
Biogeosciences, 12, 4373–4383, 2015

www.biogeosciences.net/12/4373/2015/

doi:10.5194/bg-12-4373-2015

© Author(s) 2015. CC Attribution 3.0 License.

Convergent modelling of past soil organic carbon stocks but

divergent projections

Z. Luo1, E. Wang1, H. Zheng2, J. A. Baldock3, O. J. Sun4, and Q. Shao5

1CSIRO Agriculture Flagship, GPO Box 1666, Canberra, ACT 2601, Australia
2CSIRO Land and Water Flagship, GPO Box 1666, Canberra, ACT 2601, Australia
3CSIRO Agriculture Flagship, PMB 2, Glen Osmond, SA 5064, Australia
4Institute of Forestry and Climate Change Research, Beijing Forestry University, Beijing 100083, China
5CSIRO Digital Productivity & Services Flagship, Private Bag 5, Wembley, WA 6913, Australia

Correspondence to: Z. Luo (zhongkui.luo@csiro.au) and E. Wang (enli.wang@csiro.au)

Received: 5 January 2015 – Published in Biogeosciences Discuss.: 10 March 2015

Revised: 13 June 2015 – Accepted: 13 July 2015 – Published: 28 July 2015

Abstract. Soil carbon (C) models are important tools for un-

derstanding soil C balance and projecting C stocks in ter-

restrial ecosystems, particularly under global change. The

initialization and/or parameterization of soil C models can

vary among studies even when the same model and data

set are used, causing potential uncertainties in projections.

Although a few studies have assessed such uncertainties, it

is yet unclear what these uncertainties are correlated with

and how they change across varying environmental and man-

agement conditions. Here, applying a process-based biogeo-

chemical model to 90 individual field experiments (ranging

from 5 to 82 years of experimental duration) across the Aus-

tralian cereal-growing regions, we demonstrated that well-

designed optimization procedures enabled the model to ac-

curately simulate changes in measured C stocks, but did not

guarantee convergent forward projections (100 years). Major

causes of the projection uncertainty were due to insufficient

understanding of how microbial processes and soil C pool

change to modulate C turnover. For a given site, the uncer-

tainty significantly increased with the magnitude of future

C input and years of the projection. Across sites, the uncer-

tainty correlated positively with temperature but negatively

with rainfall. On average, a 331 % uncertainty in projected

C sequestration ability can be inferred in Australian agricul-

tural soils. This uncertainty would increase further if projec-

tions were made for future warming and drying conditions.

Future improvement in soil C modelling should focus on how

the microbial community and its C use efficiency change in

response to environmental changes, and better conceptualiza-

tion of heterogeneous soil C pools and the C transformation

among those pools.

1 Introduction

Soil is the largest carbon (C) reservoir in the terrestrial bio-

sphere, and CO2 emission from soil organic matter (SOM)

decomposition accounts for ∼ 35 % of the global CO2 emis-

sions (Schlesinger and Andrews, 2000). Due to the large

amount of soil organic carbon (SOC), carbon sequestration

in soils represents a great potential for mitigating green-

house gas emissions and climate change as well as main-

taining soil fertility (Lal, 2004). Accurate projections of fu-

ture change in SOC are therefore needed for C and green-

house gas (GHG) inventories to guide the development of fu-

ture policies and land management practices (Janssens et al.,

2003). Due to the complex and dynamic interactions between

SOC, climate, soil and land management practices, process-

based SOM models have become an important tool to investi-

gate SOC change and project SOC trends under different land

uses (Jenkinson et al., 1991; Friedlingstein et al., 2006; Smith

et al., 2007; Piao et al., 2009). Some studies have suggested

that the uncertainties in such projections should be system-

atically addressed in order to judge the credibility of the un-

derlying projections and develop appropriate polices for car-

bon sequestration and climate change mitigation (Friedling-

stein et al., 2006; Tang and Zhuang, 2008; Todd-Brown et al.,

2013; Nishina et al., 2014). A better understanding of these
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uncertainties and their drivers will help identify knowledge

gaps and improve process-based models (Luo et al., 2015).

Uncertainty in simulation results derived from dynamic

models can arise from inaccuracies in input data, deficien-

cies in model structure and inappropriate optimization of

model parameters. For SOM models, initialization of the

SOM pools can also be a major cause of divergent model

projections. Most SOM models divide SOM into several con-

ceptual pools (e.g. fast, slow and recalcitrant pools) and sim-

ulate the decomposition of each pool as a first-order decay

process (Smith et al., 1997; Davidson and Janssens, 2006;

Schmidt et al., 2011). In many cases, measurements are only

available for total SOC, and there is no agreed-on proce-

dure for initialization of these model pools using total SOC

(Basso et al., 2011). As a result, model optimization was of-

ten conducted based on limited SOC measurements (usually

at temporal scales less than decades) together with empirical

initialization. The optimized model was then used to project

SOC change at wider spatiotemporal scales (Friedlingstein et

al., 2006; Thornton et al., 2007). Such projection is subject

to unknown uncertainty (Friedlingstein et al., 2006; Tang et

al., 2008; Luo et al., 2013), because it does not properly ad-

dress the inaccuracies in both model initialization and model

parameters, with the latter potentially caused by imperfect

knowledge and model structure (Schmidt et al., 2011).

