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Abstract. A warming climate is altering land-atmosphere

exchanges of carbon, with a potential for increased vegeta-

tion productivity as well as the mobilization of permafrost

soil carbon stores. Here we investigate land-atmosphere car-

bon dioxide (CO2) cycling through analysis of net ecosystem

productivity (NEP) and its component fluxes of gross pri-

mary productivity (GPP) and ecosystem respiration (ER) and

soil carbon residence time, simulated by a set of land surface

models (LSMs) over a region spanning the drainage basin of

Northern Eurasia. The retrospective simulations cover the pe-

riod 1960–2009 at 0.5◦ resolution, which is a scale common

among many global carbon and climate model simulations.

Model performance benchmarks were drawn from compar-

isons against both observed CO2 fluxes derived from site-

based eddy covariance measurements as well as regional-

scale GPP estimates based on satellite remote-sensing data.
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The site-based comparisons depict a tendency for overesti-

mates in GPP and ER for several of the models, particularly

at the two sites to the south. For several models the spatial

pattern in GPP explains less than half the variance in the

MODIS MOD17 GPP product. Across the models NEP in-

creases by as little as 0.01 to as much as 0.79 g C m−2 yr−2,

equivalent to 3 to 340 % of the respective model means,

over the analysis period. For the multimodel average the in-

crease is 135 % of the mean from the first to last 10 years of

record (1960–1969 vs. 2000–2009), with a weakening CO2

sink over the latter decades. Vegetation net primary produc-

tivity increased by 8 to 30 % from the first to last 10 years,

contributing to soil carbon storage gains. The range in re-

gional mean NEP among the group is twice the multimodel

mean, indicative of the uncertainty in CO2 sink strength. The

models simulate that inputs to the soil carbon pool exceeded

losses, resulting in a net soil carbon gain amid a decrease

in residence time. Our analysis points to improvements in

model elements controlling vegetation productivity and soil

respiration as being needed for reducing uncertainty in land-

atmosphere CO2 exchange. These advances will require col-

lection of new field data on vegetation and soil dynamics, the

development of benchmarking data sets from measurements

and remote-sensing observations, and investments in future

model development and intercomparison studies.

1 Introduction

Northern boreal regions are known to play a major role

in the land-atmosphere exchange of CO2 at high latitudes

(Graven et al., 2013). During the Holocene the Arctic is be-

lieved to have been a net sink of carbon (Pries et al., 2012).

During modern times, often referred to as the anthropocene

(Crutzen, 2006), warming across the high northern latitudes

has occurred at a faster rate than the rest of the globe (Ser-

reze et al., 2006). The enhanced warming is attributable

to feedbacks involving biogeochemical and biogeophysical

processes (Chapin III et al., 2005; Serreze and Barry, 2011;

Schuur et al., 2015). Warming may increase soil microbial

decomposition, placing the large permafrost carbon pool at

greater risk for being mobilized and transferred to the atmo-

sphere as greenhouse gases (GHGs), thus providing a pos-

itive feedback to global climate (Dutta et al., 2006; Vogel

et al., 2009; Schuur et al., 2009). Warming may also lead to

longer growing seasons, contributing to increased plant pro-

ductivity and ecosystem carbon sequestration (Melillo et al.,

1993; Euskirchen et al., 2006). At the same time, warm-

ing may also lead to respiration increases through enhanced

microbial activity and/or increased input of plant photosyn-

thates into the soil (Högberg et al., 2001), offsetting any pro-

ductivity increases and resulting in relatively low net carbon

uptake (Parmentier et al., 2011). Satellite observations show

broad greening trends in tundra regions (Myneni et al., 1997;

Goetz et al., 2005; Zhang et al., 2008), suggesting a potential

increase in the land sink of atmospheric CO2. Some areas,

however, are browning (Goetz et al., 2006).

Research studies point to uncertainty in the sign, magni-

tude and temporal trends in contemporary land-atmosphere

exchanges of CO2. A recent synthesis of observations and

models by McGuire et al. (2012) suggests that tundra regions

across the pan-Arctic were a sink for atmospheric CO2 and a

source of CH4 from 1990–2009. However, a meta-analysis of

40 years of CO2 flux observations from 54 studies spanning

32 sites across northern high latitudes found that tundra was

an annual CO2 source from the mid-1980s until the 2000s,

with the data suggesting an increase in winter respiration

rates, particularly over the last decade (Belshe et al., 2013).

In an analysis of outputs from several models from recent

terrestrial biosphere model intercomparison projects, Fisher

et al. (2014) found that spatial patterns in carbon stocks and

fluxes over Alaska in 2003 varied widely, with some models

showing a strong carbon sink, others a strong carbon source,

and some showing the region as carbon neutral. It is critical

to understand the net carbon sink as recent studies suggest

that with continued warming the Arctic may transition from

a net sink of atmospheric CO2 to a net source over the com-

ing decades (Hayes et al., 2011; Koven et al., 2011; Schaefer

et al., 2011; MacDougall et al., 2013; Oechel et al., 2014). In

a study using a process model which included disturbances,

Hayes et al. (2011) estimated a 73 % reduction in the strength

of the pan-Arctic land-based CO2 sink over 1997–2006 vs.

previous decades in the late 20th century.

Recent studies have provided new insights into model un-

certainties relevant to our understanding of the land-based

CO2 sink across Northern Eurasia. Examining several inde-

pendent estimates of the carbon balance of Russia includ-

ing two dynamic global vegetation models (DGVMs), two

atmospheric inversion methods, and a landscape-ecosystem

approach (LEA) incorporating observed data, Quegan et al.

(2011) concluded that estimates of heterotrophic respiration

were biased high in the two DGVMs, and that the LEA ap-

peared to give the most credible estimates of the fluxes. In

an analysis of the terrestrial carbon budget of Russia using

inventory-based, eddy covariance, and inversion methods,

Dolman et al. (2012) noted good agreement in net ecosys-

tem exchange among these bottom-up and top-down meth-

ods, estimating an average CO2 sink across the three meth-

ods of 613.5 Tg C yr−1. Their examination of outputs from

a set of DGVMs, however, showed a much lower sink of

91 Tg C yr−1. Graven et al. (2013) point to specification of

vegetation dynamics and nitrogen cycling in a subset of

CMIP5 models as a potential cause for their underestimation

of changes in net productivity over the past 50 years. These

analyses highlight the need for comprehensive assessments

of numerical model estimates of spatial and temporal vari-

ations in land-atmosphere CO2 exchange against indepen-

dent benchmarking data. A lack of direct flux measurements
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across northern land areas presents considerable challenges

for model validation efforts (Fisher et al., 2014).

In this study we examine model estimates of net ecosys-

tem productivity (NEP) and component fluxes gross primary

productivity (GPP) and ecosystem respiration (ER) across

the arctic basin of Northern Eurasia from a series of retro-

spective simulations for the period 1960–2009. Our analysis

for the region is unique in its synthesis of a large suite of

land-surface models, available site-level data, and a remote-

sensing product. Study goals are two-fold. First, using the

available in situ data derived from tower-based measure-

ments and the remote-sensing GPP product we seek to as-

sess model efficacy in simulating spatial and temporal vari-

ations in GPP, ER, and NEP across the region. In doing so

we elucidate issues complicating evaluations of model car-

bon cycle estimates across Northern Eurasia and, by exten-

sion, other areas of the northern high latitudes. Second, we

estimate time changes in NEP and soil organic carbon (SOC)

residence time and its controls as an indicator of climate sen-

sitivity and potential vulnerability of soil carbon stocks. We

focus the analysis and discussion on assessing how well the

models capture the seasonal cycle and spatial patterns in GPP

and ER flux rates, evaluating uncertainties in the net CO2

exchange given reported biases in respiration rates, and in

advancing understanding of the land–atmosphere cycling of

CO2 over recent decades.

