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Abstract. The analysis of soil phosphorus (P) in fractions of

different plant availability is a common approach to charac-

terize the P status of forest soils. However, quantification of

organic and inorganic P fractions in different extracts is labor

intensive and therefore rarely applied for large sample num-

bers. Therefore, we examined whether different P fractions

can be predicted using near-infrared spectroscopy (NIRS).

We used the Hedley sequential extraction method (modi-

fied by Tiessen and Moir, 2008) with increasingly strong ex-

tractants to determine P in fractions of different plant avail-

ability and measured near-infrared (NIR) spectra for soil

samples from sites of the German forest soil inventory and

from a nature reserve in southeastern China.

The R2 of NIRS calibrations to predict P in individ-

ual Hedley fractions ranged between 0.08 and 0.85. When

these fractions were combined into labile, moderately la-

bile and stable P pools, R2 of calibration models was be-

tween 0.38 and 0.88 (all significant). Model prediction qual-

ity was higher for organic than for inorganic P fractions and

increased with the homogeneity of soil properties in soil sam-

ple sets. Useable models were obtained for samples origi-

nating from one soil type in subtropical China, whereas pre-

diction models for sample sets from a range of soil types in

Germany were only moderately useable or not useable.

Our results indicate that prediction of Hedley P fractions

with NIRS can be a promising approach to replace conven-

tional analysis, if models are developed for sets of soil sam-

ples with similar physical and chemical properties, e.g., from

the same soil type or study site.

1 Introduction

Phosphorus (P) is limiting plant growth and ecosystem pro-

ductivity in many parts of the world (e.g., Elser et al., 2007;

Vitousek et al., 2010). Unlike nitrogen, the world’s P stores

for the production of fertilizer are finite and therefore will

decrease in the future (Cordell et al., 2009; Edixhoven et al.,

2013). It is therefore of paramount importance to use P as

efficiently as possible in agricultural and forestry production

systems. In several parts of Europe and other parts of the

world, concerns have been expressed that a substantial pro-

portion of forest stands may suffer from P limitation (Fox et

al., 2011; Khanna et al., 2007; Lorenz et al., 2003). A num-

ber of hypotheses, to explain this phenomenon of widespread

phosphorus limitation have been put forward (e.g., nitrate up-

take suppressing P uptake, soil acidification reduces rate of

organic P mineralization and increases inorganic P sorption

capacity) (Mohren et al., 1986; Paré and Bernier, 1989; Gille-

spie and Pope, 1991). In long-term development of forest

ecosystems following disturbance, P (in contrast to N) can

only diminish through processes such as erosion and timber

harvest and therefore becomes limiting to biological activity.

Consequently, increasing P deficiency is also a natural pro-

cess of ecosystem retrogression (Walker et al., 1976; Wardle,

2009), which seems to be accelerated by anthropogenic activ-

ities. The increasing demand for forest biomass, such as for

renewable energy, might exacerbate the P nutrition problem

in many forests (Vanguelova et al., 2010). Therefore, suitable

methods for monitoring the current status and the medium to
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long-term trends of P nutrition in forest ecosystems are ur-

gently needed.

For forest soils, often only total P contents are measured.

But total P is not a meaningful variable as it is not very sen-

sitive to environmental or management influences over time

and is not indicative of the amount of plant-available P in

forest soils, where P can occur in many organic and inor-

ganic forms of different availability (Khanna et al., 2007).

Especially for forest soils, it is important to differentiate be-

tween organic and inorganic P forms, since organic P, al-

though not directly available for plant uptake, plays a major

role in tree nutrition (Turner et al., 2005; Shen et al., 2011;

Rennenberg and Herschbach, 2013). Analytical approaches,

such as the Hedley fractionation (Hedley et al., 1982a), have

been developed to quantify organic and inorganic P in frac-

tions of different plant availability. These fractions have been

successfully applied to characterize the dynamic nature of P

availability in forest ecosystems (e.g., Richter et al., 2006).

Several authors discussed the usefulness of this commonly

used sequential extraction method to determine P in frac-

tions of distinctly different solubility (Cross and Schlesinger,

1995; Condron and Newman, 2011; Yang and Post, 2011).

The ecological relevance of chemically derived Hedley frac-

tions has been critically discussed in some cases (Turner et

al., 2005) and it is still unclear which fractions are relevant

for plant growth (Rennenberg and Herschbach, 2013). How-

ever, the application of this sequential extraction method in

forest soils has proven to be useful. In contrast to agricultural

soils, the slowly cycling P pool in forest soils contributes

substantially to plant nutrition, whereas labile P pools stay

relatively constant, indicating that higher amounts of P from

more slowly cycling pools “feed” the labile P pool (Comp-

ton and Cole, 1998; Richter et al., 2006). However, the Hed-

ley fractionation method is very time consuming, labor inten-

sive and therefore costly, which renders it unsuitable for the

analysis of large numbers of samples (Cécillon et al., 2009).

Therefore, it would be useful if Hedley P fractions could be

determined by means of an indirect and less expensive tech-

nique. For this purpose, the use of near-infrared spectroscopy

(NIRS) may be a promising approach.

NIRS is a rapid and non-destructive analytical method rou-

tinely used in a wide range of fields, mostly in quality control

in the chemical, forage or food industry. In the field of soil

sciences, NIRS has been successfully applied to predict soil

chemical and soil biological parameters like carbon (in the

form of total C, SOC, microbial C and mineralizable C) or

nitrogen (in the form of total N, microbial N and mineraliz-

able N) contents (Chang et al., 2001; Ludwig et al., 2002;

Zornoza et al., 2008) and was also applied to agricultural

soils to predict available P (Olsen P, Mehlich III P) (e.g.,

Maleki et al., 2006; Dhawale et al., 2013). An overview of

available reflectance spectra for different soil properties is

available at the global soil visible–NIR (near-infrared) spec-

tral library (World Agroforestry Centre – ICRAF and ISRIC-

World Soil Information, 2010).