To illustrate the uncertainty propagation in SOC projec-

tions caused by initialization and parameterization and to un-

derstand what correlates with the change in the patterns of

projection uncertainty, we used the Agriculture Production

System sIMulator (APSIM) (Keating et al., 2003; Wang et

al., 2002; Holzworth et al., 2014) together with data from

90 agricultural experiments at 26 sites across the Australian

cereal-growing regions. The data include measurements of

total SOC stock (0–30 cm), C input (i.e. amount of residue

retention), crop yield, and records of management practices.

The APSIM model uses a very similar SOM pool structure

and first-order decay approach to simulate SOM dynamics

to other common Earth system models (Smith et al., 1997;

Friedlingstein et al., 2006; Thornton et al., 2007). We firstly

conducted sensitivity analysis to identify the model param-

eters whose change impacted most on simulated SOC dy-

namics. We then used Bayesian optimization approach to de-

rive the posterior joint distribution of the identified parame-

ters that enabled best match between measured and observed

SOC. These ensembles of parameters were used to run AP-

SIM for each of the 90 experiments, and simulations were

continued for a further 100 years after the end of the exper-

iment to produce SOC projections for uncertainty analysis.

We quantified the uncertainty in SOC projections induced by

both initialization of SOC pools and parameterization of al-

gorithms for simulation of process dynamics. While the un-

certainty obviously increases with years of projections, we

further hypothesized that it is also influenced by site-specific

climate, soil and management conditions, in addition to the

impact of model initialization and parameterization. We fur-

ther investigated how the projection uncertainty can be quan-

tified by using these drivers, so that future SOC projections

can become more useful with attached and well-quantified

uncertainties.

2 Materials and methods

2.1 Study sites and data sets

Data from a total of 90 experimental plots located within 26

different sites (Fig. S1 in the Supplement) and compiled and

described by Skjemstad and Spouncer (2003) were used in

this study. The experimental duration of these trials ranged

from 5 to 82 years; the experiments cover diverse climate,

soil and agricultural management conditions and are rep-

resentative of Australian cereal-growing regions (Table S1

in the Supplement). The data set included detailed records

on crop sequence, crop yield, crop residue production (esti-

mated according to harvest index) and agricultural manage-

ment practices such as residue management (removal or re-

tention) and fertilizer application over each year. SOC stock

was determined for representative 0–30 cm soil samples at

least at the beginning and end of the each experiment, with

some experiments having as many as six temporal measure-

ments. Other soil properties at the start of the experiment

were also measured, including total nitrogen content, bulk

density, clay content and pH, and were used to initialize the

APSIM model.

2.2 The APSIM model

APSIM was developed to simulate biophysical process in

agricultural systems, and has been comprehensively verified

and used to study productivity, nutrient cycling and environ-

mental impacts of farming systems as influenced by climate

variability and management practice (Keating et al., 2003;

Wang et al., 2002; Holzworth et al., 2014). APSIM simu-

lates crop growth and soil processes on a daily time step

in response to climate (i.e. temperature, rainfall, and radia-

tion) and soil conditions (water availability, nutrient status,

etc.). The model allows flexible specification of management

options like crop and rotation type, tillage, residue manage-

ment, fertilization and irrigation. The ability of APSIM to

simulate SOC dynamics under different cropping and man-

agement practices has been verified (Probert et al., 1998; Luo

Z. et al., 2011).

APSIM simulates the dynamics of both soil C and N stocks

in each soil layer. Similar to other SOM models like RothC

and Century, SOM in APSIM is divided into six conceptual

pools (i.e. microbial biomass, humic organic matter and in-

ert organic matter, together with three fresh organic matter

pools; Fig. S2). Inert organic matter is considered to be non-

susceptible to decomposition, i.e. indecomposable, due to

physicochemical and/or biological protections. The amount

of inert organic C is initialized at the start of the simulation
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and dos not change during the simulation. The decomposi-

tion of other pools is treated as a first-order decay process

modified by soil temperature, moisture and nitrogen avail-

ability (for fresh organic matter pool only), leading to the

release of CO2 to the atmosphere and transfer of the remain-

ing decomposed C to other pools. Microbial carbon use effi-

ciency (CUE), i.e. the efficiency of microbial community to

assimilate the decomposed SOC, determines the fraction of

decomposed C transferred to other pools. The model assumes

a constant CUE for all C pools. The flow of N depends on the

C : N ratio of the receiving pool. The C : N ratio of each pool

is assumed to be constant through time. The decomposition

of surface residues is modified by the degree of contact of the

residue with soil (Thorburn et al., 2001).