2 Methods

2.1 Study Region

The spatial domain is the arctic drainage basin of Northern

Eurasia which comprises all land areas draining to the Arctic

Ocean, a region of some 13.5 million km2 (Fig. 1). The basin

covers roughly half of the Northern Eurasian Earth Science

Partnership Initiative (NEESPI) study area, generally defined

as the region between 15◦ E in the west, the Pacific Coast in

the east, 40◦ N in the south, and the Arctic Ocean coastal

zone in the north (Groisman et al., 2009). Warming and as-

sociated environmental changes to this region are among the

most pronounced globally (Groisman and Bartalev, 2007;

Groisman and Soja, 2009). Tundra vegetation is common

across northern areas, with boreal forest and taiga comprising

much of the remainder of the region. Steppes and grasslands

are found across a relative small area in the extreme south-

west. Continuous permafrost underlies over half of the re-

gion. Sporadic and relic permafrost comprise the southwest

portion of the domain. West to east, the Ob, Yenisei, Lena,

and Kolyma rivers drain a large fraction of the total river dis-

charge from the Northern Eurasian basin.

2.2 Modeled data

We used outputs from retrospective simulations of nine mod-

els participating in the model integration group of the Per-

Figure 1. Study domain spanning the arctic drainage basin in North-

ern Eurasia. Map panels show (a) plant functional types (PFTs)

and (b) permafrost classification along with tower sites used in the

study: (a) Chersky, (b) Chokurdakh, (c) Hakasija, and (d) Zotino

locations (Table 3). Gridded PFTs are from the MODIS MOD12

product (Oak Ridge National Laboratory, 2014). Permafrost classes

for each grid are drawn from the CAPS data set (International Per-

mafrost Association Standing Committee on Data Information and

Communication (comp.), 2003).

mafrost Carbon Network. All simulation outputs available

at the time of writing were included in the analysis (http:

//www.permafrostcarbon.org). The simulation protocol al-

lowed for the choice of a model’s driving data sets for atmo-

spheric CO2, N deposition, climate, disturbance, and other

forcings (Tables 1 and 2). Simulations were run at daily

or sub-daily time steps in some models and at 0.5◦ resolu-

tion over all land areas north of 45◦ N latitude. The present

study focuses on analysis of spatial patterns and tempo-

ral changes in land-atmosphere CO2 fluxes over the period

1960–2009. Quantities analyzed are GPP, ER, and NEP, de-

fined here as NEP=GPP−ER, where a positive value repre-

sents a net sink of CO2 into the ecosystem. ER is the sum of

www.biogeosciences.net/12/4385/2015/ Biogeosciences, 12, 4385–4405, 2015
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Figure 2. Monthly GPP at sites (a) Chersky, (b) Chokurdakh, (c) Hakasija, and (d) Zotino (Obs, Table 3). Colored lines trace monthly GPP

for each model grid that encompasses the tower location. Site Hakasija includes research areas Ha1 (filled circle), Ha2 (open circle), and Ha3

(triangle)

heterotrophic respiration and autotrophic respiration as esti-

mated by the models. In this study we follow the conceptual

framework for NEP and related terms as described in Chapin

III et al. (2005). For this Permafrost Carbon Network activity

modeling groups are providing gridded data for permafrost

regions of the northern hemisphere. The nine models exam-

ined here (full model names in Table 1) are the (1) CLM ver-

sion 4.5 (hereafter CLM4.5, Oleson et al., 2013); (2) CoLM

(Ji et al., 2014); (3) ISBA (Decharme et al., 2011); (4) JULES

(Best et al., 2011; Clark et al., 2011); (5) LPJ Guess WHyMe

(hereafter LPJG, Smith et al., 2001; Wania et al., 2009b, a,

2010; Miller and Smith, 2012); (6) MIROC-ESM (Watan-

abe et al., 2011); (7) ORCHIDEE-IPSL (Koven et al., 2009,

2011; Gouttevin et al., 2012); (8) UVic (Avis et al., 2011;

MacDougall et al., 2013); and (9) UW-VIC (Bohn et al.,

2013). Table 2 lists the model elements most closely related

to CO2 source and sink dynamics. These include model land

cover initialization, time series forcings, light use efficiency,

and CO2 and nitrogen fertilization. Among the models there

is a wide range of accounting for processes related to distur-

bances such as fire and land use change (Table 2). All but

two of the nine models (ISBA and UW-VIC) are considered

to be dynamic global vegetation models (DGVMs), possess-

ing the ability for vegetation to change over the model sim-

ulation. For ORCHIDEE, dynamic vegetation was not en-

abled in the simulation examined in this study. While studies

that examine the overall ecosystem carbon balance (i.e. the

net ecosystem carbon balance, NECB) are elemental to our

understanding of the carbon cycle of Northern Eurasia, the

present study focuses on the patterns in NEP and component

fluxes GPP and ER, common in all of the models, in order to

avoid the uncertainties given the range of model formulations

related to the full carbon balance. Outputs from several of the

nine models have been examined in other recent studies. The

LPJG and ORCHIDEE were used in the synthesis of data and

models presented by McGuire et al. (2012). JULES, LPJG,

ORCHIDEE, and CLM4.5 participated in the TRENDY MIP

(Piao et al., 2013). CLM4.5, ORCHIDEE, and LPJG were

three of the eight models examined in the study of Dolman

et al. (2012).

2.3 Observational data

2.3.1 Flux tower eddy covariance data

Model estimates for GPP, ER, and NEP are evaluated against

data from six eddy covariance flux towers in four research

areas located across Russia. The data are contained in the

La Thuile global FLUXNET data set (Baldocchi, 2008).

FLUXNET represents a global network of tower eddy co-

variance measurement sites for monitoring land-atmosphere

exchanges of carbon dioxide and water vapor (http://daac.

ornl.gov/FLUXNET/fluxnet.shtml). For these sites, GPP and

ER data records overlap in the years 2002–2005. Observa-

tions during colder months are few. Tower sites are identified

Biogeosciences, 12, 4385–4405, 2015 www.biogeosciences.net/12/4385/2015/
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Figure 3. As in Fig. 2, for ER.

Figure 4. As in Fig. 2, for NEP. NEP=GPP−ER.

www.biogeosciences.net/12/4385/2015/ Biogeosciences, 12, 4385–4405, 2015
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Table 1. Models participating in the Vulnerability of Permafrost Carbon Research Coordination Network (RCN) retrospective simulations.

Modeling groups provided outputs for year 1960–2009, with the exception of CLM (–2005); JULES (–1999); UW-VIC (–2006).

Model Institution Climate Data Set

Community Land Model (CLM4.5) National Center for Atmospheric Research,

USA

CRUNCEP41

Common Land Model (CoLM) Beijing Normal University, China Princeton2

Interaction Sol-Biosphère-Atmosphere (ISBA) National Centre for Meteorological Research,

France

WATCH3 WFDEI6,10

Joint UK Land Environment Simulator

(JULES)

Met Office, United Kingdom WATCH3

Lund-Potsdam-Jenna General Ecosystem Sim-

ulator (LPJG)

Lund University, Sweden CRU TS 3.14

Model for Interdisciplinary Research on

Climate, Earth System Model (MIROC)

Japan Agency for Marine-Earth Science and

Technology,

Japan

CMIP55

Organising Carbon and Hydrology In Dynamic

Ecosystems (ORCHIDEE)

Institute Pierre Simon Laplace (IPSL), France WATCH3 WFDEI6,10

University of Victoria (UVic) University of Victoria, Canada CRUNCEP41

Variable Infiltration Capacity (UW-VIC) University of Washington, USA CRU7, UDel8, NCEP-NCAR9

1 Viovy and Ciais (2011) (http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm), 2 Sheffield et al. (2006) (http://hydrology.princeton.edu/data.pgf.php), 3 Weedon et al.