The mineral fractions of soil, which commonly constitute

the major portion of soils, are usually hardly visible for NIRS

(Malley et al., 2004). Despite the complexity and heterogene-

ity of chemical and physical soil properties, the spectral in-

formation of soils is surprisingly uniform. For example, 30

soil types of the USDA soil classification system could be

grouped into only five different spectra classes (Stoner and

Baumgardner, 1981). Owing to the low dipole moment be-

tween P and oxygen, phosphates cannot be excited by in-

frared radiation and therefore not be detected directly with

NIRS. However, P can be detected indirectly, if it is bound

organically or through correlation with the above stated other

soil properties such as C and N content that are detectable by

NIRS.

To develop robust NIRS models, it is essential to produce a

reliable quality in spectral data sets. Several publications on

NIRS deal with the influence of the quality of soil samples

on spectral information. Stenberg et al. (2010) and Brunet

et al. (2007) discussed the influence of ground soil samples

in comparison with sieved samples (< 2 mm) and found in-

creasing model quality for more homogeneous ground sam-

ples. The quality of the data with regard to the heterogeneity

of samples was addressed by Abrams et al. (1987) and Shenk

and Westerhaus (1993). Global models used for the predic-

tion of forage quality in hay, where “global” means that the

model is based on the largest sample population comprising a

wide variety of hay samples and hay composition from many

sites, produced predictions that were as good as local mod-

els derived from one single site. However, in other studies

using plant material (pine needles), both improvements and

reductions in model quality for more heterogeneous data sets

(addressed as global) when compared with homogeneous (lo-

cal) data were observed (Gillon et al., 1999). Reductions in

model quality were observed for the prediction of C content

in sample sets with high variation in chemical composition

associated with high spectral variation. Since high variation

in chemical composition and spectral properties is true for

forest soil samples, it might be a challenging process to build

robust models. The problem of detecting soil characteristics

using NIRS methods is not new (Stoner and Baumgardner,

1981; Ben-Dor and Banin, 1995; Udelhofer et al., 2003; Cé-

cillon et al., 2009; Genot et al. 2011). To the best of our

knowledge, up to now only few publications (Guerrero et al.,

2010; Sankey et al., 2008) have addressed the problem of

NIRS model calibration and prediction quality for forest soil

samples and none of these has focused on soil P.

Currently, there are only a few NIRS models available to

predict soil P parameters. These include NIRS prediction

models for Mehlich-III extractable P (Chang et al., 2001),

for total P and exchangeable P (Malley et al., 2004). Hith-

erto, there have been no studies focusing on the use of NIRS

to predict organic and inorganic Hedley P fractions in for-

est soils. This study aimed to examine the general ability of

NIRS methods to assess these P fractions. Specifically we

addressed the following hypotheses:
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1. Hedley fractions of different P availability can be suffi-

ciently well predicted through NIRS models. The crite-

ria used to quantify the quality of NIRS models will be

introduced in the “Material and methods” section.

2. The quality of predictions through NIRS models is

higher for organic than for inorganic P fractions.

3. The quality of predictions of P fractions depends on the

variability in phosphorus content and soil properties of

soil sample data sets.

2 Material and methods

2.1 Soil samples

Two different sets of mineral soil samples were used for

this study. Approximately half of the soil samples originated

from the German nationwide forest soil inventory (BZE).

This data set covers 282 archived soil samples from 145

sites belonging to the BZE grid; including 70 sites in Baden-

Württemberg (70 samples 0–5; 69 samples 10–30 cm), 23

sites in Hesse (23 samples from both depths), 33 sites in

Lower Saxony (32 samples 0–5; 28 samples 10–30 cm) and

19 sites in Saxony Anhalt (18 samples 0–5; 19 samples 10–

30 cm). The area covered by the BZE samples was a region

of approximately 200 km width and 700 km length. The BZE

plots were part of Germen Forest Soil inventory net, which

is realized as a grid with a size of 8 km× 8 km. From each

site, if available, two samples (0–5 and 10–30 cm depth) were

analyzed. BZE samples are composite samples from eight

replicates (Wolf and Riek, 1996). The samples included in

this data set were selected to cover the majority of forest

soil types in Germany and a large variation in total phos-

phorous concentration. Development of robust NIRS models

requires sample populations that cover the whole calibration

range with an approximately even distribution of samples

across the range of the variable to be predicted. In contrast,

sample populations with normally distributed samples tend

to overestimate low values and underestimate high values

in model calibration (Williams, 2001). The BZE soil sam-

ples were grouped by soil type in 11 major groups: Regosol

(n= 20), Gleysol (n= 6), Luvisol (n= 59), Vertisol (n= 2),

Podzols (n= 10), Chernozem (n= 2), Stagnosol (n= 38),

Chromic Cambisol (n= 10), Anthrosol (n= 4), Cambic Um-

brisol (n= 78) and Cambisol (n= 53) (IUSS Working Group

– WRB, 2006). The total P content covered by the BZE sam-

ples ranged from 58 to nearly 2800 mg kg−1 (Table 1).

The other half of the soil samples originated from the inter-

national research project “Biodiversity and Ecosystem Func-

tioning in China (BEF China)” (Bruelheide et al., 2011).

The 294 soil samples from the BEF China project were

collected from 27 so-called comparative study plots (i.e.,

CSP, 30× 30 m) in the Gutianshan National Nature Reserve,

which has a size of 81.07 km2 (mean distance between all

CSPs= 3.4; Min= 0.04; Max= 8.98 km, Eichenberg, 2015).