The model requires values for initial SOC content, to-

tal soil N content, bulk density, and soil hydraulic param-

eters for each soil layer simulated. In the Skjemstad and

Spouncer (2003) data set, measured values for SOC con-

tent, bulk density and total soil nitrogen content were pro-

vided for the 0–30 cm layer. For the deeper soil layers and

hydraulic parameters in the whole soil profile, values from a

measured soil profile nearest to the site were selected from

the Agricultural Production Systems Research Unit (AP-

SRU) reference sites soil database (http://www.asris.csiro.

au/mapping/hyperdocs/APSRU/). Daily weather data (from

1889 to present) for each site including radiation, maximum

and minimum temperatures, and rainfall were obtained from

the SILO Patched Point Dataset (https://www.longpaddock.

qld.gov.au/silo/).

The APSIM model was first set up for each experiment.

Agricultural management including crops, residue manage-

ment and fertilizer application was set according to avail-

able historical records. Crops were sown depending on rain-

fall (> 20 mm in five successive days) and soil water content

(90 % of saturation water content in the top 20 cm soil). Crop

cultivars were assigned according to sowing date, i.e. the ear-

lier the sowing date, the later the maturity type of the crop

cultivar. For simplification, three cultivars for each crop rep-

resenting early, middle and later maturity cultivars were se-

lected from the default cultivars in the files released with the

APSIM model. For pasture, however, there was no record on

the species and cultivar. Here, perennial lucerne (Medicago

sativa, a commonly used species in Australian pasture) was

used to represent pasture and only one cultivar – Trifecta –

was used in the simulation. Lucerne was sown and removed

after harvesting and before sowing of annual crops in the cor-

responding rotations, respectively. Harvest to the height of

10 cm was assumed each time lucerne reached the flowering

stage to mimic possible grazing and/or haying.

In the experiments included in this study, C from assimi-

lation of crop growth was the only source of C input to the

soil. In the APSIM model, crop growth is simulated using

light interception and radiation use efficiency, modified by

water and nitrogen supply. In order to achieve credible simu-

lation of crop growth, plant available water capacity (PAWC)

of the soil was adjusted. This adjusted PAWC at each site was

used throughout the simulations. Despite the reliability of the

APSIM model to simulate crop growth (both belowground

and aboveground), we did not use the simulated aboveground

C input during the simulation. Alternatively, the recorded

aboveground C input (as crop residue) was manually incor-

porated into the model at the time of crop harvesting, whilst

the simulated crop residue was removed. This manipulation

eliminated the effect of imperfect match of modelled with

observed crop residue on SOC dynamics.

2.3 Sensitivity analysis of SOC dynamics

A total of eight parameters (Table S2) that directly link to

the SOC dynamics in the model were selected for sensitivity

analysis in order to identify the most important ones regulat-

ing SOC dynamics. One model input for model initialization,

i.e. the fraction of inert organic carbon in the total SOC at the

start of the simulation (finert), was also included in the sen-

sitivity analysis, due to a lack of observed data of finert and

its great effect on simulated soil C changes. To inspect the

response of simulated SOC to variations of those parameters

(finert was also called as a parameter for convenience here-

after), a univariate local sensitivity analysis was conducted

by looking at the impact of one parameter at a time and

fixing all other parameters. As the purpose was to identify

the most influential parameter(s), a continuous wheat system

with 100 % residue retention (the dominant crop in the stud-

ied experiments; see Table S1) and a nitrogen application of

200 kg N ha−1 yr−1 were used and simulated for 100 years.

The default model parameters were first used (Table S2), and

then each parameter was sequentially increased by 10 % of

its default value. For each parameter, the sensitivity function

(Si) was calculated to represent the sensitivity of model out-

put, y, (i.e. total 0–30 cm SOC stock) to changes in a single

parameter, θi (Soetaert and Herman, 2008):

Si = θi
y|θ∗i
− y|θi

θ∗i − θi
, (1)

where θi is the default parameter value, y|θi is the model out-

put using θi , θ
∗

i is the altered parameter value (increased by

10 %) and y|θ∗i
is the model output using θ∗i . Finally, the

importance index of the ith parameter (Ii), i.e. the overall

sensitivity of the output with respect to this parameter, was

calculated by summarizing the sensitivities for the 100-year

outputs (n= 100):

Ii =

√√√√1

n

n∑
j=1

S2
ij , (2)

where Sij is the sensitivity function for parameter i at the j th

year of the n (n= 100) years of each simulation. The greater

the magnitude of I is, the more sensitive the model output

was to the parameter (Soetaert and Herman, 2008). The im-

portance indices were compared among the nine parameters,
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and the most important parameters were identified and op-

timized to obtain the best agreement between simulated and

observed SOC dynamics for each of the 90 experiments. As

the relative importance of those parameters was independent

of soil and climate conditions, the typical soil and climate at

Wagga Wagga (a major cropping area in Australia, and one

of the 26 sites used in the main text), New South Wales, Aus-

tralia, were selected to conduct above analyses.