(2011) (http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century), 4 Harris et al. (2014), 5 Watanabe et al. (2011),
6 http://www.eu-watch.org/gfx_content/documents/README-WFDEI.pdf, 7 Mitchell and Jones (2005) for temperature, 8 Willmott and Matsura (2001) for precipitation;

Adam and Lettenmaier (2003) and Adam et al. (2006) for precipitation adjustments, 9 Kalnay et al. (2006) for wind speed, 10 WATCH used for 1901–1978; WFDEI used for

1978–2009.

here by their locations: Chersky (CHE), Chokurdakh (COK),

Hakasija (HAK), and Zotino (ZOT). Data from three towers

are available for Hakasija; HAK1 is in an area of grassland-

steppe; HAK2 is grassland; HAK3 an abandoned agricultural

field. Chersky and Chokurdakh are in northeast Russia in the

general zone of tundra vegetation. Hakasija and Zotino are in

an area of generally higher productivity in southern Siberia

(Fig. 1). Data are available for years 2002–2004 at Chersky,

Hakasija and Zotino, and 2003–2005 at Chokurdakh. Gen-

eral characteristics of these sites are summarized in Table 3.

In this data set GPP and ER are derived from an empirical

model driven by field-based eddy covariance measurements

of net ecosystem CO2 exchange (NEE) using methodologies

described in Reichstein et al. (2005).

2.3.2 Satellite-based estimates of GPP

Satellite-data-driven estimates of annual total GPP are also

obtained from the MODIS (Moderate Resolution Imaging

Spectroradiometer) MOD17 operational product (Running

et al., 2004; Zhao et al., 2005). The MOD17 product has been

derived operationally from the NASA EOS MODIS sensors

since 2000 and provides a globally consistent and continu-

ous estimation of vegetation productivity at 1-km resolution

and 8-day intervals. MOD17 uses a light use efficiency algo-

rithm driven by global land cover classification and canopy

fractional photosynthetically active radiation (FPAR) inputs

from MODIS. The product also uses daily surface meteorol-

ogy inputs from global reanalysis data (Zhao and Running,

2010), and land cover class specific biophysical response

functions to estimate the conversion efficiency of canopy

absorbed photosynthetically active radiation to vegetation

biomass (g C MJ−1) and GPP (Running et al., 2004). The

MOD17 algorithms and productivity estimates have been ex-

tensively evaluated for a range of regional and global applica-

tions, including northern, boreal and Arctic domains (Hein-

sch et al., 2006; Turner et al., 2006; Zhang et al., 2008; Zhao

and Running, 2010). We use the MOD17 Collection 5 prod-

uct, which has undergone five major reprocessing improve-

ments since 2000. The MOD17 data are used in this study

as a consistent satellite-derived baseline for evaluating GPP

simulations from the detailed carbon process models.

3 Results

3.1 Model evaluation and benchmarking

3.1.1 Site-level evaluations

Confident assessment of uncertainties in land-atmosphere

CO2 fluxes is dependent on robust comparisons of model

estimates against consistent benchmarking data. We begin

by assessing the seven models which provided estimates

through 2005, along with MOD17 GPP product. Monthly

GPP from the models and MOD17 are compared with the cu-

mulative monthly tower values by extracting the model val-

ues for the grid cell encompassing each tower site. Error mea-

sures that are based on absolute values of differences, like the

Biogeosciences, 12, 4385–4405, 2015 www.biogeosciences.net/12/4385/2015/
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Table 2. Properties in each model relevant to simulation of land-atmosphere CO2 dynamics, particularly for the northern high latitude

terrestrial biosphere. Properties are indicated as present (X), absent (×) or otherwise (see footnote for details).

CLM4.5 CoLM ISBA JULES LPJG MIROC ORCHIDEE UVic UW-VIC

Tree mortality/senescence included? X/X X/X ×/× X/× X/X X/X X/X ×/× ×/×

Light limits photosynthesis? X X X X X X X X X
N limits photosynthesis? × × × × X × × × X
Vegetation competes for light/water/nitrogen? ×/X/× X/X/× ×/×/× X/×/× X/X/× X/X/× X/X/× X/X/× ×/×/×

No. of PFTs 16 14 9 5 15 13 12 5 20

CO2 fertilization? × × X X X × X × ×

Turnover time of carbon in heartwood (yr) 50 process dependent 30–50 PFT dependent PFT dependent 20 20–80 PFT dependent 33.3

Turnover time of carbon in sapwood (yr) 50 29 30–50 PFT dependent PFT dependent 20 1 PFT dependent 33.3

Turnover time of carbon in leaves (yr) 1 0.5–2 0.4–1 PFT dependent PFT dependent 0.15–4.5 80 days PFT dependent 2.86

Turnover time of carbon in coarse/fine roots 50 yr 1–2 yr 150–365 days PFT dependent PFT dependent 20/1.1–6.25 yr 80 days PFT dependent 33.3

Time step of carbon cycle 0.5 h 1 h 30 min–1 day 0.5 h 1 month 1 day 0.5 h–1 day 1 h 3 h

Disturbance (F/L/I)a? F+L F × × F F+L × L ×

Vegetation dynamic? X X × X X X × X ×

Vegetation dynamics time step NA 1 yr NA 10 days 1 month 1 yr 1 yr 5 days NA

LAIb dynamic? X X X X X × X X ×

LAImax prescribed? × × × X × X X × ×

LAI time step 0.5 h 1 day 1 day 1 day 1 month 1 day 1 day 5 days 30 days

Max veg height prescribed? × X X X ×
d X × × X

Max rooting depth variable 3.4 m 2 m 3 m 2 m 1 m variable 3.35 m 1 m

Csoil
c layered? (Depth) X(4 m) ×(3.4 m) ×(1 m) implicit implicit implicit X(2–47 m) X(3.35 m) ×

Soil layers for hydrology 10 10 14 30 2 6 11 8 25

Biogenic CH4 fluxes X × × × X × × × X
Depth of water extraction (m) PFT dependent 3.4 PFT dependent PFT dependent 2 2 Soil depth limited 3.35 1

Approach to soil thermal dynamics heat diffusion heat diffusion multi-layer (Fourier law) multi-layer finite multi-layer finite heat conduction 1-D Fourier Avis (2011) Finite difference

difference model difference model

Effect of vegetation on soil thermal dynamics? X × X (only at surface) X X × × X (water+albedo) ×

Snow insulation type multi-layer multi-layer multi-layer multi-layer implicit multi-layer implicit – bulk

Capable of talik formation and dynamics? × × × X × X × X X

a Fire; Land-use change; Insects, b Leaf Area Index, c Soil carbon, d max height prescribed for shrubs.

mean absolute error (MAE) and mean bias error (MBE) are

preferable to those based on squared differences (Willmott

and Matsuura, 2005; Willmott et al., 2011). Model perfor-

mance is evaluated here using the MBE, defined as the differ-

ence between the model and observed values: εj = Cj−Cobs,

where Cj is GPP, ER or NEP for model j and Cobs is the ob-

served tower value.

As shown in (Fig. 2), MOD17 GPP agrees well with the

tower estimates for Chersky and Chokurdakh, with MBE

over the 3 years of −2 and −11 g C m−2 month−1, respec-

tively (Table 4). MOD17 GPP broadly agrees with the ob-

servations at Hakasija and Zotino. Average MBEs are 13

and 10 g C m−2 month−1, respectively, for these sites with

higher productivity than Chersky and Chokurdakh. Aver-

aged across all models the error in GPP is 7, 34, 34, and

13 g C m−2 month−1 for Chersky, Chokurdakh, Hakasija and

Zotino, respectively. The MBE for ER are 8, 35, 43, and

33 g C m−2 month−1, respectively.