At all 27 CSPs, the soil type was a Cambisol (reference soil

group after WRB, 2006) comparable to the “typical brown

earth” after the German classification. Thus, the 294 BEF

samples represented a more homogeneous sample set than

the BZE samples. At each CSP, nine soil cores that were

evenly distributed across the plot were collected. One bulk

sample was then combined from the nine cores, for each of

the three depth increments (0–5, 5–10 and 10–20 cm), i.e., 81

samples in total. At 12 CSPs, an additional 37 samples were

collected from the three topmost diagnostic soil horizons,

predominantly Ah and Bw horizons (at one plot, the four top-

most horizons were sampled) of representative soil profiles

of the CSPs (ranging in depth between 47 and 120 cm). In

addition, 176 samples (0–20 cm) were collected in four repli-

cates from 44 so-called neighborhood diversity tree clusters,

which were located in the proximity of some of the perma-

nent CSPs. Each of the four samples of tree clusters were

also composite samples from three cores each. Each compos-

ite sample represents different conditions within the cluster;

they were collected at the base of individual trees belonging

to different or the same tree species and in the center of a tri-

angle between these trees. We cannot rule out a spatial cor-

relation between these samples. Total P content of all BEF

samples ranged from 26 to 330 mg kg−1 (Table 1).

Both sample sets, BZE and BEF, contained samples that

originated from different depth but the same location (soil

cores). Since these samples might not have been spatially

independent, the autocorrelation among samples could have

influenced the quality of NIRS models. For example, the

validation may not be truly independent, if calibration and

validation sample sets contain samples that are systemati-

cally correlated with each other. To address this issue, we

calculated the Durbin–Watson coefficient (d) as a measure

of autocorrelation between measured and predicted values

and compared this coefficient between sample sets from all

soil depths (containing samples from the same location) and

from one soil depth only (spatially independent). This test

did not indicate autocorrelation within our sample sets (d val-

ues between 1.75 and 2.23). In addition, we found no differ-

ences for the Durbin–Watson coefficient for all BZE samples

(depth: 0–5 and 10–30 cm) and BZE samples sets from one

depth only. Since there was no indication of autocorrelation

between samples of different depths, we included all samples

in our calibration and validation steps.

The data for C and N content as well as the pH val-

ues of the BZE samples were provided by the Northwest

German Research Station and the Forest Research Institute

Baden-Württemberg (Table 2). Samples were prepared and

measured according to the German forest science standard

(BMVEL, 2009). Total soil C and N contents of the hori-

zonwise samples and the three depth increments of the BEF

samples (Table 2) were determined after dry combustion

(1150 ◦C) with an element analyzer (Elementar Vario EL III)

(DIN ISO 10964). Since the material is non-calcareous, to-
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Table 1. Descriptive statistical parameters of soil P content (mg kg−1) as total sum of Hedley P fractions and in pools of different plant

availability, grouped by data sets used for NIRS modeling.

Data set P pool n Min Mean Max SD Skewness Kurtosis

BZE all total sum 282 57.8 564.0 2796.1 413.4 1.9 6.2

labile 6.0 123.6 850.0 110.7 2.4 8.9

moderately labile 8.1 296.7 2307.7 266.2 3.2 18.5

stable 6.7 141.1 805.2 127.4 1. 4.1

BZE total sum 84 128.1 657.7 2178.0 440.59 1.2 1.7

“brown labile 11.0 166.3 850.0 146.89 2.1 5.6

earth” moderately labile 46.9 357.3 1227.0 256.9 1.2 1.4

stable 6.7 134.3 534.3 118.4 1.4 1.9

BEF China total sum 294 25.7 94.8 328.6 47.9 1.7 4.5

labile 1.2 17.0 78.9 10.6 1.8 6.5

moderately labile 10.8 43.7 161.2 21.8 1.7 5.6

stable 10.8 34.1 174.8 23.1 3.0 11.8

 31 

  

   Figure 1. Sequential extraction scheme of Hedley fractionation

modified by Tiessen and Moir, grouped by pools of availability;

NaHCO3, NaOH and HCl conc. steps provide both organic and in-

organic compounds for this fraction step.

tal soil C equals soil organic C. For these samples, pH values

were derived in H2O (2.5 mL : 1 g water solution to soil) with

a Sentix 81 electrode and pH meter (WTW, Germany). C and

N contents of the 176 neighborhood diversity samples of the

BEF data set were determined with a TruSpec Elemental An-

alyzer (Leco, USA) and pH values were measured in H2O

(2.5 mL : 1 g water solution to soil) with a blueline electrode

and pH meter (Schott, Germany).

All soil samples were dried at 40 ◦C for 24 h and sieved

(< 2 mm). For C and N analyses, samples were finely ground.

The intensity of sieving respectively grinding has an impact

on the reproducibility and the distribution of extractable P

over the fractionation process (Tiessen and Moir, 2008) and

the NIR spectra (Brunet et al., 2007). Due to the more “natu-

ral” extractability of P compared to ground samples and the

ecological importance of soil aggregates, we used < 2 mm

sieved soil samples for the determination of P fractions.

Before measurement of the NIR spectra, the samples were

ground to powder by a mixer mill MM400 (Retsch, Ger-

many) and dried over night at 40 ◦C.

2.2 Phosphorus fractionation

Soil samples were analyzed by the sequential extraction

method according to Hedley et al. (1982b). We used 24

samples in one batch consisting of 23 individual samples

including six replicate samples (as random quality check)

and one in-house soil standard (as standard quality check).

In the protocol applied to the samples, 0.5 g soil was ex-

tracted by different extractants with increasing strength (Fig.

1), starting with distilled water containing an anion exchange

resin (resin) – Dowex 1× 8, 20–50 mesh, Sigma-Aldrich,

Taufkirchen, Germany; followed by 0.5 M sodium bicar-

bonate (NaHCO3); 0.1 M sodium hydroxide (NaOH); 0.1 M

sodium hydroxide with ultrasonic treatment (S–NaOH) – ul-

trasonic bath RK510H, 35 kHz, 23 WL-1, Bandelin, Berlin,

Germany; 1 M hydrochloric acid ( M HCl); and a final acid

digestion (residual). Tiessen and Moir (2008) introduced an

additional extraction step with hot concentrated hydrochloric

acid (HCl conc.) before the final digestion. Our fractiona-

tion scheme considered all of these seven fractionation steps,

but used 25 mL solution for the extractions and 2.2 mL con-

centrated nitric acid for the final acid digestion. The whole

fractionation process is described in detail by Tiessen and

Moir (2008).

