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Abstract. In most regions of the ocean, nitrate is depleted

near the surface by phytoplankton consumption and in-

creases with depth, exhibiting a strong vertical gradient in

the pycnocline (here referred to as the nitracline). The verti-

cal supply of nutrients to the surface euphotic zone is influ-

enced by the vertical gradient (slope) of the nitracline and by

the vertical separation (depth) of the nitracline from the sunlit

surface layer. Hence it is important to understand the shape

(slope and curvature) and depth of the oceanic nitracline.

By using density coordinates to analyze nitrate profiles from

autonomous Autonomous Profiling EXplorer floats with In-

Situ Ultraviolet Spectrophotometers (APEX-ISUS) and ship-

based platforms (World Ocean Atlas – WOA09; Hawaii

Ocean Time-series – HOT; Bermuda Atlantic Time-series

Study – BATS; and California Cooperative Oceanic Fisheries

Investigations – CalCOFI), we are able to eliminate much of

the spatial and temporal variability in the profiles and derive

robust relationships between nitrate and density. This allows

us to characterize the depth, slope and curvature of the nitr-

acline in different regions of the world’s oceans. The analy-

sis reveals distinguishing patterns in the nitracline between

subtropical gyres, upwelling regions and subpolar gyres. We

propose a one-dimensional, mechanistic model that relates

the shape of the nitracline to the relative depths of the surface

mixed layer and euphotic layer. Though heuristic, the model

accounts for some of the seasonal patterns and regional dif-

ferences in the nitrate–density relationships seen in the data.

1 Introduction

Dissolved inorganic nitrate is an essential macronutrient for

oceanic phytoplankton production. In the vast majority of the

surface ocean that is sunlit, the production of phytoplank-

ton is limited by the availability of nitrate. In such regions,

consumption of nitrate by phytoplankton renders the sunlit

ocean devoid of nitrate. Nitrate increases rapidly with depth

in the underlying region, termed the nitracline, where it is

resupplied through the remineralization of organic matter

and redistributed along isopycnals by the ocean’s circula-

tion. The vertical supply of nitrate to the surface ocean de-

pends not only on the vertical transport induced by dynam-

ical processes like turbulent entrainment, Ekman pumping,

and frontal and eddy-induced upwelling, but also on the ver-

tical gradient of nitrate. Further, it depends on the depth from

which nitrate needs to be drawn. Often, the isopycnal beneath

which there is a significant vertical gradient of nitrate, termed

the nitrate-depletion density, and its depth, termed the nitra-

cline depth, can be clearly distinguished. This isopycnal is in-

dicative of the density (and depth) from which nitrate must be

transported into the euphotic layer, either by (reversible) up-

lift or by (irreversible) advective and turbulent mechanisms.

One of the fundamental difficulties in finding generalized

descriptions for the vertical distribution of nitrate is the high

degree of variability in the nitrate–depth profiles. This may

be partially overcome by exploiting the nitrate–density rela-

tionship that has long been known to be more robust than

the relationship between nitrate and depth across the main

pycnocline (Redfield, 1944; Pytkowicz and Kester, 1966). In

some areas, the nutrient-depleted near-surface layer transi-

tions abruptly to a uniform gradient of nitrate with respect to

density (termed the nitracline slope), whereas in others, the

transition is more gradual, leading to curvature in the nitrate–

density relationship. We term the slope and curvature of this

relationship the nitracline shape. The shape and depth of the

nitracline are pertinent to the vertical supply of nutrients for

new phytoplankton production. The objective of this study

is to characterize these properties of the nitracline from data
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and search for patterns and explanations for the revealed re-

lationships.

Strickland (1970) was probably the first to find that over

weeks, density could be used to predict nitrate to almost

within experimental accuracy irrespective of the depth of the

nutrient measurement. Recent studies (McGillicuddy et al.,

1999; While and Haines, 2010; Ascani et al., 2013) have con-

firmed that nitrate is better correlated with density than with

depth in the ocean. By relating isopycnal excursions with sea

surface height, Ascani et al. (2013) used the data from profil-

ing floats to show that a higher variability of nitrate along

isobars, as compared to isopycnals, on timescales ranging

from hours to weeks, can be ascribed to the movement of

isopycnal surfaces by internal waves and eddies. The rela-

tionship between nitrate and density also extends to longer

time- and space scales, leading to a large-scale alignment be-

tween the mean isopycnal and iso-nitrate surfaces (Omand

and Mahadevan, 2015).

Since observations of nitrate are relatively rare and more

difficult to obtain than measurements of temperature and

salinity, a well-characterized relationship between nitrate and

density could be useful in a number of applications rang-

ing from the modeling of primary production, where the

initialization and restoration of nitrate is crucial, to the in-

terpretation of phytoplankton productivity from space. Sev-

eral studies have exploited the nutrient–density relation-

ship to develop descriptive algorithms for nitrate. Elrod and

Kester (1985) applied a cubic spline method to produce ref-

erence curves for nutrient and oxygen in the Sargasso Sea.

Kamykowski and Zentara (1986) developed third-order poly-

nomial fits between nutrients and density (and nutrients and

temperature) within 10◦ regions from the National Oceano-

graphic Data Center (NODC) data set. Garside and Gar-

side (1995) used a stepwise polynomial method to predict

nitrate from temperature and salinity during regional phe-

nomena, such as the North Atlantic spring bloom and El

Niño/La Niña conditions in the central Pacific. Finally, first-

order linear regressions between nitrate and temperature have

been used to predict nitrate in upwelling zones (Traganza

et al., 1987; Dugdale et al., 1997; Olivieri and Chavez, 2000;

Omand et al., 2012), although mixing and interleaving of

water masses may confound this approach (Friederich and

Codispoti, 1981). In coastal California, the relationship has

been used to predict coastal nitrate concentration over the last

century as an indicator of giant-kelp health (Parnell et al.,

2010). Algorithms that exploit the nitrate–temperature rela-

tionship have also been developed for remotely sensed sea

surface temperature (SST) and ocean color (Dugdale et al.,

1989; Goes et al., 2000; Switzer et al., 2003); however, the

strong correlation between nitrate and temperature tends to

break down near the surface as biological effects and upper-

ocean heat fluxes alter the relationship (Garside and Garside,

1995). Biological processes challenge the predictive capac-

ity of the empirical algorithms, and there are relatively few

simple mechanistic models for oceanic-nitrate distribution

in density coordinates (Kamykowski, 1987; Dugdale et al.,

1989; Omand and Mahadevan, 2015).

