- 13 2003-04, 2004-05, 2009-10, 2010-11, 2011-12, 2012-13). However, for three consecutive
- 14 annual cycles with strong summer precipitation (2006-07, 2007-08, and 2008-09, summer
- 15 precipitation for the period is 40% above the long-term mean) correlation of NDVI to the 57

- 1 days antecedent rainfall series is stronger than correlation to the 145 days antecedent rainfall
- 2 series (Supplementary Fig. 2b).

3