2.4 Model optimization

The differential evolution (DE) algorithm (which belongs

to the class of genetic algorithms) was used to optimize

the most influential parameters identified. The optimiza-

tion was performed in R 3.0.3 using the DEoptim function

in the “DEoptim” package (Mullen et al., 2011). DE is a

global optimization algorithm for continuous numerical min-

imization problems, which use biology-inspired operations

of crossover, mutation, and selection on population in order

to minimize an objective function over the course of succes-

sive generations.

To use DE, each parameter was first assumed to exhibit

a uniform distribution bounded within a range (i.e. the prior

distribution; see Table S2) that was biologically and physi-

cally possible based on previous knowledge about the pro-

cess, thereby eliminating solutions in conflict with prior

knowledge. The optimization performed a quasi-random

walk through the multi-dimensional parameter space to find

the parameter set that caused the model to generate the

best match between predicted and observed SOC. The “best

match” was defined as the model output that minimized the

criteria selected for model evaluation (Table S3). Seven cri-

teria that are commonly used in the literature were selected

to assess the possible effects of criterion selection on mod-

elling results. Using each criterion, the optimization was con-

ducted 100 times (i.e. 100 ensembles of initial parameter val-

ues through quasi-random walk), which generated 100 en-

sembles of parameters (i.e. the joint posterior distribution

of the most influential parameters), giving simulation results

with approximately equally good matches to the observed

data. Consequently, 700 ensembles of parameters (from us-

ing seven criteria) for each experiment were produced. The

optimizing procedure and related simulations were operated

on Bragg and Dell CPUs of CSIRO clusters.

However, the required computing time (∼ 2 days for one

experiment and one selection criterion using 100 computer

cores) has posed a significant challenge even using the high-

performance computing clusters (Bragg and Dell CPUs) for

this multi-parameter optimization of the process-oriented

APSIM model. To complete all optimizations using seven

criteria for the 90 experiments, a run time of 4 months was

expected assuming that 1000 cores could be continuously

available on the clusters. For this reason, the global optimiza-

tion DE was only applied for two sites, i.e. Brigalow and Tar-

lee, providing two cases of DE optimization as compared to

an alternative and faster Bayesian sampling approach as de-

scribed below.

For all the experiments, a Bayesian sampling approach

was substituted for the DE optimization in order to com-

plete the work within a reasonable time but without much

sacrificing of model performance. The APSIM model was

run for each experiment for 100 000 times using 100 000

ensembles of parameters that were randomly sampled from

their prior distributions. The best 100 ensembles of param-

eters were selected as their posterior distributions through

using each criterion listed in Table S3. At Brigalow and Tar-

lee, the distributions of parameters “optimized” through this

Bayesian sampling approach were compared with those op-

timized through DE optimization. The identified parameter

ensembles by Bayesian sampling approach were referred to

as “optimized parameters” in the following text and used to

assess the uncertainty in projected SOC.

2.5 Uncertainty in projected SOC

After obtaining the 700 ensembles of optimized parameters

(i.e. after “optimization period”), the APSIM model was run

continuously from the start to the end of each experiment

and then for an additional 100 years after the end of each ex-

periment using each parameter set (i.e. 700 simulations for

each experiment). For the last 100-year simulations (i.e. pro-

jection period), a continuous wheat system was assumed to-

gether with 100 % residue retention, which is the same as

that used in sensitivity analysis. Carbon input through crop

residue retention was expected to be an important factor reg-

ulating SOC dynamics in the projection period. As residue

(or biomass) production is dominantly controlled by fertil-

izer application rates under natural rainfall condition at each

site, scenarios with nitrogen application rates ranging from 0

to 300 kg N ha−1 yr−1 with increments of 20 kg N ha−1 yr−1

were modelled. These scenarios made it possible to mimic

different management practices that influence C input to the

soil and to assess its impact on the uncertainty of simulated

SOC induced by model initialization and parameterization.

Climate data from the start year of each experiment

through to 2013 were used for the corresponding simulation

period. For all years from 2014 onwards, the corresponding

years of the latest historical climate data were used. For ex-

ample, for the possible simulations from 2014 to 2104 (91

years), the historic climate data of 91 years from 1923 to

2013 were used. As we focused on the potential uncertainty

induced by model parameterization and initialization, we did

not consider the uncertainty related to climate change.