Overall the models simulate fairly well the seasonal cycle

in GPP (Fig. 2) and ER (Fig. 3), including the timing of peak

CO2 drawdown. Modest overestimates are noted near grow-

ing season peak at Hakasija and Zotino. However, for all four

sites significant over- and under-estimates in GPP and ER

are also noted (Table 4). For the two sites in the south there

is a tendency for overestimation in GPP and ER. All mod-

els overestimate both GPP and ER at Hakasija. Seven of the

nine models overestimate GPP and ER at Zotino, with ER

overestimated by a considerable degree. Overestimates in ER

for Hakasija and Zotino during late summer and autumn are

particularly noteworthy. An ANOVA test was carried out to

determine whether model errors in ER exceed the errors in

GPP. The tests confirm that ER errors are greater on aver-

age than the GPP errors for comparisons where (i) ER errors

for all sites are pooled together and compared against GPP

pooled across all sites and (ii) ER and GPP errors for the two

northern sites are pooled and compared against ER and GPP

errors from the two southern sites.

The tendency to overestimate ER leads to discrepancies

in net CO2 source (negative NEP) at Hakasija and Zotino,

particularly in autumn (Fig. 4). Average NEP errors are −11

and −20 g C m−2 month−1 for Hakasija and Zotino, respec-

tively (Table 4). Errors in the magnitude and timing of NEP

prior to and following the dormant season are much smaller

at Chersky, and to some extent Chokurdakh. However, a lack

of available tower-based data during the colder months limits

the robustness of our assessments during that time of year.

We further evaluate model performance through two ad-

ditional error metrics, the refined index of agreement (dr)

(Willmott et al., 2011) and the Nash-Sutcliffe coefficient of

efficiency (E) (Nash and Sutcliffe, 1970). As described by

Willmott et al. (2011), the refined index of agreement (dr)

involves the sum of the magnitudes of the differences be-

tween the model-predicted and observed deviations about

the observed mean, relative to the sum of the magnitudes

of the perfect-model (model predicted= observed) and ob-

served deviations about the observed mean. It is bounded

between −1 and +1. When dr equals 0.0, it signifies that

the sum of the magnitudes of the errors and the sum of the

perfect-model-deviation and observed-deviation magnitudes

are equivalent. Like dr, the Nash-Sutcliffe E considers ob-

served deviations within the basis of comparison. For both

metrics, values closer to 1 indicate higher model accuracy.

Nash-Sutcliffe’s E is also positively correlated with dr. Val-

ues of E less than zero occur when the residual model vari-

ance is larger than the data variance.

www.biogeosciences.net/12/4385/2015/ Biogeosciences, 12, 4385–4405, 2015



4392 M. A. Rawlins et al.: CO2 Exchange Across Northern Eurasia

Table 3. Flux tower sites from the LaThuile data set (Baldocchi, 2008) used in this study. Site Hakasija consists of records from 3 sub-sites

which all fall within the same RCN model grid. Each sub-site is represented with a different symbol in Figs. 2c, 3c, 4c. GPP and ER in the

La Thuile data set are calculated using methodologies described in Reichstein et al. (2005).

site coordinates IGBP class start/end years

Chersky (CHE) 68.61◦ N, 161.34◦ E mixed forest 2002–2004

Chokurdakh (COK) 70.62◦ N, 147.88◦ E open shrubland 2003–2005

Hakasija∗ (HAK) 54.77◦ N, 89.95◦ E grassland 2002–2004

Zotino (ZOT) 60.80◦ N, 89.35◦ E evergreen needleleaf forest 2002–2004

∗ Data used from three research sites (HAK1, HA2, HAK3).

Table 4. Average model error in g C m−2 month−1 for site-level comparisons over the years 2002–2005 shown in Figs. 2–4. Errors are

calculated as the average (ε̂j ) over all years and months for which a model estimate and site estimate are available at a given site. Thus,

for each site and month, the mean bias error (MBE) is calculated as the average difference between the model and observed values: εj =

Cj −Cobs, where Cj is GPP, ER or NEP for model j and Cobs is the observed value from the La Thuile FLUXNET observations (Baldocchi,

2008). The last column lists mean NEP error (NEP) across all sites. Model estimates for years 2002–2005 are not available for CoLM and

JULES. Differences were evaluated using a 2-way repeated measures ANOVA test. Test design was a comparison of GPP vs ER t tests for

(i) each area separately; (ii) GPP and ER pooled for the two tundra sites and across the two forest sites; and (iii) GPP errors pooled across

the four sites vs. ER errors pooled across the four sites.

CHE COK HAK ZOT

Model GPP ER NEP GPP ER NEP GPP ER NEP GPP ER NEP NEP

MOD17 −2 – – −11 – – 13 – – 10 – –

CLM4.5 −25 −19 −6 −42 −23 −19 8 22 −15 78 81 −3 −11

ISBA 27 25 2 34 41 −7 82 78 3 82 98 −16 −5

LPJG −10 −5 −5 −5 −1 −4 53 74 −22 −34 −13 −20 −13

MIROC 20 18 2 49 43 6 28 37 −10 −4 21 −25 −7

ORCHIDEE 23 12 11 49 32 17 16 21 −6 −30 −6 −24 −1

UVic −14 −7 −7 16 36 −20 30 38 −9 −7 31 −38 −19

UW-VIC 27 34 −6 140 119 19 18 33 −16 2 20 −18 −5

Average 7 8 −1 34 35 −1 34 43 −11 13 33 −20 −8

A wide range of model performance is evident from Ta-

ble 5. As with the mean errors shown in Table 4, agree-

ments with observations are generally better at Chersky and

Chokurdakh than Hakasija and Zotino. ER errors are also

greater than GPP errors. Nash-Sutcliffe Es are negative for

all models for both GPP and ER at Hakasija, and for most of

the comparisons at Chokurdakh. Models CLM4.5, ISBA and

UW-VIC exhibit the largest disagreements among the seven

models for which estimates are available over the 2002–2005

period.

3.1.2 Regional-level evaluation of model GPP

Estimates from the MOD17 product provide a temporally

and spatially continuous benchmark to assess model sim-

ulated GPP over the study domain. Average annual-total

GPP from MOD17 over the period 2000–2009 is shown in

Fig. 5. The MOD17 product clearly captures three distinct

land cover zones over the region, representing: (i) grasslands

across the south; (ii) boreal forests in the center of the re-

gion; and (iii) tundra to the north. Highest production oc-

curs in the western forests where mean annual temperatures

are higher. Both the steppe and tundra areas show annual

GPP of less than 300 g C m−2 yr−1. Areas of low productiv-

ity in high elevation areas to the north are well delineated.

The spatially averaged mean across the region is approxi-

mately 470 g C m−2 yr−1. In most of the models the patterns

in GPP broadly represent the major biome areas captured in

the MODIS land cover product (Fig. 1a). The east to west

gradient is broadly captured in most of the models. How-

ever, grid-based correlations with the MOD17 GPP estimates

(upper left of map panels in Fig. 5) show a wide range of

agreement across the models. Spatial averages of the cor-

relations across the domain range from r = 0.92 (ISBA) to

r = 0.48 (ORCHIDEE). Four of the nine (LPJG, MIROC,

ORCHIDEE, UVic) simulate a GPP field that explains less

than 44 % of the variability in GPP found within the MOD17

product. Annual GPP in the LPJG is notably low across the

eastern half of the region. The CLM4.5 tends to predict lower

GPP than MOD17 over tundra areas and higher productivity

in the boreal zone. As estimated by the coefficient of vari-

ation (CV, upper right panel of Fig. 5), agreement in GPP

is best across the higher productivity taiga biome. Figure 6
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Table 5. Nash-Sutcliffe coefficient of efficiency (E) (Nash and Sutcliffe, 1970) and Willmott’s refined index of agreement (dr) (Willmott

et al., 2011) for comparison of GPP and ER errors derived from comparisons at sites shown in Table 4.