In this study, we draw on the growing data set of nitrate

measurements to obtain a characterization and synthesis of

the vertical distribution of nitrate. Vertical profiles of dis-

solved inorganic nitrate from shipboard sampling during pro-

grams such as the Hawaii Ocean Time-series (HOT), the

Bermuda Atlantic Time-series Study (BATS), the California

Cooperative Oceanic Fisheries Investigations (CalCOFI) and

the compilation of climatological gridded data sets such as

the World Ocean Atlas (WOA09 Garcia et al., 2010) pro-

vide long time series (> 15 years). The more recently devel-

oped optical sensor, the in situ ultraviolet spectrophotome-

ter (ISUS) (Johnson and Coletti, 2002), has facilitated the

high-resolution in situ measurement of nitrate. By outfitting

APEX autonomous profiling floats with such sensors, John-

son et al. (2013) are able to offer detailed sampling of the

vertical distribution of nitrate in time (Johnson et al., 2010).

Such a growing database of nitrate measurements offers the

opportunity to explore the vertical distribution of nitrate in

space and time and the regional variability in the shape and

depth of the nitracline. Further, we can explore the relation-

ship of the nitrate distribution to other parameters.

Here, we combine empirical and modeling approaches to

describe the nitrate–density relationship. We apply second-

order polynomial fits to the above data sets, diagnosing the

nitrate depletion density, the slope and an index of curva-

ture for the nitrate–density relationship. We develop an ide-

alized model that predicts the curvature of the nitrate–density

profile as a simple one-dimensional function of the euphotic

depth and mixed-layer depth. We find that in the subtropical

gyres, the shape may be predicted by the interplay between

the depth of the mixed layer, the euphotic zone and the rem-

ineralization depth. In some regions, however, upwelling, lat-

eral mixing and transport by the large-scale circulation can

complicate the relationship, rendering a one-dimensional ap-

proach less suitable. Finally, we discuss the applications of

this approach to ocean numerical modeling and to predic-

tions of the vertical turbulent nitrate flux at the base of the

euphotic zone.

2 Data sets

We used the publicly available nitrate (NO3) and potential

density (σt ) data from the World Ocean Atlas (WOA09),

long-term time series (HOT, BATS, CalCOFI) and APEX-

ISUS floats in the Pacific and Atlantic subtropical gyres.

Only a brief description of each of these data sets is provided

here.

2.1 World Ocean Atlas (WOA09)

We use the 5◦× 5◦ (n= 2448 gridded bins), annually

averaged NO3 and σt from the World Ocean Atlas

Biogeosciences, 12, 3273–3287, 2015 www.biogeosciences.net/12/3273/2015/



M. M. Omand and A. Mahadevan: Shape of the oceanic nitracline 3275

(WOA09) (Garcia et al., 2010), available through the Na-

tional Oceanographic Data Center (http://www.nodc.noaa.

gov/OC5/SELECT/dbsearch/dbsearch.html). The data set

compiles roughly 50 years of ship-based profiles of nitrate

and density into a climatology by averaging data on a 5◦ grid

and into 33 depth levels, with a vertical bin size that varies

from 10 m near the surface to 400 m below 2000 m depth.

2.2 HOT, BATS and CalCOFI

The data set was constructed from the analysis of bottle sam-

ples of NO3 from monthly cruises between 1996 and 2012 at

the deep-water station ALOHA (A Long-Term Oligotrophic

Habitat Assessment; 22◦45′ N, 158◦00′W), located 100 km

north of Oahu, Hawaii, at BATS Hydrostation(31◦40′ N,

64◦10′W) in the western Atlantic ocean, and from a 22-

year record of quarterly measurements compiled from twelve

CalCOFI stations (spanning 121.5 to 124.4◦W and 30.5 to

32.7◦ N). The CalCOFI profiles are horizontally averaged

over the region to generate a single time series of profiles.

2.3 APEX-ISUS floats near Hawaii and Bermuda

Nitrate and potential density are obtained from two Webb

Research APEX profiling floats (Johnson et al., 2013);

one deployed from 4 December 2009 (to present) at the

ALOHA station near Hawaii (6401hawaii) and a second,

deployed from 6 November 2009 to 1 November 2011

near the BATS station (6391bermuda). Each float collected

a profile of conductivity, temperature, pressure, NO3 and

oxygen between the surface and the float’s parking depth

of 1000 m, with measurements vertically spaced every ∼

5 m (between 7 and 100 m depth) and 10 m (between 100

and 400 m), at roughly 5-day intervals (www.mbari.org/

chemsensor/FloatList.html). Here, we examine only NO3

and σt . Nitrate concentration is estimated with an in situ

ultraviolet spectrophotometer (ISUS) with a short-term pre-

cision of about ±0.1 µM; however, over multiyear deploy-

ments, sensor drift introduces an additional uncertainty, re-

sulting in an accuracy of about ±0.4 µM (Johnson et al.,

2010, 2013).

3 Methods

The typical profile of NO3 vs. density in the ocean is de-

scribed as follows: within the least-dense, sunlit surface

layer, nitrate is depleted due to uptake by phytoplankton.

Across the main pycnocline, NO3 increases with density, of-

ten reaching a subsurface maximum. In depth coordinates,

this subsurface maximum in nitrate generally occurs between

500 and 1000 m, or intersects the seafloor. We focus on the

nitrate–density relationship spanning the region of the main

pycnocline that lies above the deep NO3 maximum and be-

neath the NO3 depletion density (Fig. 1a).