Total P content as index value for the sum of all fractions

was measured separately after nitric acid digestion, which is

a standard method recommended by the German forest soil

survey (BMVEL, 2009).
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Table 2. Descriptive statistical parameters of carbon (g kg−1), nitrogen (g kg−1) and pH (H2O) in soil, grouped by data sets used for NIRS

modeling.

Data set P pool n Min Mean Max SD Skewness Kurtosis

BZE carbon 282 0.2 42.9 314.7 39.7 2.0 7.6

nitrogen 0.1 2.7 14.2 2.3 1.6 3.3

pH 3.2 4.5 8.2 0.8 1.9 4.9

BZE carbon 84 3.6 56.2 178.0 45.2 0.8 −0.3

“brown nitrogen 0.2 3.4 10.0 2.5 0.8 −0.2

earth” pH 3.4 4.4 7.8 0.7 2.7 11.3

BEF China carbon 294 3.4 30.9 118.1 17.2 1.4 3.0

nitrogen 0.3 1.6 5.9 0.8 1.5 4.5

pH 3.5 4.5 5.1 0.2 −0.7 1.7

 32 

  

   Figure 2. Relationship between the sum of recovered Hedley P frac-

tions and independently determined total P (mg kg−1) in soil sam-

ples.

Phosphorus was determined colorimetrically with the

spectrophotometer UV mini-1240 by Shimadzu through

molybdate reactive P method described by Murphy and Ri-

ley (1962) modified by John (1970), but keeping the ammo-

nium molybdenum concentration at 10 g L−1. Every extract

needs to be adjusted for pH, as development and stability of

the blue phosphomolybdic complex is pH dependent (Drum-

mond and Maher, 1995; Huang and Zhang, 2008; Tiessen

and Moir, 2008). The P extracted within every step is only

partly detectable as free phosphate. To determine the total

phosphate, the NaHCO3, NaOH and the HCl conc. extracts

were oxidized with ammonium persulfate in an autoclave.

The difference between total P after digestion (TP) and the

free phosphate in the extract (Pi) provides the organically

bound P (Po) (Rowland and Haygarth, 1997; Tiessen and

Moir, 2008). The amount of organically bound P in the resin

and the 1 M HCl extracts were considered negligible (Tiessen

and Moir, 2008) and therefore not analyzed. We summed up

the values Pi of the NaOH and Pi of the S–NaOH fraction as

well as Po of the NaOH and Po of the S–NaOH fraction be-

cause the ultrasonic treated NaOH step is chemically hardly

different from the main NaOH fraction and a differentiation

between these two fractions with NIRS did not seem mean-

ingful. Similar considerations applied to the distinction be-

tween Pi and Po in the HCl conc. extract, since concentrated

HCl is a strong oxidant and an additional oxidation with per-

sulfate is chemically comparable. In our analysis, the pre-

cision of the Pi value of the HCl conc. extract lacked repro-

ducibility within replicates compared to the TP value and this

might be an indicator for an incomplete reaction during the

boiling procedure. Also several organic phosphates are un-

stable under these acid conditions (Turner et al., 2006) and

the results of Pi and Po of the HCl conc. fraction also lacked

reproducibility within our standard. The total P content of the

HCl conc. fractions showed good reproducibility and there-

fore was used for calibration.

In summary, we selected the following fractions to per-

form calibrations with NIRS: Pi resin, Pi NaHCO3, Po

NaHCO3, Pi NaOH, Po NaOH, Pi 1M HCl, P HCl conc.,

P residual. For the purpose of subsequent statistical analy-

ses, the Hedley fractions were grouped by their solubility in

labile (Pi resin, Pi and Po NaHCO3), moderately labile (1 M

HCl, Pi and Po NaOH) and stable P pools (P HCl conc. and

P residual) as commonly found in the literature (Cross and

Schlesinger, 1994; Stevenson and Cole, 1999; De Schrijver

et al., 2011; Yang and Post, 2011). Several tests were con-

ducted to ensure that Hedley fractions were reproducible and

accurately determined. One indicator of the reliability of the

Hedley fractionation method is the recovery rate of total P

in the sum of fractions, which was very good for the soils in

this study (Fig. 2). Only for samples with high P contents, the

sum of fractions may either systematically exceed the total P

content or the amount of measured total P may be underes-

timated. Errors for samples with high P content could occur

either due to necessary dilution steps for measuring fractions

with very high P concentration, where small differences dur-

www.biogeosciences.net/12/3415/2015/ Biogeosciences, 12, 3415–3428, 2015
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ing colorimetric measurements lead to relatively high errors

for the final value, or to incomplete digestion of P with nitric

acid. To avoid these sources of error, we performed repeated

measurements of these samples and we reduced the sample

weight to 400 mg and increased the amount of acid to 3 mL

in these samples. In addition, this problem occurred only in a

very low proportion of samples (10 out of 576) and removing

these samples from the data set did not change the calculated

recovery rate.

2.3 Near-infrared spectroscopy

Molecules with dipole moments can be excited to stretching,

bending and rotating oscillations by absorbing infrared radi-

ation. While an excitation of fundamental oscillations occurs

in the mid-infrared range of the light, the NIR spectrum of

a substance shows overtone peaks and combination bands of

molecular vibrations, mainly from bonds like O–H, C–H and

N–H (Workmann, 2001; Malley et al., 2004; Cécillon et al.,

2009). This makes NIRS especially suitable for organic com-

pounds (Weyer, 1985; Miller, 2001). Phosphates and other

inorganic P compounds are hardly detectable by NIRS due to

the weak P–O dipole moment (Malley et al., 2004). The de-

tection of nutrients such as in P compounds seems to be pos-

sible, if they are correlated with other NIRS-detectable soil

properties such as soil texture, water content, organic com-

pounds, and mineralogy, in particularly soil organic matter

or organic carbon (Stenberg et al., 2010).