CHE COK HAK ZOT

Model GPP ER GPP ER GPP ER GPP ER

CLM4.5 0.15,0.67 −0.09,0.50 −0.74,0.44 −1.52,0.15 −1.20,0.39 −2.77,−0.03 −0.19,0.66 −5.34,−0.19

ISBA 0.43,0.67 −0.79,0.34 −0.04,0.54 −5.64,−0.26 −10.25,−0.24 −19.44,−0.55 −0.82,0.62 −10.56,−0.34

LPJG 0.64,0.77 0.68,0.76 0.86,0.83 0.62,0.71 −5.37,−0.09 −26.99,−0.64 0.76,0.85 0.64,0.76

MIROC 0.49,0.76 −0.38,0.48 −1.23,0.33 −8.02,−0.29 −2.69,0.24 −2.85,−0.01 0.95,0.94 0.35,0.60

ORCHIDEE 0.44,0.69 0.45,0.66 −1.08,0.32 −3.37,−0.04 −2.39,0.33 −1.29,0.21 0.80,0.87 0.74,0.83

UVic 0.35,0.68 0.69,0.76 0.59,0.74 −3.98,−0.14 −1.93,−0.44 −9.50,−0.41 0.91,0.87 −0.17,0.50

VIC 0.14,0.67 −3.41,0.10 −14.88,−0.45 −60.73,−0.74 −2.04,0.30 −0.32,0.61 0.83,0.87 −0.27,0.56

Figure 5. Mean annual gross primary productivity (GPP) from

the permafrost RCN models and from the MOD17 product. The

averaging period is 2000–2009 for GPP from the MOD17 prod-

uct and all models with the exception of CLM4.5 (1995–2004);

CoLM (1991–2000); and JULES (1991–2000). Spatial correlations

between MOD17 GPP and each model GPP for all grids is shown at

upper left in each map panel. Map panel at upper right is coefficient

of variation (CV) for GPP. At each grid the CV is estimated from

the mean and standard deviation across the nine models (MOD17

not included).

shows the distribution of GPP for all grids of each model.

In general, the models bracket the MOD17 estimates, with

several models showing a larger spread and several showing

Figure 6. Distributions for mean annual GPP from the models and

the MOD17 product over the averaging period listed in Fig. 5. The

rectangles bracket the 25th and 75th percentiles. Whiskers extend

to the 5th and 95th percentiles. Thick and thin horizontal lines mark

the mean and median respectively.

a reduced spread. Regional averages from each model fall

within ±20 % of the MOD17 average of 468 g C m−2 yr−1,

with the exception of the LPJG model for which annual GPP

is 40 % lower than MOD17.

For each model the spatial pattern in ER (not shown)

closely matches the pattern in GPP, consistent with the strong

dependence of autotrophic respiration and litterfall on veg-

etation productivity (Waring et al., 1998; Bond-Lamberty

et al., 2004). Area-averaged GPP and ER are highly corre-

lated (r = 0.99, Fig. 7). That is, models which simulate low

(high) GPP also simulate low (high) ER.

3.1.3 Spatial patterns and area averages

In this study net ecosystem productivity (NEP) represents the

net exchange of CO2 between the land surface and the atmo-

sphere. NEP is defined as the difference between GPP and

ER. We do not examine other emission components of land-

atmosphere CO2 exchange (Hayes and Turner, 2012), as sev-

eral of the models possess limited representation of distur-

bance processes important for carbon cycling in boreal forest
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Figure 7. Spatially averaged ER vs. GPP over the period 1960–

2009. Horizontal and vertical lines span the range across the 5th

and 75th percentiles for GPP and ER, respectively. The GPP 5th and

75th percentiles are shown in Fig. 6. NEP is equal to the difference

GPP minus ER.

regions (e.g. fire and forest harvest). The multimodel mean

NEP is highest over the south-central part of the region and

lowest in the tundra to the north (Fig. 8a). Only 0.3 % of the

region is a net annual source of CO2, notably two small ar-

eas in Scandinavia. Tundra areas are a net sink of approxi-

mately 15 g C m−2 yr−1 based on the multimodel mean NEP.

As measured by the coefficient of variation (CV), the agree-

ment in NEP among the models is highest across the boreal

region and lowest in the tundra to the north and grasslands

to the south (Fig. 8b). The multimodel mean NEP is approx-

imately 20 g C m−2 yr−1 or 270 Tg C yr−1 over the simula-

tion period (Fig. 9). Among the models, NEP varies from 4

(UVic) to 48 (JULES) g C m−2 yr−1, a range that is double

the multimodel mean. The UVic simulates a negative NEP

(CO2 source) for nearly half of the region, and the CoLM

and MIROC for nearly 25 % of the region.

3.2 Temporal changes over the period 1960–2009

Figure 10 shows the time series of regionally averaged an-

nual NEP each year over the period 1960–2009 for each

model. Across the model group annual NEP is positive in

most but not all years. Several models show a net source

of CO2 in some years, primarily during the earlier decades

of the period. Among the models NEP increases by 0.01

to 0.79 g C m−2 yr−2, (3 to 340 % of the respective model

means) based on a linear least squares (LLS) regression (Ta-

ble 6). Seven of the models (CLM4.5, CoLM, ISBA, JULES,

LPJG, MIROC, ORCHIDEE) show statistically significant

trends at the p < 0.01. Taking averages over the first decade

Figure 8. (a) Annual NEP (1960–2009) averaged across the nine

models. Areas in blue are a net annual source of CO2. (b) Coef-

ficient of variation as estimated from the across model mean and

standard deviation for each grid.

Figure 9. Distributions for mean annual NEP from the models over

the averaging period listed in Fig. 5. Boxplot quartiles are as de-

scribed in caption for Fig. 6.
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Figure 10. Annual NEP as a spatial average across the region for each year 1960–2009.

Figure 11. Cumulative NEP in Pg C over the simulation period for

each model.

(1960–1969) and last decade (2000–2009) we estimate that

the NEP change ranges from 10 to 400 % of the first decade

mean, with a nine model average of 135 %. For each model

the GPP trend magnitude exceeds the ER trend magnitude

(Table 6), hence the increase in NEP over time. The increases

from the first to last decade of the simulations range from

9–35 % of the early decade average for GPP and 8–30 %

for ER. Total cumulative NEP over the 50-year period and

averaged across all models is approximately 12 (range 3–

20) Pg C (Fig. 11). Averaged across the models, NEP exhibits

an increase during mainly the earliest decades that tends to

weaken over the latter decades (Fig. 12). The uncertainty

range for the multimodel mean shows that the region has

been a net sink for CO2 over the simulation period. Inter-

estingly the uncertainty range reflects relatively better model

agreement in annual NEP (lower variance) during the years

1960–1965 and in the low NEP years 1978 and 1996. Amid

this increase there is evidence of a deceleration in NEP. The

deceleration is apparent when examining trend magnitude

and significance across all time intervals (minimum 20-year

interval) over the simulation period (Fig. 13). Here several

models (ISBA, LPJG, ORCHIDEE) exhibit weaker linear

trends over time and all models show a lack of significant

positive trends for time intervals spanning the latter decades

(e.g. 1980–1999 or 1982–2009). While temporal trends in

NEP are highly variable across the models, it is clear that

the greatest increases in NEP occurred during the earliest

decades of the simulation period. The LLS trend is signifi-

cant for 20 of 42 (48 %) possible time periods beginning in

1975 or later, whereas 72 of 107 (67 %) are significant for

periods starting in 1960–1962.