3.1 Second-order polynomial fitting

The inspection of NO3–σt profiles from various regions over

the range described above reveals that while some profiles

are very linear, others are not (Fig. 1b–g). We therefore seek

a second-order polynomial of the form NOσ3 = a (σt−σo)
2
+

b (σt − σo)+ c to describe the data from each region or lo-

cation and then compare the coefficients to distinguish re-

gional characteristics. We subtract the density (σo) at the up-

per limit of the fit to minimize any effect in the fitting due to

the mean value. Although using a higher-order polynomial

would improve the fit skill, we restrict ourselves to a second-

order polynomial because our goal is to characterize the most

basic features of the NO3–σt relationship in an effort to gain

a mechanistic understanding of the processes that govern the

nitracline shape and depth. In addition, for a number of the

ocean time series and WOA09 profiles, poor vertical reso-

lution means that the inclusion of three or more parameters

in the functional fit would increase the risk of overfitting the

data. The coefficients a,b and c in the polynomial fit are ob-

tained through a least-squares minimization of

NOσ3k = a (σk − σo)
2
+ b (σk − σo)+ c, k = 1, . . .n, (1)

where k denotes each level in a profile or areal average of

profiles, n is the number of data points in the profile and

NOσ3 denotes the nitrate fit (in contrast to NO3, which we

use to denote data). The skill of each fit is evaluated over the

bounded region, according to the normalized mean rms error

calculated as

skill= 1−

√√√√1

n

n∑
k=1

(
NO3 k −NOσ3 (σt k)

)2
NO2

3 k

. (2)

The slope of NOσ3 (σt ) is given by
dNOσ3

dσt
= 2a σt − b. The

“linearity” of the profile can be estimated as the differ-

ence in the local slopes of NOσ3 at either end of the profile

(2aσt−b)|
k=n
k=1 = 2a(σt,k−σt,1)= 2a1σt , as compared with

the slope over the entire profile,
NOσ3 (σt,n)−NOσ3 (σt,1)

σt,n−σt,1
=

1NO3

1σt
.

The ratio of these gives a dimensionless curvature index (the

non-dimensionalized coefficient a) given by

a′ =
2a(1σt )

2

1NOσ3
, (3)

where 1NOσ3 and 1σt denote the change in nitrate and den-

sity at either end of the profile. A large value of a′ arises

from a nonlinear profile where the NO3 gradient varies lo-

cally with σt . A small value of a′ implies a linear profile

with a constant gradient. Hence, we define three categories

of fits. Those that are nonlinear (a′ > 1), those that are lin-

ear (a′ < 1) and those that are poorly fit (skill< 0.8, due to

higher-order terms or scatter).

In the circumstance in which the fits are linear (a′ < 1), we

also fit NOσ3 (σt ) with a straight line of the form NOσ3 (σt )=
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Figure 1. (a) Schematic of a typical oceanic NO3 versus σt profile. In nitrate-limited regions, near-surface (low-density) NO3 is near 0

above a nitrate depletion density and tends to increase monotonically with increasing σt until reaching a subsurface NO3 maximum. The

region below NO3 depletion and above the inflection point (where NO3 begins to curve downward towards the maximum, black segment)

is evaluated with a second-order polynomial (NOσ
3

, yellow line), where a′ is an index of curvature. Panels (b–g) show examples from the

WOA09 climatology (circles), with black circles indicating those that are used in the fits. Colored lines indicate a′ < 1 (green), a′ > 1

(yellow) or skill< 0.8 (red).

blin (σt −σo)+ clin, where blin and clin are obtained from the

least-squares minimization of

NO3k = blinσk + clin, k = 1, . . .n. (4)

We can then find the nitrate depletion density, σdepl,

where NOσ3 goes to 0 as σt o =−clin/blin+ σo. Similar to

Kamykowski and Zentara (1986), we suggest that σdepl repre-

sents the deepest isopycnal at which nitrate is depleted (or the

nitrate depletion density). Since σt tends to be more highly

resolved than discretely sampled NO3, this provides an ap-

pealing way of estimating the nitracline depth zo in circum-

stances where NO3 is poorly vertically resolved or unavail-

able.

3.2 Fitting considerations

Particularly for nonlinear fits, the coefficients are sensitive to

the upper and lower bounds of NO3 that we select. For each

profile, we aim to fit only the region beneath NO3 depletion

and above the NO3 maximum with positive curvature. How-

ever, due to the large number of profiles, we tried to estab-

lish general criteria for the upper and lower extents of the

fitted profile segments. As a shallow limit on the NO3 fits,

we retain only data with NO3 > 2 µM. This threshold gen-

erally distinguishes the NO3-depleted surface samples in the

discretely sampled time series and WOA09 data and falls suf-

ficiently above the 0.4 µM accuracy of the ISUS sensors on

the floats (Johnson et al., 2013). The depth of this threshold

varies spatially (Fig. 2a) and temporally, particularly in loca-

tions with strong seasonality in production, upwelling, (e.g.,

the California Current) or mixed-layer depth (e.g., Bermuda).

The deep bound on the NO3–σt fits is qualitatively defined as

some1σt above the deep-NO3 maximum. For the time series

data (long-term stations and APEX-ISUS floats), we found

that the NO3 maxima tends to remain associated with a par-

ticular water density over time (for example, see Figs. 6 and

7). We select thresholds of σt < 26.75, 26.5 and 27.2 kg m−3

that fall roughly 0.5 kg m−3 above the NO3 maximum at Cal-

COFI, HOT and BATS, respectively. At HOT, for example,

this threshold was selected near the inflection point where

NO3 begins to curve downward (e.g., see Fig. 6). The same

thresholds as at HOT and BATS are used for the correspond-

ing APEX-ISUS float profiles. In the WOA09 climatology,

the selection of a the deep threshold was more challenging,

since each 5◦× 5◦ grid has different profile characteristics.

Thus, we manually selected the lower bound on the fit for

each grid by selecting the inflection point for each NO3–σt
profile individually. The inflection point is demonstrated in

Fig. 1a, and the results for the lower bound on the WOA09

fits are shown in Fig. 2b.