SOC content in the 0–30 cm soil layer was output at the

start of projection (excluding the optimization period) and

at the end of each year of projection (Ci). For the ith year

of projection, the mean (MSOCi) of Ci of the 700 estimates

was calculated, and the range (RSOCi) of the 95 % confidence

interval was calculated as the difference between 97.5th and

2.5th percentile of the 700 estimates. Then, the percentage
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uncertainty (UPi ) for that year of projection was estimated

based on half of the RSOCi divided by the MSOCi :

UPi =
RSOCi

2×MSOCi

× 100%, i = 1,2,3, . . .,100. (3)

2.6 Attributes controlling the variability in the

uncertainty

After estimating UP, we further addressed the following

question: how and why does the uncertainty (i.e. UP) in

projected SOC change across space and time? We hypoth-

esized that UP is associated with the management in terms

of residue C inputs. At the same time, we assumed that the

detailed relationship between UP and C inputs is different

not only across experiments but also across time periods

of the projection. As the hierarchy of the relationships (i.e.

individual-level C inputs group in experiments and time pe-

riods of the projection), a hierarchical regression model, also

called a multilevel model (Gelman and Hill, 2006), was fitted

to estimate UPi (yi) on C input (xi), applied to the J = 90

experiments and K = 100 time periods of projection. The

multilevel model was written as a data-level model (the pre-

dicted UPi belonging to experiment j with k years of pro-

jection), allowing the model coefficients (α and β) to vary

by experiment (j = 1, . . .,J ) and time period of projection

(k = 1, . . .,K) (Gelman and Hill, 2006):

yi ∼N
(
αj [i],k[i]+βj [i],k[i]xi,σ

2
y

)
, for i = 1, . . .,n, (4)

and a decomposition of its intercepts and slopes into terms

for experiment, the time period of projection and their inter-

action,(
αj,k
βj,k

)
∼

(
α

expt

j +α
year

k +α
expt×year

j,k

β
expt

j +β
year

k +β
expt×year

j,k

)

+

(
γ

expt

0j

γ
expt

1j

)
+

(
γ

year

0k

γ
year

1k

)
+

(
γ

expt×year

0jk

γ
expt× year

1jk

)
, (5)

and models for variation,(
γ

expt

0j

γ
expt

1j

)
∼N

((
0

0

)
,6expt

)
, for j = 1, . . .,J (6)(

γ
year

0k

γ1k
year

)
∼N

((
0

0

)
,6year

)
,

for k = 1, . . .,K (7)(
γ

expt×year

0jk

γ
expt×year

1jk

)
∼N

((
0

0

)
,6expt×year

)
,

for j = 1, . . .,J ; k = 1, . . .,K. (8)

where 6 was the 2× 2 covariance matrix representing the

variation in the intercepts and slopes in the population of

groups (experiments and time periods of projection). In

essence, there is a separate regression model for each ex-

periment and time period combination with the coefficients

estimated by the weighted average of pooled (which do not

consider groups) and unpooled (which consider each group

separately) estimates, i.e. partial pooling. This hierarchical

structure of the model allows the assessment of the variation

in individual-level coefficients across groups and accounting

for group-level variation in the uncertainty for individual-

level coefficients.

To assess the variation in individual-level coefficients

(α
expt

j and β
expt

j ) across different experiments, a classic linear

regression was conducted to identify the effects of different

sources of variation. At the experiment level, we assumed

that two groups of attributes influence α
expt

j and β
expt

j : (1)

uncertainty in model parameters, i.e. the three optimized pa-

rameters based on experiment-specific data set, and (2) cli-

mate including mean annual rainfall and temperature, which

are predominant factors controlling SOC dynamics during

model optimization as well as during projection. The gen-

eralized variance (GV) was calculated as an indicator of the

overall variation in model parameters, which is defined as the

determinant of the variance–covariance matrix of the three

parameters and is a scalar measure of overall multidimen-

sional scatter. The two groups of attributes including all in-

teractions were selected through a stepwise regression model

selection by the Akaike information criterion. Before fitting

the model, GV was logarithmically transformed to satisfy ad-

ditivity and linearity assumptions and then centred by sub-

tracting the mean of the data, and rainfall and temperature

were also centred. For coefficients over the time spans of pro-

jection (α
year

k and β
year

k ), their relationship with the time span

of projection were presented. All the statistical analyses in-

cluding the multilevel model fitting were conducted using R

software version 3.0.3 (R Core Team, 2013).