3.3 Residence Time

Annual estimates of residence time (RT) are calculated for

each model and at each grid cell over the period 1960–2009

using model soil carbon storage and the rate of heterotrophic

respiration (Rh). Among the models RT (long-term cli-

matological mean) varies from 40 (CoLM) to 400 years

(CLM4.5), and largely by model soil carbon amount, which
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Table 6. Trend in GPP, ER, and NEP over simulation period for

each model. Trend slopes (g C m−2 yr−2) are estimated using an

auto-regressive AR[1] model to account for temporal autocorrela-

tion. Standard error for the regression is indicated in ( ). Standard

deviation of the model means is shown in [ ]. Significant trends

(p < 0.01) are denoted with an asterisk (∗).

Model GPP ER NEP

CLM4.5 1.3∗(0.18) 1.0∗(0.15) 0.27∗(0.06)

CoLM 1.3∗(0.19) 0.9∗(0.18) 0.31∗(0.07)

ISBA 3.9∗(0.29) 3.1∗(0.23) 0.78∗(0.11)

JULES 1.7(0.27) 1.3(0.19) 0.33∗(0.11)

LPJG 1.2∗(0.11) 1.0∗(0.11) 0.17∗(0.06)

MIROC 1.9∗(0.16) 1.7∗(0.15) 0.24∗(0.12)

ORCHIDEE 1.6∗(0.15) 1.1∗(0.13) 0.43∗(0.08)

UVic 1.7∗(0.18) 1.6∗(0.18) 0.11(0.06)

UW-VIC 1.4∗(0.12) 1.4∗(0.13) 0.02(0.05)

mean 1.8[0.78] 1.5[0.64] 0.29[0.18]

varies by an order of magnitude across the models. Over the

period examined all of the models simulate a statistically sig-

nificant (p < 0.01) decrease in the regionally-averaged RT.

Across the models the decrease from first to last decade of

the study period ranges from −5 to −16 % of each model’s

mean. The decline occurs amid an increase in SOC storage

over time. All models with the exception of CoLM simulate a

statistically significant increase in soil carbon and all exhibit

an increase inRh. The increases in carbon storage range from

0.2 to 3.6 % while the increases in Rh range from 7 to 22 %.

Likewise the models simulate an increase in the rate of net

primary productivity (NPP) of 8 to 30 %. Across the model

group the change in RT is highly correlated (r = 0.99) with

change in Rh. In essence, higher rates in Rh and NPP led to a

decrease in soil carbon RT, with increased soil carbon storage

resulting from enhanced vegetation productivity and litterfall

inputs.

The spatial pattern in RT changes suggests that control-

ling influences are leading to both decreases and increases

over different parts of the region. The largest decreases are

found across north-central Russia and the eastern third of the

domain (Fig. 14a). The decline in RT is statistically signif-

icant (p < 0.01) for just over 46 % of the region. exceeding

−20 % for approximately 16 % of the region. An increase in

RT is noted for less than 5 % of the region, including a small

area in the far north and across extreme southern parts of

the region. The change, however, is not significant in those

areas. The CV map (Fig. 14b) lends further confidence to

the RT decreases across much of the center of the region.

High uncertainties (CVs> 10) are noted in the areas where

the multimodel average suggests an increase in RT.

Figure 12. Spatially averaged annual NEP as an average across the

nine models. Gray region marks the 95th confidence interval, where

CI= µ± (SE× 1.96), where µ is the nine model average and SE is

the standard error. Standard deviation (σ ) used to estimate SE is

obtained each year from the set of nine model NEP values used to

obtain the yearly average.

4 Discussion

4.1 Uncertainties in tower-based measurements

The potential for alterations to the terrestrial sink of atmo-

spheric CO2 across the high northern latitudes motivates

our examination of model estimates of land-atmosphere ex-

changes of CO2 across the arctic drainage basin of Northern

Eurasia. Validation of model estimates through comparisons

to measured flux tower data is hindered by several factors.

The limited extent of available measurements from a sparse

regional tower network clearly challenges the validation of

model estimates and, in turn, identification of model pro-

cesses which require refinement. There are also inherent un-

certainties in GPP and ER data derived from net ecosystem

exchange (NEE) measurements at the eddy covariance tower

sites. ER is generally assumed to equal NEE during nighttime

hours (Lasslop et al., 2010). An empirical relationship is de-

rived to estimate ER during that time and it is extrapolated

into the daylight hours. GPP is then generally calculated as

the difference between NEE and ER (accounting for appro-

priate signs). Since there is generally daylight for photosyn-

thesis during the middle of the summer, ER could potentially

be underestimated if primary production had occurred during

the hours used for ER model calibration. Direct validation of

the partitioning of measured NEE flux to GPP and ER is not

possible. However, in a recent sensitivity study Lasslop et al.

(2010) compared two independent methods for partitioning

and found general agreement in the results. This agreement

across methods increases our confidence in the partitioned

GPP and ER estimates in the LaThuile FLUXNET data set.

When measurements come from nearly-ideal sites the error

bound on the net annual exchange of CO2 has been esti-
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Figure 13. Magnitude of linear trend in NEP over given time interval for all trends significant at p < 0.05. For each model, linear trends

are calculated for all time intervals of 20 years or more. For example, 1960–1979, 1960–1980, . . ., 1990–2009. Intervals for which the trend

is significant are marked with a line from the start to end year of the interval and shaded by the trend magnitude. As an example, one time

interval is identified with a significant NEP trend for UW-VIC, from 1964–1993.

mated to be less than ±50 g C m−2 yr−1 (Baldocchi, 2003).

Systematic errors in eddy covariance fluxes due to non-ideal

observation conditions are uncertain at this time. Total er-

ror is likely below the value of 200 g C m−2 yr−1 that has

been conservatively estimated (Reichstein et al., 2007). The

model errors estimated in this present study often exceed that

level for site Hakasija and, for a few models, Zotino as well.

Lastly, any conclusions about the CO2 sink strength drawn

from such a limited number of eddy covariance sites should

be viewed with caution.

4.2 Model uncertainties contributing to errors in net

CO2 sink/source activity

Regionally averaged GPP is within 20 % of the MOD17 av-

erage (470 g C m−2 yr−1) for 8 of the 9 models. While the

models broadly capture the three major biomes across the re-

gion, a wide range in spatial GPP estimates is evident. This

result may reflect differences in model forcings, initial con-

ditions, parameterization and the dynamic vs static nature of

vegetation and LAI (Table 2). While these differences make

it difficult to unambiguously determine the underlying causes

for many of the mismatches, the evaluations, in the context

of prior studies, point to particular biases. The timing of peak

summer GPP is generally well captured in most of the models

(Fig. 4). Despite the agreement in peak GPP (and ER) timing,

several models overestimate the small source of CO2 before,

and to some degree after, winter dormancy at the Hakasija

sites and Zotino. Overestimates in GPP and ER are more

common than underestimates (Table 4). Indeed, all errors are

positive for site Hakasija and five of the seven models show

relatively large overestimates in ER at Zotino. The tendency

to overestimate GPP suggests that parametrizations and pro-

cess specifications controlling primary production (e.g. # 1,

2, 3, 4, 6, 8 in Table 2) may require refinement. It should be

noted that large seasonal flux errors (e.g. Keenan et al., 2012;

Richardson et al., 2012; Schaefer et al., 2012) will appear as

more modest monthly errors such as those noted in our anal-

ysis. While it is not possible to evaluate sources of error sep-

arately for Rh and autotrophic respiration (Ra), our results

and those from prior studies implicating Rh in the model un-

certainties (Dolman et al., 2012; Quegan et al., 2011) suggest
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Figure 14. (a) Change in soil organic carbon (SOC) residence time

(RT) averaged across all nine models. Change is significant for 46 %

of the region, predominantly negative changes (decreases). (b) CV

for RT as estimated from the across-model mean and standard devi-

ation at each grid.

a need for further investigation of model processes control-

ling respiration. Only one of the nine models, the CLM4.5,

simulated limits on productivity due to nitrogen availability.