The number of data points that are retained between the

shallow and deep bounds described above can also affect the

fit coefficients, particularly a′. Through bootstrapping both

the climatological and time series data, we found that in gen-

eral, the sensitivity of the results to a′ were significantly di-

minished after the inclusion of five or more points in each fit.

In the WOA09 climatology, the upper and lower bounds were
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Figure 2. Global maps from the 5◦ WOA09 climatology indicating

the (a) depth of the upper limit (NO3 > 2 µM), (b) subsurface NO3

maximum, (c) number of depth levels that fell between the depths in

(a) and (b) and were used in each fit and (d) skill of the polynomial

fit to the data evaluated as skill= 1−

√
1
n

n∑
k=1

(
NO3 k−NOσ3 (σt k)

)2
NO2

3 k

.

selected to include at least five levels (Fig. 2c). The average

number of data points used in the time series fits were 14±5

(WOA09), 15± 8 (CalCOFI), 7± 5 (HOT), 8± 4 (BATS),

10±2 (6391bermuda) and 17±3 (6401hawaii). For each fit,

we evaluate the skill according to Eq. (2). Where the skill

is poor (operationally defined here as < 0.8), the profiles are

excluded from the analysis. In general, we find that the NO3–

σt skill exceeds 0.8 for nearly all of the WOA09 data set

(Fig. 2d) and 90 % of the time series profiles.
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Figure 3. Global maps from the 5◦ WOA09 climatology showing

(a) the nitrate depletion density (σo, where NOσ
3
= 0) and the poly-

nomial fit coefficients (a) a, (b) b and (c) c from Eq. (1).

4 Results

In the following sections, we present results from the fitting

method to describe global NO3 and σt climatology (WOA09

5◦×5◦) and time series data from the California Current (Cal-

COFI), the North Atlantic Subtropical Gyre (BATS, APEX-

ISUS float) and the North Pacific Subtropical Gyre (HOT,

APEX-ISUS float). We analyze the fit coefficients (a, b, c),

a′, blin and clin to explore the spatial and temporal patterns

and variability in these different records. We develop a sim-

ple 1D model for predicting a′ from a balance between the

mixed-layer depth (zML) and euphotic depth (zeu) and com-

pare this with the subtropical APEX-ISUS data.

4.1 Nitrate–density fits from the WOA09 climatology

The nutrient depletion density σdepl (Fig. 3a), shown along

with fit coefficients a, b and c from the WOA09 climatol-
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Figure 4. Global maps from the 5◦ WOA09 climatology of (a) a′

and (b) blin, where a′ < 1. Green regions (a′ < 1) in (a) indicate a

linear NO3–σt fit.

ogy (Fig. 3b–d), is similar in pattern to the nitrate-depletion

temperature described in Kamykowski and Zentara (1986)

according to cubic regressions between NO3 and tempera-

ture in 10◦ gridded climatology. Since this 1986 publication,

roughly 700 000 new observations of NO3 have been added

to the National Oceanographic Data Center database. For

a comparison with the results of Kamykowski and Zentara

(1986), we perform the same analysis between climatolog-

ical WOA09 NO3 and temperature (T ) measurements. We

find that the skill in NO3–T (not shown) has a very similar

magnitude and distribution to the σt fits (Fig. 2d), and our

method is not able to distinguish whether T or σt is a better

proxy for NO3.

We also compute a′ for each 5◦×5◦ grid (Fig. 4a). In 59 %

of these cases, we find that a′ < 1 indicates a linear NO3–σt
relationship between the shallow and deep bounds of our fits.

We observe a large-scale spatial coherence of a′ in some re-

gions. For example, we find that a′ in the eastern subtropical

Pacific, throughout most of the Atlantic and in the Northern

Indian Ocean is predominantly less than 1. In the Southern

Ocean and the equatorial Pacific (incidentally, regions that

are less nitrate limited), a′ tends to be larger than 1, indicat-

ing curvature in NO3–σt . The map of a′ shows large varia-

tion between adjacent grid cells that are not attributable to

known biogeographic boundaries. We explore the possibility

that these results for a′ were instead related to the number

of points used in the fits (Fig. 2c) or lower skill (Fig. 2d)

but these factors do not explain the variability. The WOA09

climatology is compiled from profiles collected at different

times of year and from the number of total samples. It is

likely that some of the variation between grids is a result of

inhomogeneous sampling effort.

Where a′ < 1, we find the slope (blin) according to Eq. (4)

(Fig. 4b). In these locations (representing 59% of the clima-

tology), the shape of the NO3–σt relationship between ni-

trate depletion and the nitrate maximum is σt -independent

and described by a single parameter blin. The slope varies

from roughly 2 µMm3 kg−1, up to 18 µMm3 kg−1 at very

high latitude. Some of the low values in the western tropical

Pacific, for example, may be attributed to the large change

in density (stratification) between the surface and depth of

the nitrate maximum (≈ 150 m; Fig. 2b). Conversely, some

higher values of blin correspond to regions where the upper

bound on the NO3 fits are deep (> 150 m; Fig. 2a).

4.2 Nitrate–density fits from the California Current

region (CalCOFI)

Several previous studies have identified a linear nitrate–

temperature (NO3–T ) relationship beneath the nitrate-

depletion density in the California Current region (Strick-

land, 1970; Parnell et al., 2010; Omand et al., 2012). Pro-

files of NO3–σt in the spatially averaged quarterly CalCOFI

record appear relatively consistent over time (green seg-

ments, Fig. 5a). We compute a′ for each profile and find that

a′ is consistently less than 1, suggesting that the NO3–σt re-

lationship is linear over the 22 years analyzed (black points,

Fig. 5b), and consistent with the WOA09 analysis, which

suggests that the relationship is relatively linear throughout

the eastern North Pacific Ocean below 50◦ N (Fig. 4a). In-

terannual variations are dominant over seasonal and spatial

variability in a′ (Fig. 5b). The slope of the linear NO3–σt fit

(4) is shown for the annually and spatially averaged record

(Fig. 5c). The nutrient depletion density (σdepl) varies inter-

annually from 24.6 to 25.4 kg m−3 (black circles, Fig. 5d).