3 Results and discussion

3.1 Sensitivity analysis and model performance

Three parameters were identified as most influential on sim-

ulated SOC (Fig. S3). Microbial carbon use efficiency (CUE)

had the biggest impact. This highlights the key role of micro-

bial process to control SOM decomposition, and the need for

better capturing the dynamics and impact of microbial pro-

cess in SOM models (Allison et al., 2010; Singh et al., 2010;

Sinsabaugh et al., 2013; Xu et al., 2014). As CUE was treated

as a constant in most SOM models, a framework is needed

to incorporate microbial data (e.g. community, activity, and

their responses and feedbacks to biotic and abiotic factors)

into SOM models to provide robust estimations and predic-

tions. Potential decomposition rate constant of humic organic

matter (khum, day−1) ranked the second, followed by the frac-

tion of the humic carbon that is recalcitrant to decomposition

(finert). This result further indicates the importance of better

www.biogeosciences.net/12/4373/2015/ Biogeosciences, 12, 4373–4383, 2015
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quantifying the decomposability of the heterogeneous SOM

(Schmidt et al., 2011; Sierra et al., 2011). It should be noted

that the actual decomposition rate is simulated through modi-

fying khum by a series of biotic and abiotic variables at differ-

ent spatiotemporal scales, and different models simulate the

responses differently (Todd-Brown et al, 2013; Exbrayat et

al., 2014). Although we did not quantify the relative impor-

tance of these modifiers (e.g. soil moisture ad temperature),

the results indicated that khum has to be constrained, imply-

ing the importance of determining how it responses to envi-

ronmental factors. The wide distributions of CUE, khum and

finert parameters (derived by constraining the model against

the measurement data, Fig. 1b) imply deficiencies in our un-

derstanding of the microbial community and its activity and

how they change with environmental conditions to modulate

the SOM decomposition processes.

Our optimization procedure enabled accurate simulation

of SOC change during the optimization period (Fig. 1a) using

distinct ensembles of model parameters for each experiment

(Fig. 1b). Pooling together all data of the 90 experiments, the

modelled average SOC of the 700 simulations could explain

96 % (P < 0.001) of the variance in observed SOC (Fig. 1a).

For each experiment, model performance was nearly identi-

cal (Fig. 1a) when the simulations (using different parame-

ter sets) were intercompared. At the Tarlee site (Fig. 2a), for

example, the RMSE between modelled and observed SOC

ranged from 0.44 to 0.52 t ha−1, compared with the range of

3.11 to 3.12 t ha−1 at the Brigalow site (Fig. 2b). This high

level of consistency highlights significant equifinality, i.e.

different parameter ensembles leading to similar simulation

results (Figs. 1b, 2c and d), in process-based SOM models,

which must be addressed in modelling studies aimed at en-

hanced process understanding and hypothesis testing (Tang

and Zhuang, 2008; Luo Y. et al., 2011).

3.2 Uncertainty in SOC projections

The accurate simulations of past SOC, however, do not guar-

antee convergent projections beyond the model optimization

period. In contrast, running the model with the same param-

eter ensembles generated very divergent future projections

(Fig. 2a and b), indicating significant uncertainty propaga-

tion with time of projection (Luo Y. et al., 2011; Tang and

Zhuang, 2008). Furthermore, the uncertainty is also related to

management in terms of C input level and site conditions. At

Brigalow (Fig. 2b), for example, the 95 % confidence interval

of projected SOC under optimal N input (i.e. no N stress for

crops) ranged from 37 to 56 t ha−1 10 years after the model

optimization period, which increased to 26–68 t ha−1 for the

projected SOC after 50 years. Under the low N input sce-

nario (0 kg N ha−1), the uncertainty was smaller. At Tarlee

(Fig. 2a), the uncertainty propagation followed a similar pat-

tern to that at Brigalow, but the uncertainty under the low N

input scenario was much smaller. At Brigalow, in addition,

we found that the choice of criterion (objective functions) in-

Figure 1. Model performance in simulating soil organic carbon

(SOC) dynamics (a) and the corresponding optimized model pa-

rameters (b) across the 90 studied experiments. Circles and bars

(a) indicate the average and 95 % confidence interval of the simula-

tions for each experiment using different parameter ensembles. Red

and blue symbols in (a) highlight the data at Tarlee and Brigalow,

respectively, corresponding to the data in Fig. 2. Dashed line is the

1 : 1 line in (a). The parameter ensembles at Tarlee and Brigalow are

highlighted in (b). See Fig. 2 for the means of the coloured symbols

in (b), showing the different ranges of optimized fraction of inert

organic carbon (finert).

fluenced the distributions of the derived parameters (Fig. 2d)

because a specific criterion only focuses on a specific aspect

(e.g. mean or variance) of the data and the model results, of

which the consequence for SOC simulations (e.g. the bifur-

cation pattern of projected SOC shown in Fig. 2b) ought to

be carefully considered in future studies.