Each type of molecule has characteristic absorption bands

for near-infrared radiation, but there is much interference and

overlap between the overtone and combination oscillations.

Therefore, molecules cannot be identified by single peaks.

The whole spectral information or at least several regions

of the spectrum are needed to determine a molecule (Work-

mann, 2001; Günzler and Gremlich, 2003; Roberts et al.,

2004).

The spectral region of NIR radiation ranges from 800 to

2500 nm wavelength, following directly the visible light re-

gion. In infrared spectroscopy, commonly the wave number

ν in cm−1 is used, which is the reciprocal of the wavelength

λ.

ν = λ−1

Since the O–H bond has a strong influence on near-

infrared absorption (Schmitt, 2000; Malley et al., 2004),

ground samples were dried at 40 ◦C and measured under con-

stant humidity conditions. For each soil sample, five spectra

were taken with a Fourier transform mid- and near-infrared

combination instrument (Tensor 37, Brukeroptics, Ettlin-

gen, Germany). Each spectrum is a mean of 64 individual

scans over the range of 12 000 to 4000 cm−1 wave numbers

with a resolution of 16 cm−1. Model development was done

with the OPUS 6.5 spectroscopy software (Brukeroptics, Et-

tlingen, Germany). Before statistical analyses, a number of

mathematical data pre-processing options were tested (Duck-

worth, 2004). The pre-processing options providing the best

results were first derivative, vector normalization, or a com-

bination of these two. These were used as data treatment be-

fore partial least square regressions were conducted and ap-

plied to a variety of frequency ranges to find the best fit with

the value of the respective component; spacing was 1; several

smoothing point values (5, 9, 13, 17, 21, 25) for the deriva-

tives were also tested. Calibration was performed with cross-

validation, a common approach for small data sets (Williams,

2001; Conzen, 2005). Here, a defined number of samples, in

our case one sample, were stepwise excluded from the cali-

bration process. The rest of the samples were used to predict

the excluded samples. This procedure was performed until all

samples were excluded once, and the best models to predict

all samples were found (Conzen, 2005). For each data set,

only 80 % of the samples were used for this procedure and

the development of models the remaining 20 % were left out

for later independent validation of the models to test their

prediction quality. This distribution of samples was carried

out with an automatic function in the Opus software (Conzen,

2005; Bruker Optik User Manual, 2006) selecting samples

for each individual model equally over the whole range of

each data set. The min and max values were always assigned

to the calibration set and the samples second to min and max

were always assigned to the validation set. To avoid confu-

sion with the final validation process of independent samples,

we refer to the cross-validation process as calibration.

Our initial intent was to generate a global prediction model

for P concentration that integrated the whole variety of forest

soil types. The aim was to test whether such a global model

could be used to estimate P concentration of all BZE samples

and for future inventories. Since this approach proved to be

difficult, we also tried to develop NIRS models for a sub-

set of the total BZE sample pool with reduced variation in

soil properties including P. Therefore, we selected the BZE

samples belonging to the German soil classification group

brown earth. This was the only sub-set of soil types (using

soil type as an indication of similar soil properties) in the

BZE data set with sufficient number of samples for NIRS

model development. Additionally, we used soil samples from

the above-mentioned BEF China project, which represented

a data set from a small geographic region and similar soil

properties.

To address the hypothesis that the predictive quality of

NIRS models increases with the homogeneity of sample sets,

we finally established calibrations for sample populations of

varying heterogeneity (Fig. 3):

1. a full data set containing all soil samples with the great-

est variability (n= 576);

2. the complete BZE data set with almost similar vari-

ability comprising a wide range of different soil types

(n= 282);
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Figure 3. Score plot of principal component analysis (total of five

components derived; principal component 1 vs. principal compo-

nent 2) for the three data sets BZE (white, set 2), BZE “brown earth”

(grey, set 3) and BEF China (black, set 4).

3. the less variable BZE subset of brown earth soil samples

(n= 84);

4. the BEF China sample set comprising soils from one

soil type and from one small region (n= 294).

To assess whether the prediction of P by NIRS depended

on direct detection of soil P – regardless of organic or in-

organic form – or rather indirectly on properties of soil or-

ganic matter, we used regression analyses to see whether the

quality of NIRS models to predict P could be explained by

the relationships between P and soil C and N. As mentioned

above, it was presumed that P bound to C or N could be mod-

eled with better quality.

The BZE brown earth data set (set 3) with 82 samples was

too small for a robust validation with external samples that

were not used in the calibration. Still, we included it in our

study, because it was the only meaningful and less variable

subset of samples that could be separated from the whole

BZE data set (set 2). The sizes of the sample sets 1 and 2

were comparable with those used in other studies to develop

“global” models (Abrams et al., 1987; Shenk and Wester-

haus, 1993; Gillon et al., 1999). Sample set 4 could be re-

garded as an extensive but local data set. A principal com-

ponent analysis (Fig. 3) (OPUS 6.5 software) was carried

out to assess spectral properties of the selected subsamples.

The general spectral properties of the soil samples indicated

that the BEF China sample set (set 4) was more homoge-

nous than the BZE sample sets and clearly separated from

the BZE sample set as a whole as well as from the subset

BZE “brown earth”. The spectral properties of the two sub-

sets of BZE samples were not different.

To evaluate the prediction quality of NIRS models, the sta-

tistical parameters R2 and the ratio of performance to devia-

tion (RPD stands for ratio of standard deviation to standard

error of prediction) were used. The usefulness of these statis-

Table 3. Quality parameters for NIRS model calibration (R2, RPD)

for all Hedley fractions in the three data sets: BZE, BZE “brown

earth” and BEF China.