The linear slope blin is correlated with σdepl (r2
= 0.61, p <

0.001) and is inversely correlated (r2
= 0.21, p < 0.001)

with the nutrient depletion temperature (Tdepl; red circles,

Fig. 5d). We hypothesize that variations in blin and σdepl may

be related to the SST Nino index (yellow bars, Fig. 5d),

which assesses warming in the surface ocean of the east-

ern Pacific. Indeed, some years do appear to have an above-

average Tdepl (the 1998 El Niño) or low σdepl (the 2004–

2007); however, the pattern does not hold for all cases, in-

dicating that there are additional drivers of the NO3–σt rela-

tionship.

4.3 Nitrate–density fits from HOT and float 6401hawaii

Monthly σt versus bottle-sampled NO3 from the HOT station

at 22◦45′ N, 158◦00′W (Fig. 6a) is compared with a higher

depth- and time-resolved σt versus NO3 record from a nearby

APEX-ISUS float (6401hawaii), drifting over a nominally

400 km2 region, centered at 23◦N, 161◦W (Fig. 6b). The
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Figure 5. (a) Successive profiles of NO3 as a function of σt from quarterly CalCOFI cruises. Green segments indicate the portion of each

profile that is fit with Eq. (1), and profiles without green segments have a fit skill < 0.8. (b) a′ (black dots) for each of the profiles from (a).

Annual averages of the (c) slope blin and (d) intercepts σt o (black) and To (red) of linear σt–NO3 fits Eq. (4), with error bars indicating

the standard deviation from the spatial and temporal averaging. Yellow shaded regions in (d) indicate the time periods with a positive SST

anomaly in the Nino-3.4 region associated with El Niño conditions.

water column in this oligotrophic region remains stratified

year-round, with near-surface (nominal 7 m) density fluctua-

tions between 24 and 24.6 kg m−3, seen both in the HOT and

APEX-ISUS records. Nutrient depletion (NO3 < 2 µM) oc-

curs near the 25 kg m−3 isopycnal, and the nitrate maximum

occurs near 27.1 kg m−3 (in 2012) over the 2.8-year record.

Profiles of NO3–σt show a marked difference in shape from

those in the California Current. Over the fitted sections of

each profile, NOσ3 (σt ) has positive curvature, with a′ > 1 for

201 of the 206 total APEX-ISUS profiles and increasing from

1 to 2 (Fig. 6c).

Nitrate (color, Fig. 6d) within the shallow mixed layer

(black line, Fig. 6d) is depleted year-round, and the base of

the euphotic layer is consistently much deeper (around 180 m

as indicated by the gray lines, Fig. 6d). The depth of the

mixed layer, zML, and euphotic layer, zeu, are obtained as

described in the Appendix.

4.4 Nitrate–density fits from BATS and float

6391bermuda

Monthly σt versus bottle-sampled NO3 from the BATS sta-

tion at 31◦40′ N, 64◦10′W (Fig. 7a) and a more highly

depth- and time-resolved σt versus NO3 record from a

nearby APEX-ISUS float (6391bermuda), drifting over a

nominally 600 km2 region, centered at 32◦ N, 66◦W, are

shown in Fig. 7b. The surface (nominal 7 m depth) density

of the Sargasso Sea fluctuates seasonally between 26.5 and

23.5 kg m−3 through deep winter convection and stratifica-

tion in the summer. This 2-year record is punctuated by the

passage of mesoscale eddies and wintertime storm events

(Lomas et al., 2013, and references therein). In contrast to the

strong seasonality and transient events in the density struc-

ture, the overall relationship between NO3 and σt over our

fitted region varies relatively little (colored regions, Fig. 7a,

b). The average linear slope (blin) is 32.3± 4kg m−3 µM−1.

The deep nitrate maximum is centered at 27.3 kg m−3, and

nitrate depletion occurs near the wintertime mixed layer po-

tential density σt = 26.5 kg m−3. This depletion density cor-
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Figure 6. Successive profiles of NO3 as a function of σt from (a) the monthly HOT time series and (b) an APEX-ISUS float (6401hawaii)

deployed nearby from December 2009 to June 2012, profiling at 5-day intervals. Green and yellow segments indicate a′ < 1 and a′ > 1,

respectively (skill > 0.8). (c) a′ for each of the APEX-ISUS profiles in (b). (d) Depth-resolved time series of NO3 (colors) with σt contours

overlaid. The mixed-layer depth, zML, and the euphotic depth, zeu, are shown with the black and gray lines, respectively. The solid and

dashed gray lines represent different approximations of zeu (see Appendix).

responds to the density of the 18 ◦C subtropical mode water.

The production and advection of this water mass may alter

downstream nutrient delivery (Palter et al., 2005).

The NO3–σt relationship varies seasonally in both BATS

and APEX-ISUS records. It is linear between January and

July (a′ < 1, green segments) and curved between August

and December (a′ > 1, yellow segments). Scatter between

successive a′ tends to be small relative to the seasonal vari-

ation (Fig. 7c). Fluctuations in the nitracline depth due to

deep mixing (Steinberg et al., 2001) and mesoscale eddies

(McGillicuddy et al., 1998), though apparent in depth co-

ordinates (Fig. 7d), are not distinguishable in density coor-

dinates (Fig. 7ab). The mixed-layer depth (zML; black line,

Fig. 7d) is deepest in late winter (max. 380 m) and shoals to

less than 10 m in the late summer. The euphotic depth (zeu;

gray lines, Fig. 7d) remains between 100 and 200 m, result-

ing in |zeu|> |zML| during the summer and |zeu|< |zML| for

a portion of the winter. In the following section, we propose

that in nitrate-limited systems, the nitracline shape may be

controlled at first order by the depth of the euphotic layer

relative to the mixed layer zeu− zML.