None account for competition for nitrogen. Lack of account-

ing for nitrogen limits on photosynthesis may be leading to

overestimates in simulated GPP, since nitrogen availability

limits terrestrial carbon sequestration in boreal regions (Za-

ehle, 2013). While accounting for fire is important for es-

timates of impacts on recently disturbed areas, and may be

contributing to the wide range in GPP exhibited by CLM4.5,

CoLM, and LPJG (Fig. 6), climate variability is a more dom-

inant influence on regional fluxes (Yi et al., 2013). Regarding

errors in respiration rates, models with the highest soil car-

bon amounts (CLM4.5 and UW-VIC) exhibit relatively high

ER rates when compared to the observations at several sites

(Fig. 3). This tendency is consistent with results described by

Exbrayat et al. (2013), who suggest that initial carbon pool

size is the main driver of the response to warming, with the

magnitude of the carbon pool strongly controlling the sensi-

tivity ofRh to changes in temperature and moisture. While all

of the models incorporate temperature and moisture in their

formulations for Rh, only three of the nine account for the

effect of vegetation type on soil thermal dynamics. A wide

range in process specifications for soil thermal dynamics is

present across the models.

In a study of nine models from the TRENDY project,

Peng et al. (2015) found that the models overestimate both

GPP and ER, and underestimate NEE at most of the flux

sites examined, and for the Northern Hemisphere based on

upscaled measurements. A low NEE, or NEP, may be at-

tributable to model biases in respiration exceeding those in

productivity. Averaged across the nine models and the region

of the present study, NEP of approximately 20 g C m−2 yr−1

(Fig. 9) (270 Tg C yr−1) is broadly consistent with inven-

tory assessments for Eurasian forests, which range between

93 and 347 Tg C yr−1 (Hayes et al., 2011). Quegan et al.

(2011) concluded that NPP simulated by two DGVMs ex-

amined was nearly balanced by the models’ estimate of Rh.

Dolman et al. (2012) found that GPP increased during the

years 1920 to 2008, with the GPP increase in the DGVMs

balanced equally by increases in respiration. They reported

NEP over the Russian territory as an average of three meth-

ods at nearly 30 g C m−2 yr−1. The DGVM average, how-

ever, was only 4.4 g C m−2 yr−1 and so low that the authors

chose to remove it from their final carbon budget. This under-

estimate was attributed to an excess in Rh. While the mean

NEP of 20 g C m−2 yr−1 in the present study is more consis-

tent with the three-method average of Dolman et al. (2012)

than their lower DGVM estimates, our comparisons against

tower-based data and results of other studies suggest the sink

strength is underestimated. Of the three models common to

that study and the present one, the CLM4.5 and ORCHIDEE

rank on the low end of model NEP magnitudes (Fig. 9).

Recent research points to phenology as one of the principle

sources of error in model simulations of land-atmosphere ex-

changes of CO2. Graven et al. (2013) found that the change

in NEP simulated by a set of CMIP5 models could not ac-

count for the observed increase in the seasonal cycle am-

plitude in atmospheric CO2 concentrations. They point to

data showing that boreal regions have experienced green-

ing and shifting age composition which strongly influence

NEP and suggest that process models under-represent the

observed changes. Model inability to capture canopy phe-

nology has been identified as a major source of model uncer-

tainty leading to large seasonal errors in carbon fluxes such as

GPP (Keenan et al., 2012; Richardson et al., 2012; Schaefer

et al., 2012). Indeed, evaluated against flux tower data across

the eastern USA, current state-of-the-art terrestrial biosphere

models have been found to mis-characterize the temperature

sensitivity of phenology, which contributes to poor model
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performance (Keenan et al., 2014). Two recent studies us-

ing eight land surface models from the TRENDY compari-

son (Murray-Tortarolo et al., 2013) (several examined in the

present study) and 11 coupled carbon-climate models (Anav

et al., 2013) have found that models consistently overesti-

mate leaf area index (LAI) and have a longer growing season,

mostly due to a later autumn dormancy, compared to satellite

data. However, when estimated using model GPP, dormancy

was much earlier than previously predicted using LAI. The

authors conclude that the models are keeping inactive leaves

for longer than they should, but with little impact on car-

bon cycle fluxes. Anav et al. (2013) further suggested that it

was unlikely that differences in climate in the coupled mod-

els were solely responsible for the positive bias. Fisher et al.

(2014) also concluded that variability in land model fluxes

was driven primarily by differences in model physics rather

than differences in forcing data.

Simulated Rh estimates among the DGVMs analyzed

by Dolman et al. (2012) vary in the range between 200

to 225 g C m−2 yr−1. In the present study the nine model

average is 190 g C m−2 yr−1. Dolman et al. (2012) point

to lower estimates from Kurganova and Nilsson (2003)

of 139 g C m−2 yr−1 and Schepaschenko et al. (2013) of

174 g C m−2 yr−1 as being more representative for the region.

Our benchmark comparisons of ER against tower-based data

are consistent with these recent studies and suggest that sev-

eral models are overestimating Rh, particularly over the bo-

real forest zone. Among the model examined in this study

a wide range in soil carbon parameterizations is noted (Ta-

ble 2). Not surprisingly the effects of active layer depth on

the availability of soil organic carbon for decomposition and

combustion has been recognized as a key sensitivity in pro-

cess models (Hayes et al., 2014). Regarding below-ground

processes, model parameterizations and processes control-

ling carbon storage and turnover such as litter decomposition

rates and biological activity in frozen soils (Hobbie et al.,

2000) require close examination as well. Model simulations

of Rh during the non-growing season are sensitive to the

presence or absence of snow (McGuire et al., 2000), sug-

gesting that future studies of mechanisms controlling winter

CO2 emissions in tundra may help resolve uncertainties in

processes within land surface models and provide a means

to connect a warming climate with vegetation changes, per-

mafrost thaw and CO2 dynamics.

4.3 Uncertainties in temporal trend estimates

Uncertainties exist as to whether tundra areas are presently

a net sink or source of CO2. Across tundra regions, pro-

cess models indicate a stronger sink in the 2000s compared

with the 1990s, attributable to a greater increase in vegeta-

tion net primary production than heterotrophic respiration in

response to warming (McGuire et al., 2012; Belshe et al.,

2013. The spatial pattern in multimodel mean NEP in this

study points to small areas in Scandinavia (< 1 % of the do-

main) as sources of CO2. Broadly, areas classified as tundra

are a modest CO2 sink of approximately 15 g C m−2 yr−1.