BZE “brown

Hedley fraction BZE earth” BEF China

R2 RPD R2 RPD R2 RPD

Pi resin 0.26 1.16 0.51 1.44 0.77 2.081

Pi NaHCO3 0.08 1.04 0.19 1.10 0.48 1.39

Po NaHCO3 0.61 1.60 0.63 1.64 0.78 2.131

Pi NaOH 0.23 1.14 0.15 1.09 0.72 1.881

Po NaOH 0.61 1.60 0.75 1.981 0.82 2.352

Pi 1 MHCl 0.30 1.19 0.38 1.26 0.34 1.23

P HCl conc. 0.72 1.881 0.76 2.051 0.85 2.572

P residual 0.56 1.50 0.57 1.52 0.69 1.791

1 Model quality level D. 2 Model quality level C.

tical parameters to characterize the quality of NIRS models

was discussed controversially (Chang et al., 2001; Williams,

2001; Malley et al., 2004; Zornoza et al., 2008). Especially

for soil analysis, high values for RPD and R2 are hardly

achieved (Malley et al., 2004). To judge our RPD and R2

values, we followed the classification suggested by Malley et

al. (2004), who provided an overview and summary on this

topic. We applied the following four levels to classify model

quality:

– level A: R2> 0.95 and RPD> 4, excellent calibrations,

useable for all applications;

– level B: R2 between 0.90 and 0.95, RPD between 3 and

4, successful calibrations useable for most applications

some with caution, e.g., quality assurance;

– level C: R2 between 0.80 and 0.90, RPD between 2.25

and 3, moderately successful calibrations, useable with

caution, e.g., research;

– level D: R2 between 0.70 and 0.80, RPD between 1.75

and 2.25, moderately useful calibrations, useable for

screening of samples.

Calibrations with lower values might still be useful for rough

screening purposes (Chang et al., 2001).

All statistical analyses shown in this study are performed

with SPSS Version 20.

3 Results

3.1 Soil phosphorus contents

Total P contents were higher and showed a wider range in

the BZE samples than in the BEF China samples for all pools

of P availability and individual fractions (Table 1). The sub-

group brown earth was characterized by a large variation in

total P content (130 to 2200 mg kg−1; as the sum of all Hed-

ley fractions), which had a smaller range of values compared
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Figure 4. Validation for HCl conc. soluble P fraction of the three data sets BZE, BZE “brown earths” and BEF China (mg kg−1), x axis

measured, y axis predicted values, please note the difference in scale among graphs.

to the pool of all BZE samples but, as indicated by the stan-

dard deviation, a similar variation in total P. The same ap-

plied to P in the labile, moderately labile and stable pools.

The mean percentage of organic P, here calculated as the sum

of all Po fractions without the HCl conc. fraction, was higher

in the BEF China samples (57 %) than in the BZE and BZE

brown earth samples (39 and 43 %). However, there was no

difference in the range of organic P (10–70 % of the total)

for the three data sets. The organic P fraction with the high-

est concentrations in all three data sets was the one extracted

with NaOH (mean values for BZE 155 mg kg−1: equivalent

to 28 % of Pt; BZE brown earth 196 mg kg−1: equivalent to

31 % of Pt; and BEF China 35 mg kg−1: equivalent to37 %

of Pt). The P concentrations in the NaHCO3-extractable and

the 1 M HCl-extractable Pi fraction in the BEF samples were

so low falling below the detection limit of the Murphy and

Riley (1962) method.

3.2 NIRS models for P fractions

Initially, NIRS models were calibrated for both the com-

plete sample set as well as for three different subsets (BZE,

BZE brown earth and BEF China). The global model for

all samples produced calibrations that were only below D

level quality (R2
= 0.08–0.68; RPD= 1.04–1.74). The BZE

model, which was developed for samples from different soil

types, showed only for the P HCl conc. fraction a moderately

useful calibration, while all other fractions could not be cali-

brated sufficiently well (Table 3). For all fractions except the

inorganic NaOH, better calibrations were achieved with the

BZE brown earth subset than with the complete BZE data

set. However, calibration models achieved only D level qual-

ity for two of the fractions (Po NaOH, P HCl conc.). The

more homogenous BEF China data set yielded the best cali-

brations. Only the inorganic NaHCO3 and the inorganic 1M

HCl fraction were, owing to the very low contents, not cal-

ibrated successfully. Calibrations to predict the Pi resin, Po

NaHCO3, Pi NaOH and P residual fraction produced models

of level D quality, while calibrations for the organic NaOH

and the P HCl conc. fractions yielded models of level C qual-

ity. Overall, best calibration models were achieved for the

BEF China data set especially for the organic P fractions ex-

tracted with NaHCO3, NaOH and the P HCl conc. fraction

(Table 3).

Models providing level D calibrations were subsequently

tested with a validation data set comprising samples not in-

cluded in the calibration. The validation of the level D cal-

ibration model of the BZE set for the HCl conc. P fraction

was not successful. Validation of this fraction in samples

of the more homogenous subset BZE brown earth yielded

a model quality of level C and validation models for the P

HCl conc. fraction in BEF soil samples achieved a level B

quality (Fig. 4).

The validation of models for the Po NaHCO3 (R2
= 0.72;

RPD= 1.87), Pi NaOH (R2
= 0.68; RPD= 1.77) and P

residual (R2
= 0.75; RPD= 1.98) fractions of the BEF China

data set reached level D quality, while the model for the

Pi resin fraction could be validated at level C quality

(R2
= 0.83; RPD= 2.39). The validation of the model for the

Po NaOH fraction reached level B (R2
= 0.91; RPD= 3.23).

3.3 NIRS models for P pools

Grouping of the Hedley fractions into labile, moderately la-

bile and stable P fractions did result in good models for the

BEF China data set, while only the stable fractions of the

other three data sets (BZE+BEF, BZE, BZE brown earth)

could well be predicted with NIRS models (Fig. 5). Vali-

dation of the best calibration models for the stable P pool

in the three data sets BZE+BEF, BZE and BZE brown

earth yielded a level D model (R2
= 0.79; RPD= 2.16) for

the complete set (BZE+BEF) as well as the BZE data set

(R2
= 0.73; RPD= 1.91) and a level C model (R2

= 0.88;

RPD= 2.83) for the BZE brown earth data set.