5 A one-dimensional model of the nitracline shape

Following Lewis et al. (1986), we model the vertical profile

of nitrate assuming a balance between the vertical supply of

nitrate to the euphotic layer, the uptake of nitrate by phyto-

plankton in the euphotic layer and the resupply of nitrate by

remineralization. This can be expressed as

∂NO3(z)

∂t
=
∂

∂z

(
κ(z)

∂NO3(z)

∂z

)
−α Eo e

−kz γ NO3(z)

+R krem e−kremz, (5)

where κ(z) represents the vertical eddy diffusivity and

κ(z)
∂NO3

∂z
the vertical diffusive flux of nitrate, which is set

to 0 at the upper and lower boundaries. The uptake of ni-

trate is modeled as proportional to the initial slope of the
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Figure 7. Successive profiles of NO3 as a function of σt from (a) the monthly BATS time series and (b) an APEX-ISUS float (6391bermuda)

deployed nearby from November 2009 to November 2011 profiling at 5-day intervals. Green and yellow segments indicate a′ < 1 and a′ > 1,

respectively (skill > 0.8). (c) a′ for each of the APEX-ISUS profiles in (b). (d) Depth-resolved time series of NO3 (colors) with σt contours

overlaid. The mixed-layer depth, zML, and the euphotic depth, zeu, are shown with the black and gray lines, respectively. The solid and

dashed gray lines represent different approximations of zeu (see Appendix).

photosynthesis-irradiance curve (α, (µMm2W−1)), the frac-

tion of total nitrogen uptake that is supplied vertically in the

form of nitrate (the “f ratio”, γ NO3), and the light profile,

with the incident photosynthetically available irradiance (Eo
(Wm2)) attenuated exponentially according to a diffuse at-

tenuation coefficient k (m−1; yellow shaded region, Fig. 8).

The euphotic depth is defined where the light attenuates to

1 % of the incident level (Eo) such that zeu =− log(0.01)k.

The NO3 uptake rate, µ, is comparable to phytoplankton

growth rates (∼ 0.1 to 2 d−1). Here, we use a low-growth (up-

take) rate µ= α γ Eo = 0.17 d−1 characteristic of subtropi-

cal gyres (Maranon, 2005). The remineralization of organic

nitrogen to NO3 is modeled as the divergence of the vertical

flux and taken to be exponential in depth (green shaded re-

gion, Fig. 8), with a vertical scale (k−1
rem) of 250 m, which is

typical of observed (Lutz et al., 2002) and modeled (Kwon

et al., 2009) flux profiles. The magnitude of the flux R at

z= 0 is selected so that total NO3 is conserved and the verti-

cally integrated loss of NO3 due to uptake is balanced by the

vertically integrated NO3 that is restored between the bottom

of the domain, z=−H , and the surface, z= 0.

R =
α Eo γ

∫ 0

−H
e−kz NO3(z)dz

krem

∫ 0

−H
e−kremz dz

(6)

We model the density as

∂σt (z)

∂t
=
∂

∂z

(
κ(z)

∂σt (z)

∂z

)
, (7)

subject to a weak surface heat flux implemented as

κ(z)
∂σt (z)
∂z|z=0

= C−1
p α0 q, where Cp is the specific heat capacity

of water (J-kg−1 ◦C−1), α0 is the thermal expansion coef-

ficient of water (◦C−1) and q is the surface heat flux (q =

2 W m−2).

The vertical eddy diffusivity κ(z) is prescribed to be

depth-dependent and to enhance the vertical mixing over the
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Figure 8. Examples of profiles of σt (a and b) and NO3 (c and d) produced with the simple one-dimensional model. The mixed-layer
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the irradiance profile (yellow) and the remineralization curve (green) used in the model. The modeled σt–NO3 relationship is shown for (e)

CASE 1 and (f) CASE 2 and can be compared to fitted profiles from the APEX-ISUS floats from the late winter of 2010 (g, h).

mixed layer as

κ(z)= κmin+ κmax

1− tanh(2π(z− zML)/zw)

2
, (8)

where κmin and κmax are the lower (deep) and upper (mixed-

layer) diffusivities and zw is a vertical length scale for the

transition (here zw = 200 m, though the results are not sen-

sitive to this choice). We select κmax = 10−4 m2 s−1 and

κmin = 10−5 m2 s−1, values that are similar to Lewis et al.

(1986). The modeled κ(z) profile is shown in Fig. 8 (pink

shaded region).

We solve Eqs. (5) and (7) over a 1000 m (H ) water col-

umn. We set σt to a constant value at z=−H , and prescribe

a weak surface heat flux q, but no surface or bottom flux of

NO3. In steady state, the divergence of the vertical NO3 flux

is balanced by uptake and remineralization. The two param-

eters that we vary are the mixed-layer depth, zML, and the

euphotic depth, zeu. We find that the curvature of the NO3–σt
relationship depends strongly on these two free parameters.

We implement the model with zML and zeu chosen to be

typical of late winter at HOT (CASE 1: zML =−30, zeu =

−210 m) and BATS (CASE 2: zML =−210, zeu =−80 m)

stations. For CASE 1, σt = 24.9 kg m−3 at the surface, with

an upper- and lower-layer buoyancy frequency (N2) of 1.3×

10−5 and 5× 10−5 s−2, respectively (black line, Fig. 8a). In

CASE 2, we maintain the same κ in the upper and lower

layers, but the mixed layer is deeper, and σt = 27.5 kg m−3

at the surface, reflecting the cooler surface water at BATS

(black line, Fig. 8b). NO3 it depleted near the surface in

both cases due to uptake, with a subsurface maximum due

to restoring (Fig. 8c, d). However, in CASE 2, the uptake

of NO3 occurs only within the mixed layer, and so the large

κ that operates on the density also acts to homogenize NO3

over the same region, and both NO3 and σt have a sharp tran-

sition near zML. In contrast, CASE 1 has a deep euphotic

layer, and so NO3 uptake occurs below zML, resulting in a

smooth NO3 transition approaching the surface. This differ-

ence is reflected in the different shapes of the NO3–σt rela-

tionship (Fig. 8e, f) and is quantified using polynomial fits for

estimating a′ from Eq. (3) as was done for the data in the pre-

vious section. We fit the solution to a quadratic over the range

NO3 > 0.5 µM and σt < 26.5 and 27.2 kg m−3 following the

lower bounds for HOT and BATS, respectively. NO3–σt for

CASE 1, with |zML|< |zeu|, is curved (a′ = 1.62; Fig. 8e),

whereas for CASE 2, with |zML|> |zeu|, the profile is linear

(a′ = 0.05; Fig. 8f). These curvatures of the profiles bear re-

semblance to randomly selected APEX-ISUS profiles from

the late winter of 2010 (Fig. 8g, h) in the same regions.