It is important to note that the posterior distributions of

model parameters were apparently different across experi-

ments (Fig. 1b, c and d, and S4), confirming that model

parameters are sensitive to the data constraining the model

(Keenan et al., 2012; Hararuk et al., 2014; Luo et al., 2015)

Our results indicate that CUE was likely higher for the site

with a longer cultivation history (the Tarlee site) than for the

newly cleared site (the Brigalow site, Fig. 2c vs. 2d), im-

plying the potential importance of land use history for con-

straining model parameters such as microbial carbon use ef-

ficiency because land use history has a direct effect on the

quantity and quality of carbon input as well as on soil prop-

erties. However, such impact needs further confirmation with

more data. The distributions of the optimized model parame-

ters were also influenced by the choice of criteria to evaluate

model performance (Figs. 2d, S5). The differences in param-

eter distributions subsequently impact on the SOC projec-

tions as shown in Fig. 2b, albeit with near-identical model

performance in simulating historical SOC. In addition, fin-

ert and khum were positively related (Fig. 2c and d), imply-

ing the importance of the interactions and/or feedback be-

tween different C pools and their impacts on soil C projec-

tion. These highlight the need for (1) improving the science

for capturing process interactions in the model such as the

role of microbial processes and conceptualization of hetero-
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Figure 2. Projected soil organic carbon dynamics at two case sites

Tarlee (a) and Brigalow (b) and the correspondingly used parameter

ensembles (c and d). Black symbols show the observations. Seven

criteria (RMSE, MAE, pMAE, IoA, rIoA, NSE and rNSE; see Ta-

ble 3 in the Supplement for details) are used to derive the posterior

joint distribution of model parameters (CUE, khum and finert). CUE,

microbial carbon use efficiency; khum, the potential decomposition

rate of humic organic carbon; finert, the fraction of inert organic

carbon.

geneous C pools and their transformation (Manzoni et al.,

2012; Luo et al., 2014), (2) conducting model optimization

conditioned on all observed data from experiments together

with Bayesian inference technique, and (3) quantifying un-

certainty in SOC projections with ensemble model simula-

tions (Post et al., 2008; Weng and Luo, 2011; Xia et al., 2013;

Hararuk et al., 2014; Luo et al., 2015).

If a continuous wheat system was practiced for 100 years

after the end of each experiment at the 26 sites, optimal N

management was predicted to result in an average increase

in SOC (Fig. 3a), whereas a SOC decline would occur un-

der zero N input (Fig. 3b). The amount of potential SOC

change depends on not only the management level (N in-

put) and the climate and soil conditions that determine the

potential productivity of crops but also the initial SOC level

at the start of the projections. Across the 90 experiments, the

percentage uncertainty in the SOC projections ranged from

2 to 140 % with an average of 53 % under optimal N man-

agement (Fig. 3c), and from 0.8 to 108 % with an average of

40 % under zero N input (Fig. 3d). From applying this result

to Australia’s cereal-growing regions, the simulated potential

SOC stock of ∼ 7.5 Pg (Luo et al., 2013) could be subject to

53 % uncertainty under no N deficiency and 100 % residue

retention.

Figure 3. Projected SOC (a and b) and its percentage uncertainty

(c and d) under high (a and c) and low (b and d) carbon input sce-

narios after 100-year simulations in 90 experiments across 26 sites.

Concentric circles show the different experiments at the same site.

The sizes of the circles correspond to the projected average of SOC

content (a and b) and the corresponding percentage uncertainty (c

and d). Blue and red circles indicate that the average of the 700 sim-

ulations is increased and decreased, respectively, compared with the

SOC content at the start of the projection. Blue and red sectors of

the circles in (c) and (d) indicate the fraction of 700 bootstrapping

simulations that shows an increase and a decrease in the projected

SOC, respectively, compared with the SOC content at the start of

the projection period.

3.3 Attributes controlling the variability in the

uncertainty

The uncertainty propagation with time of prediction and

across experiments could be explained using a linear model

by linking the percentage uncertainty (UP) to the C input

from crop residue (CR), i.e. UP = α+β CR . However, both

α and β changed significantly across experiments (Fig. 4a)

and years of projections (Fig. 4b), and were also impacted

by their interactions. Across the time periods of projection,

the uncertainty increased with the number of years for pro-

jection, reflected by the linear increase in α (model inter-

cepts) and asymptotic increase in β (model slope, Fig. 4b).

The asymptotic increase in β (model slope) also implies that

the relative contribution of C input to prediction uncertainty

reduces with time. Across experiments, there was a marked

variation in the effect of C input on UP, indicating impact

of site-specific conditions (e.g. climate and soil as described

later). Across sites and years of projections, the majority

of positive β implies increased uncertainty in SOC projec-

tions with increasing C input, which has not been properly

addressed in previous modelling studies (Joos et al., 2001;

Jones et al., 2005; Smith et al., 2005; Ogle et al., 2010). The

fate of C input has a direct effect on the amount of soil C.
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Table 1. The effects of experiment-specific variance of model parameters and climate on individual-level coefficients (i.e. α
expt
j

and β
expt
j

in

Fig. 4a).