Validations for the BEF China data sets achieved a level

C quality for the labile and the moderately labile P pool, and

level D quality for the stable P pool (Fig. 6).

To assess whether P content in Hedley fractions was de-

termined indirectly through relationships with soil C and N,

we calculated relationships between NIRS model quality and
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Figure 5. Calibration models for the four data sets BEF China+BZE, BZE, BZE “brown earth” and BEF China, pooled for labile, moderately

labile (mod. labile) and stable phosphorus (mg kg−1), x axis measured, y axis predicted values, please note the difference in scales.

coefficient of determination for the relationship between P in

Hedley fractions and soil total C and total N (Fig. 7). For

organic P fractions, high coefficients of determination (R2)

between P in Hedley fractions and total soil C or total N co-

incided with high R2 values of NIRS models. In contrast, the

P HCl conc. fraction showed the best model quality for all

three data sets (R2 0.72–0.85) but very poor R2 for the re-

lationship with total C and total N. For inorganic P fractions

for the BZE samples, coefficients of determination (R2) were

poor for both the relationships between soil C and N and P

fractions and NIRS models (Fig. 7).

4 Discussion

4.1 NIRS models for P fractions and pools

Calibration and validation models of individual fractions

achieved good to satisfactory results for some but not all indi-

vidual P fractions. Generally, the accuracy and reproducibil-

ity of the reference method (here Hedley fractionation) is of

crucial importance for the quality of predictions with NIRS

models (Williams, 2001). To increase reproducibility in our

study, all samples were measured according to the same pro-

tocol in the same laboratory at the University of Freiburg. In

addition, the strong agreement between the recovery of to-

tal soil P and the sum of all individual fractions indicated
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Figure 6. Validation for BEF China calibration models with external data sets pooled for labile moderately labile (mod. labile) and stable

phosphorus (mg kg−1), x axis measured, y axis predicted values.

Figure 7. Goodness of fit of calibration models (r2) for all individual P fractions and coefficient of determination (r2) of regression analysis

of total organic carbon (a), total nitrogen (b) and the P fractions (circles are organic fractions; squares are inorganic fractions; triangles are

HClconc fraction) in soils for all three data sets (black is BEF China; grey is BZE “brown earth”; white is BZE), dashed line indicates the

minimum model quality of r2
= 0.7.

a high reproducibility of the method. This reproducibility,

however, does not provide information about the distribution

of Pi and Po within individual fractions. For the individual

fractions, it is widely acknowledged that significant potential

errors may occur owing to variation in alkalinity or acidity

in the extracts leading to acid hydrolysis and precipitation of

inorganic P. This can influence the accurate distinction be-

tween organic and inorganic forms of P and may thus lead

to over- or underestimation of these forms within individual

fractions (Magid et al., 1996; Condron et al., 2005; Turner

et al., 2005; Tiessen and Moir, 2008; Condron and Newman,

2011). However, we achieved good reproducibility for Pi and

Po in repeatedly analyzed samples for NaHCO3 and NaOH

fractionation steps. For example, the standard errors of 16 re-

peated measurements of the same sample were 5.0 % for Pi

NaOH, 8.3 % for Po NaOH and 7.5 % for Ptotal NaOH.

Other than these methodological limitations of the Hed-

ley fractionation method, the level of P content of each frac-

tion is also of importance. The P content in the Pi NaHCO3

and 1 M HCl fractions of the soil samples from subtropical

China were close to the detection limit. Therefore, the refer-

ence data of these two fractions could not be regarded as reli-

able and hence no meaningful calibration models with NIRS

could be produced.

Using all Hedley fractions, the description of soil P avail-

ability becomes easily confusing. Some fractions could not

be calibrated owing to very low P concentrations or only with

very low prediction quality. In the case of the BEF China data

set, grouping the fractions into labile, moderately labile and

stable pools showed a slight increase for the quality parame-

ters R2 and RPD, but the quality of models remained at the

same level. These pools incorporated the inorganic NaHCO3

Biogeosciences, 12, 3415–3428, 2015 www.biogeosciences.net/12/3415/2015/



J. Niederberger et al.: Use of near-infrared spectroscopy to assess phosphorus fractions 3425

and 1 M HCl fractions, which could not be predicted indi-

vidually. As part of the labile respectively moderately labile

P pool, a reasonable prediction of the total P content for the

BEF China samples could still be possible. While pooling

these fractions does not reduce the work involved in refer-

ence analysis of the Hedley fractionation, it is still a signifi-

cant reduction in the modeling process, reducing the number

of models from eight to three for each data set.

4.2 Calibration of organic and inorganic P fractions

Whether P is in organic or inorganic form seemed to be of

importance for the quality of predictions of Hedley fractions

with NIRS. Regardless of the data sets and sample origin,

models predicting the organic P fractions performed better

than models predicting the inorganic P fractions (Table 3).

Similar results have been obtained for N (Ludwig et al.,

2002). The superior quality of models for organic P frac-

tions is related to the underlying mechanisms generating NIR

spectra, because organic compounds can be more easily ex-

cited by the irradiation than inorganic ones. Spectral vari-

ation in relation to soil P content is often associated with

organic matter or crystal water (Ben-Dor and Banin, 1995;

Chang et al., 2001; Malley et al., 2005; Stenberg et al., 2010).

Therefore, we also calibrated NIRS models for the sum of P

in all organic fractions (data not shown). However, we could

not observe any improvement for prediction of the sum of

assigned organic P in comparison with single organic frac-

tions or the pools. This might be caused by the large di-

versity in organic P compounds (Turner, 2008). In contrast

to organic P fractions, the relationships between inorganic P

fractions and other NIRS-detectable soil properties were ob-

viously not strong enough to aid the prediction of inorganic

P using NIRS.