We also formulated the model with a light-saturating growth

curve but found that the steady-state solution remained un-

changed.

We explore the dependance of the modeled a′ on the pa-

rameter zML− zeu. Keeping zML = 100 m, κmax, κmin, κw,

krem and the boundary conditions fixed as for CASE 1, we

obtain solutions to Eqs. (5) and (7) over a range of zeu, from

−10 to −300 m. We find a′ from the polynomial fit between
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NO3 and σt and solutions for each new zeu (central black

curve, Fig. 9). We find that the curvature index a′ is a mono-

tonically increasing function of zML−zeu, with a′� 1 where

zeu is shallower than zML. Near zML− zeu = 70 m, a′ sur-

passes 1 and increases steeply until leveling off near a′ = 2.5.

Our previous examples (CASE 1 and 2; Fig. 8) fall near this

continuum on either side of the a′ = 1 threshold. We test the

sensitivity of these results to the µ and κmax parameters by

varying µ from 0.05 to 0.8 d−1 and κmax from 2× 10−5 to

4× 10−4 m2 s−1. Increasing µ by a factor of 4 shifts the a′

curve to the right, suggesting that the NO3–σt relationship

remains linear for a deeper zeu than the previous cases (gray

lines, Fig. 9). Conversely, decreasing µ by a factor of 4 shifts

the curve to the left, indicating that a smaller difference be-

tween zML and zeu is required before a′ > 1. We find the a′ is

relatively insensitive to the choice of κmax in the range 10−3

to 10−5 m2 s−1 (thin black lines, Fig. 9).

5.1 Model–data comparison

Our one-dimensional model predicts that when |zeu|< |zML|,

the nitracline shape is linear in density space (a′� 1) and

when zeu is significantly deeper than zML, the nitracline is

curved (a′ > 1). The model assumes that the divergence of

the horizontal NO3 flux is small compared with the verti-

cal flux divergence, which may not be applicable in settings

where lateral water mass intrusions strongly modify the pro-

files. It also assumes that at depth H = 1000 m, σt remains

fixed and that NO3 uptake balances remineralization over this

depth range. Acknowledging the limitations of these assump-

tions, we plot the APEX-ISUS a′ (black circles, Fig. 10)

against the corresponding zML− zeu (see Appendix).

We find that for 6391bermuda, a′ varies with zML− zeu

(Fig. 10b) but the relationship is scattered and also contains

a hysteresis where the transition from a′ < 1 to a′ > 1 is de-

layed compared to the transition from deep to shallow mixed

layers (see Fig. 7c, d). For 6401hawaii (Fig. 10b), the model

fails to explain the variability in a′ – reflected as an over-

all trend towards more positive a′ (Fig. 6c). The scatter and

independence of a′ relative to our zML− zeu index suggests

that other processes or parameters are likely also important

in determining the nitracline shape. However, the model does

predict a′ > 1 at Hawaii and the much larger variability in a′

at Bermuda, and the results generally fall within the model-

predicted bounds (Fig. 10). Thus, we conclude that a sim-

ple model similar to the one presented here may be a useful

framework for understanding some of the basic features and

differences in the nitracline shape in different regions, partic-

ularly where nitrate is limiting, the horizontal gradients are

relatively small and variations in the deep nitrate supply are

relatively steady.

6 Discussion

6.1 Nitrate in ocean models

The primary productivity in ecosystem models, and global

carbon cycle models, relies strongly on the distribution of

nitrate in the model. Data sets of nitrate are invaluable in ini-

tializing these models. If nitrate and density are initialized

from concurrent measurements or a consistent database, the

nitrate–density relationship is implicit. In many instances,

however, it would be advantageous to initialize the model’s

density field and use a nitrate–density relationship for pre-

scribing nitrate. This way, the NO3–σt relationship is main-

tained even if the model’s density is altered. Treating nitrate

in density coordinates is also useful if a restoring scheme is

used for nutrients at depth.

6.2 Implications for estimating turbulent vertical fluxes

of NO3

The turbulent vertical flux of NO3 (FNO3
) can be written as

the product of the vertical eddy diffusivity (κ) and the vertical

gradient in nitrate (∂NO3 / ∂z) according to

FNO3
= κ

∂NO3

∂z
. (9)

The vertical eddy diffusivity, κ , is difficult to estimate.

It may be inferred from tracers or microstructure measure-

ments of the turbulent dissipation rate, ε (e.g., Dewey and

Crawford, 1987). Based on observations of the relationship

between shear production and buoyancy flux, κ is approxi-

mated by the relation (Osborn, 1980)

κ ≤ γ
ε

N2
, (10)
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Figure 10. The a′ from the APEX-ISUS NO3–σt fits at (a) Hawaii

and (b) Bermuda vs. zML− zeu for each profile (black circles). The

method for obtaining approximate zML and zeu at each profile is

described in the Appendix. These observed a′ are overlaid on the

model prediction from Fig. 9.

where γ is a mixing efficiency (approximately 0.2), the buoy-

ancy frequency is N2
=−

g
σo

∂σt
∂z

and ε is the turbulent ki-

netic energy dissipation rate. Applying the chain rule to

Eq. (8), whereby
∂NO∗3
∂z
=

∂NO∗3
∂σt

∂σt
∂z

, and substituting Eq. (9)

into Eq. (8), the N2 dependence cancels, yielding

FNO3
∼ ε

∂NO∗3

∂σt
. (11)

We expect that FNO3
will be proportional to ε and the gra-

dient of NO3 across isopycnals. The turbulent flux of NO3

near the base of the euphotic zone is of particular interest as

the NO3 flux into the euphotic zone supports new primary

production in many oceanic regions. The striking temporal

consistency in the NO3–σt relationship from this analysis,

suggests that this relation could prove useful for estimating

vertical NO3 fluxes from ε, which, unlike κ , can be directly

measured.