Factora αexpt βexpt

Estimate SE t value P Estimate SE t value P

Model intercept 26.35 2.14 12.30 ∗∗∗ 1.62 0.33 4.89 ∗∗∗

GV 3.15 0.55 5.69 ∗∗∗ 0.17 0.088 1.97 ∗∗∗∗

R −0.059 0.016 −3.63 ∗∗∗
−0.0055 0.0026 −2.15 ∗

T 4.95 1.35 3.66 ∗∗∗
−0.16 0.21 −0.77 0.44

GV×R – – – – −0.0018 0.00061 −2.87 ∗∗

GV × T −0.57 0.33 −1.74 ∗∗∗∗ – – – –

R× T −0.046 0.010 −4.49 ∗∗∗ 0.0021 0.0014 1.46 0.15

Whole-model R2 0.44 ∗∗∗ 0.21 ∗∗∗

∗∗∗ P < 0.001; ∗∗ P < 0.01; ∗ P < 0.05; ∗∗∗∗ P < 0.1.
a GV, generalized variance of the identified three model parameters including microbial carbon use efficiency, decomposition rate of

humic organic carbon and the fraction of inert organic carbon; R, the annual average rainfall; T , the annual average temperature. GV

was logarithmically transformed and centred, and R and T were also centred when fitting the model.

Figure 4. Coefficients (estimate±SD) for the regression model:

UP = α+β CR . The model is fitted to estimate the effects of carbon

input (CR) on the percentage uncertainty (UP) in soil organic car-

bon projections, applied to 90 experiments (a) and 100 time spans

of projection (b). α̂ and β̂ show the data-level coefficients (i.e. av-

eraging over experiments (a) and time spans of projection (b)) and

σ represents model error. In (a), experiments are sorted according

to α
expt
j

. The coefficients at the experiment × time span level are

not shown. See more details in the “Materials and methods” for the

regression model.

The general positive effect of C input on uncertainty high-

lights the importance of understanding the consequences of

future C input changes on soil C dynamics.

The variance in model parameters (GV) across exper-

iments had a major effect on the intercepts (positive at

P < 0.001) and slopes (positive at P < 0.001) of the regres-

sion model linking UP to C input (Table 1). As GV was loga-

rithmically transformed when fitting the model, the increase

in UP with GV was exponential across experiments. This re-

sult highlights the crucial role to improve the representation

of the sensitive microbial processes (Zhou et al., 2012; Xu et

al., 2014) and the heterogeneous SOM (Sierra et al., 2011) in

biogeochemical SOM models, and to constrain the space of

relevant model parameters. For example, we assumed a rela-

tively wide range of CUE (0.2–0.8) as the prior information

for the Bayesian optimization. Sinsabaugh et al. (2013) sug-

gested that CUE prediction should consider resource compo-

sition, stoichiometry constraints and biomass composition,

as well as environmental drivers. A more informative prior

of CUE could help reduce the uncertainty in soil C projec-

tions.

Rainfall and temperature, together with their interaction,

had a significant impact on SOC projection uncertainty

through their impact on the fitted model intercepts across

experiments (Table 1). α
expt

j increased with temperature, but

tended to decrease with rainfall, implying increased uncer-

tainty in SOC projection under future warming and drying

conditions. Based on the results, the uncertainty in projected

SOC will be increased by 4.95 % if average temperature is in-

creased by 1 ◦C under global warming. For the slopes β
expt

j ,

rainfall and its interaction with GV had a significant nega-

tive effect. These effects may reflect the impact of rainfall on

both primary productivity (and thus C input) and soil mois-

ture conditions (and thus microbial activity and decompo-

sition rate of SOC), emphasizing the importance of under-

standing the interactions between soil processes and their re-
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sponses to external drivers and management such as temper-

ature and rainfall (Davidson and Janssens, 2006; Carvalhais

et al., 2014).

4 Conclusions

Our results demonstrate that great uncertainty exists in soil

C projections from process-based SOM models, due to de-

ficiency in model initialization and parameterization in cap-

turing the process interactions, such as microbial C use effi-

ciency and its drivers, as well as a lack of detailed informa-

tion to initialize the model, e.g. the heterogeneous SOM with

different decomposability. The prediction uncertainty prop-

agates with extended years of projections and C input into

soil. It is also influenced by site-specific climate (tempera-

ture and rainfall) and soil conditions together with manage-

ment inputs, which determine both the C input (through pri-

mary productivity) and the SOM decomposition processes.

The results also suggest that C projection into warming and

drying future climate will be subject to even greater uncer-

tainty. For agricultural land uses, uncertainty caused by man-

agement practices has to be carefully considered due to its

impact on microbial activity and subsequent projected SOC.

For any future predictions of SOC change, ensemble simu-

lations conditioned on total observed data sets together with

a Bayesian inference technique should be used in order to

quantify the uncertainties in modelling results. Based on our

results, future improvement in SOM modelling should fo-

cus on how the microbial community and its carbon use ef-

ficiency change in response to environmental changes, better

quantification of heterogeneous SOM and the effects of its

change on total soil C turnover.

The Supplement related to this article is available online

at doi:10.5194/bg-12-4373-2015-supplement.
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