In our study, we were not able to identify spectral regions

to be specific for a P signal as was found in other stud-

ies (Malley et al., 2004). Therefore, we had also assessed

whether focusing on typical NIR spectral regions for C–H,

N–H and O–H bonds could influence NIRS model quality.

The organic residual which is connected with the phosphate

molecule could be dominated by CH, NH, OH bonds or a

mixture of them. For this purpose we compared NIRS models

based on optimized spectral regions (automated procedure by

OPUS software), on the whole spectral range and on specific

spectral regions, which are known to represent C–H, N–H

and O–H bonds (Conzen, 2005). We found that in all cases,

the OPUS-software optimized spectral selection yielded su-

perior models followed by models covering the whole spec-

tral area. Models for selected bonds were in all cases of sub-

stantially lower quality, and were thus not presented in de-

tail. The best results based on R2 and RPD were obtained

for O–H bonds for the Po–HCO3 and P HCL conc. fractions.

This was followed by models focusing on C–H bonds and the

lowest quality models were obtained for models focusing on

N–H bonds.

There was no general pattern for the relationship between

NIRS model quality (R2) for different P fractions and the co-

efficient of determination of relationships between soil C or

N and P in these fractions. This indicated that NIRS models

were based mostly on original properties of organic P com-

pounds and the predicted P content was not simply a function

of soil organic matter content. This corroborates the under-

lying assumptions of the Hedley fractionation that P in the

individual organic fractions is of different availability owing

to the different properties of the organic matter dominating

the respective fraction. In turn, this indicates that total or-

ganic soil C and N can be used only to a limited extent to

predict organic P in different fractions.

4.3 Homogeneity of data sets

The quality of predictions of P fractions depended on the

homogeneity of individual data sets. The question of homo-

geneity has also been discussed in the use of global and lo-

cal calibration models by Abrams et al. (1987) and Shenk

and Westerhaus (1993), who found that global models, with

a higher number of samples per data set, were potentially as

accurate as more local calibrations for mixtures of hay con-

sisting of different plant species and origins. Variable results

were obtained for calibrations of the total C, N and P be-

tween global and local models of heterogeneous plant mate-

rial (Gillon et al., 1999). The global model, which combined

all individual data sets of pine needle categories (needles on

trees, fallen needles and litter), was more accurate or sim-

ilar than the “local” individual data sets for each category

of needles (Gillon et al., 1999). However, for global models

predicting carbon, a decline in model quality was observed.

Also, a comparison of NIRS models for soil organic C, inor-

ganic C and clay content showed a decreasing accuracy from

local to global calibration models (Sankey et al., 2008). In

contrast Brunet et al. (2007) found for local NIRS models

higher model quality predicting total C or total N for local

models compared with global models. This increasing effect

was stronger for ground samples (< 0.2 mm) than for sieved

samples (< 2 mm). For our soil data sets, a similar incline in

model quality with increasing homogeneity of sample origin

could be observed. The general observation that an increase

in the range of values leads to an increase in the robustness of

NIRS models (Abrams et al., 1987; Shenk and Westerhaus,

1993) did not apply in our study. Our results indicated that

regardless of the organic or inorganic origin or the availabil-

ity of P, the quality of NIRS models to predict P was better

for more homogenous than heterogeneous sets of soil sam-

ples. For example, reducing the soil samples from the na-

tionwide forest soil monitoring program to the subset BZE

brown earth, we produced a more homogenous subset that

improved model calibrations for all but the inorganic NaOH

fraction. Although an upgrade in model category (into cate-

gory D) was only observed for the organic NaOH fraction.

The most homogenous BEF China sample set produced even
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better calibration models, including improvements of model

category (into D as well as from D to C), than the BZE sub-

set.

Since P is not “recognized” directly by near-infrared ra-

diation but produces signals in the spectra that are related

to P compounds, it appears that the signals for the same

group of P compounds that relate to a specific Hedley frac-

tion vary greatly among different soil types. For organic P,

these groups of compounds are probably present in more than

one fraction and the various extracts are unlikely to be either

exhaustive or unique with respect to the target compounds

(Turner et al., 2003). To our knowledge, the chemical na-

ture of the organic phosphorus within the operationally de-

fined fractions is still poorly understood (Magid et al., 1996;

Turner et al., 2005). In contrast, the inorganic P forms rep-

resented in the distinct P fractions are more specific in their

chemical nature and well known (Stevenson and Cole, 1999;

Tiessen and Moir, 2008). This variation of P forms within

Hedley fractions may be greatly reduced through restricting

the development of NIRS models to comparable soil types.

5 Conclusions

The approach to predict soil P Hedley fractions of different

availability with NIRS can be regarded successful only when

certain limitations are considered. NIRS models for predic-

tion of individual inorganic P fractions were at best moder-

ately useful but unsuitable for soil inventories. We found that

the quality of NIRS models for prediction of P, for single

fractions as well as for pools, depended on the homogene-

ity of sample sets. The homogeneity may be related not only

to the same soil types (improved models after grouping of

soil types in the BZE subset) but also to the same geology

that has a large influence on soil properties (better calibra-

tion models of the BEF China sample set – with the same

geology – than the BZE subset originating from different ge-

ologies). The approach may therefore be well suited for large

experiments that require a great number of spatial and tem-

poral replication of samples within well-defined soil types.

For large-scale, grid-based soil inventories such as those con-

ducted in the context of environmental monitoring programs

for entire regions, like nation-wide soil surveys, it appears

that NIRS models to predict P fractions need to be devel-

oped for individual soil groups or other classes of samples

according to specific soil properties. While the development

of NIRS models requests a considerable initial investment,

these efforts are likely to pay off only for large sample num-

bers and in repeated inventories.

The Supplement related to this article is available online

at doi:10.5194/bg-12-3415-2015-supplement.
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