6.3 Depth of the nitracline

One way of defining the depth of the nitracline is to use a

nitrate cutoff and test for the depth where the nitrate crosses

this value. This may lead to noisy results because nitrate can

be highly variable within the euphotic layer, and the vertical

resolution of the data may be insufficient to identify the cut-

off depth. Aksnes et al. (2007) used a novel approach of re-

lating nitrate in the near-surface ocean to the attenuation pro-

file of light by solving a one-dimensional equation in which

the uptake of nitrate by phytoplankton is linearly related to

light and nitrate itself. Since light decays exponentially with

a characteristic attenuation coefficient, the depth and slope of

the nitracline can be related to the attenuation characteristics

of light, which are easily measured. Here, we suggest that by

fitting the nitrate to density, one can identify the nutrient de-

pletion density σt,o where NO∗3 = 0 and thereby identify the

depth of the isopycnal σt,o as the depth of the nitracline. This

gives robust results when the NO3–σt relationship is linear,

in which case σt,o = blin/clin.

7 Conclusions

Having examined nitrate profiles from several sources, the

WOA09 gridded data, BATS, HOTS, CalCOFI time series

and float records from Bermuda and Hawaii, we find that

the NO3–σt relationship can be characterized using a second-

order polynomial to fit the data. The nondimensional curva-

ture a′ serves as a measure of nonlinearity of the relation-

ship. When linear, a′ < 1 and the slope of the profile can

be identified, as can the nitrate depletion density and ni-

tracline depth. A simple one-dimensional model is able to

explain the nitracline shape (a′ < 1 or a′ > 1) in terms of

the depth of the euphotic layer, zeu, and mixed-layer depth,

zML. When |zeu| − |zML|> 100 m, a′ > 1. Conversely, when

|zeu| − |zML|< 100 m, a′ < 1. Though the model makes the

assumption of one-dimensionality, we find that |zeu| − |zML|

is broadly indicative of whether the NO3–σt relationship is

linear or curved in the subtropical gyre data. The model relies

on the assumption of weak variation in lateral nitrate supply

and thus may not be applicable in more complex regions. It

is advantageous to examine NO3 in an isopycnal coordinate

system as compared to depth coordinates because variabil-

ity due to vertical mixing and advection affect NO3 and σt
in a similar way while generally maintaining the characteris-

tics of the NO3–σt relationship. With the growing database

of nitrate from ship-based and autonomous platforms, a more

detailed picture will undoubtedly emerge and provide the op-

portunity to refine our understanding of the underlying pro-

cesses that govern the nitracline shape and nitrate supply to

the surface ocean.
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Appendix A

The mixed-layer depth (zML) is computed from monthly

CTD (conductivity–temperature–depth) profiles as the depth

where the density difference is 0.03 kg m−3 from the near-

surface density; it is then smoothed with a 90-day low-pass

filter. At HOT, the pycnocline is present year-round and zML

varies between −20 and −80 m on sub-seasonal timescales

(Fig. 6d). At BATS, stratification is eroded during the winter

as the surface loses heat, and wind and wave-driven turbu-

lence mix the upper water column to depths ranging between

−200 and −400 m. During the summer, an intense pycno-

cline develops and zML shoals to less than −20 m (Fig. 7d).

The euphotic depth (zeu) is defined as the level where pho-

tosynthetically available radiation (PAR) is 1 % of the surface

PAR. Because in situ PAR is not measured at HOT, BATS

or on the APEX-ISUS floats, zeu is estimated two ways: (1)

from the depth integral of Chl a following Morel (1988) and

Morel and Berthon (1989), henceforward referred to as MB

(solid gray line, Figs. 6d and 7d), and (2) from the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) level-3

K490 satellite product (dashed gray line, Figs. 6d and 7d).

At the time series stations BATS and HOT, the CTD-based

profiles of Ch a fluorescence are calibrated to in situ sam-

ples of pigment concentration. MB established a statistical

relationship between surface-normalized photosynthetically

available radiation (PAR) and the depth-integrated Ch a con-

tent (〈Ch a 〉) in the water column for Case 1 waters. The

relationship between zeu MB and 〈Ch a 〉 was approximated

with the curves

zeu MB =

{
−568.2〈Chl a〉−0.746 for zeu MB >−102 m

−200.0〈Chl a〉−0.293 for zeu MB <−102 m

The appropriate depth over which to integrate Ch a in the

above expression is determined iteratively, first using 〈Ch a 〉

integrated between the surface and 400 m. The zeu MB is used

as the next limit of integration for 〈Ch a 〉. This process is

repeated until the solution for zeu MB converges.

Satellite-derived euphotic depth (zeu sat) was determined

from zeu sat =−4.6/K490, where the 8-day, level-3, MODIS

K490 is spatially averaged over a 10◦× 10◦ region centered

on the BATS and HOT stations. At BATS, both zeu MB and

zeu sat vary seasonally, becoming shallower during the win-

ter and deepening during the summer. The zeu MB is based on

in situ measurements of Ch a throughout the water column,

whereas K490 is a function of the water-leaving radiance

over the first optical depth (K490≈ zeu/4.6). Both are ap-

proximations of the true zeu, and differences between zeu sat

and zeu MB reflect the methodological differences. The zeu sat

integrates water-leaving irradiance over a shallow portion of

the water column, roughly 5 to 20 m thick, whereas zeu MB

integrates over the entire water column.

For example, in the spring of 2010 at BATS, a subsurface

maximum in Ch a developed that led to shoaling of zeu MB

(solid gray line, Fig. 7d). These events were not evident in

zeu sat, possibly because this subsurface layer was not visi-

ble within the satellite penetration depth. For the model–data

comparison in Sect. 5.1 (Fig. 11), we use zeu sat. The varia-

tion in zML-zeu at Bermuda is driven primarily by variation

in zML, and so our analysis was not sensitive to this choice.
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