Across-model standard deviations in areas of small positive

and negative NEP are a factor of ten or more greater than

the multimodel mean in some areas, and are generally high

across the tundra (Fig. 8b). Estimates of NEP sink magni-

tudes must be interpreted with caution given that the models

in general possess inadequate representation of disturbances

which are an important component of the overall carbon bal-

ance (Hayes et al., 2011). Among this model group, four

of the nine account for fire. The nature of model initializa-

tion and spinup is also a strong influence on simulated NEP

changes. For example, spin-up procedures can explain some

of the discrepancies. ISBA, for instance, was equilibrated us-

ing the 10 coldest years of the WATCH forcing repeatedly to

emulate preindustrial climate. As a result, soil and vegetation

carbon were fairly low at the beginning of the 20th century

run, much lower than the equilibrium that would result from

the 1960s climate. Due to the large characteristic timescale

of soil carbon, part of ISBA’s large trend during the 1960–

2009 period (Fig. 11) can be traced to the climate used for

the model spinup procedure.

Previous studies have pointed to changes in the seasonal

drawdown and release of CO2 across the northern high lati-

tudes (Graven et al., 2013). A change in the seasonal cycle of

GPP and ER is also noted (figure not shown), with the models

analyzed in this study simulating a relatively higher produc-

tivity rate from late spring to mid-summer. Indeed, increased

productivity did not occur uniformly across the growing sea-

son, as most of the models show little change in August or

September NEP over time. The models also simulate little

change in NEP over the cold season. Greater productivity

in spring and early summer may be due in part to earlier

spring thawing and temporal advance in growing season ini-

tiation (McDonald et al., 2004), whereas GPP and NEP are

more strongly constrained by moisture limitations later in

the growing season (Yi et al., 2014). Extension of the grow-

ing season is therefore attributed more to a regional warming

driven advance in spring thaw than a delay in autumn freeze-

up (Kimball et al., 2006; Euskirchen et al., 2006; Kim et al.,

2012) which correlates with regional annual evapotranspira-

tion for the region above 40◦ N (Zhang et al., 2011). There

are, however, signs of a delay in the timing of the fall freeze

(−5.4 days decade−1) across Eurasia over the period 1988–

2002 (Smith et al., 2004) consistent with fall satellite snow

cover (SCE) increases, and attributed to greater fall/winter

snowfall and regional cooling (Cohen et al., 2012). Consis-

tent with the advance in spring thaw, the models examined

here show a greater NEP increase in spring compared to au-

tumn.

Soil carbon storage across the region increased signifi-

cantly over the study period in eight of the nine models. A

relatively larger increase in Rh is correlated strongly with the

associated decline in soil carbon residence time. This sug-

gests that amid recent warming, vegetation carbon inputs to
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the soil were greater than the enhancement in decomposition.

In a recent study involving CMIP5 models, Carvalhais et al.

(2014) found that while the coupled climate/carbon-cycle

models reproduce the latitudinal patterns of carbon turnover

times, differences between the models of more than one order

of magnitude were also noted. The authors suggest that more

accurate descriptions of hydrological processes and water–

carbon interactions are needed to improve the model esti-

mates of ecosystem carbon turnover times. The reduction in

soil carbon residence time may at least partially be a direct

response to increasing NEP, rather than through warming ef-

fects on respiration. A recent study (Koven et al., 2015) us-

ing a set of simulations from five CMIP5 models found that,

because heterotrophic respiration equilibrates faster to the

increasing NPP than the soil carbon stocks, increased pro-

ductivity leads to reductions in inferred residence times even

when there are no changes to the environmental controls on

decomposition rates, a process they refer to as false priming.

Because the experimental protocol analyzed here does not

include a fixed-climate simulation, it is not possible to un-

ambiguously separate the contribution from the false priming

effect from that due to warming-related respiration increases,

but the fact that soil C stocks increase over the period of sim-

ulation suggests that it is the dominant effect. Apart from

climatological factors, vegetation growth is also dependent

on biological nitrogen availability. Failure to account for ni-

trogen limitation may thus impart a bias in the modeled car-

bon flux estimates. However, more process models are in-

corporating linkages between carbon and nitrogen dynam-

ics (Thornton et al., 2009). Given the broad range in spatial

patterns in GPP across the models, a closer examination of

processes related to nitrogen limitations and primary produc-

tion is needed. The lower rate of NEP increase over the latter

decades of the simulation period suggests a weakening of the

land CO2 sink, driven by increased Rh from warming, asso-

ciated permafrost thaw, and an upward trend in fire emissions

(Hayes et al., 2011).

As the climate warms, the amount of carbon emitted as

CH4 and CO2 will depend on whether soils become wetter

or drier. A synthesis of observations and models points to in-

tensification of the pan-Arctic hydrological cycle over recent

decades (Rawlins et al., 2010), manifested prominently by

increasing river discharge from Northern Eurasia (Peterson

et al., 2002). In addition to hydrological cycle intensification

and deepening soil active layer (Romanovsky et al., 2010),

rapid thaw and ground collapse will also likely alter the land-

scape and impact land-atmosphere carbon exchanges. Land

surface models are now beginning to implement new process

formulations to account for these fine scale perturbations.

Several of the models examined in this study incorporate the

effect of soil freeze-thaw state on decomposition of organic

carbon (Table 2). Only four of the nine models, however, ac-

count for methane emissions. Six simulate talik formation,

and among these a variety of approaches are employed to

compute snow insulation type.

5 Conclusions

Outputs from a suite of land surface models were evalu-

ated against independent data sets and used to investigate

elements of the land-atmosphere exchange of CO2 across

Northern Eurasia over the period 1960–2009. The models

exhibit a wide range in spatial patterns and regional mean

magnitudes. Compared to tower-based data, overestimates in

both GPP and ER are noted in several of the models, with

larger errors in ER relative to GPP, particularly for the com-

parisons at the southern higher productivity sites. Regard-

ing agreement in the spatial pattern in GPP, less than half

of the variance in GPP expressed in the MOD17 product is

explained by the GPP pattern from four of the nine mod-

els. The NEP increases range from 3 to 340 % of the model

means, further illustrating uncertainties in sink strength. The

models exhibit a decrease in residence time of the soil carbon

pool that is driven by an increase in Rh, simultaneous with

an increase in soil carbon storage. This result suggests that

net primary productivity (NPP) inputs to the pool increased

more thanRh fluxes out. Among the quantities examined, un-

certainties are lowest for GPP across the forest/taiga biome

and highest for residence time over tundra and steppe areas.

Amid the uncertainty in NEP magnitude, the results of this

study and others suggests that the CO2 sink of the region is

underestimated.

Several recommendations are made as a result of this anal-

ysis. The range in area and climatological mean NEP across

the models, more than double the mean value, illustrates

the considerable uncertainty in the magnitude of the con-

temporary CO2 sink. The results of the site-level compar-

ison point to a need to better understand the connections

between model-simulated productivity rates, soil dynamics

controlling heterotrophic respiration rates, and associated un-

certainties in total ER. Given the strong connections be-

tween soil thermal and hydrological variations and soil res-

piration, we recommend that model improvements are tar-

geted at processes and parameterizations controlling respira-

tion with depth in the soil profile. These validation efforts

are especially important given the likelihood of net carbon

transfer from ecosystems to the atmosphere from permafrost

thaw (Schuur and Abbott , 2012; Schuur et al., 2015). Model

responses to CO2 fertilization and nitrogen limitation, pro-

cesses largely underrepresented in the models, should be

evaluated in the context of ecosystem productivity. While in-

sights have been gained by examining the model estimates

of GPP, ER, and NEP, an improved understanding of net

CO2 sink/source dynamics will require the continued de-

velopment and application of model formulations for car-

bon emissions from fire and other disturbances. The limited

number of measured site data across this important region

clearly hampers model assessments, highlighting the critical

need for new field, tower, and aircraft data for model val-

idation and parametrization. Specifically, new observations

in the boreal zone are required to better evaluate model bi-
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ases documented in this and in other recent studies. More-

over, our finding of biases in CO2 source activity during the

shoulder seasons points to a critical need for observations

during autumn, winter, and spring. Given our results, conclu-

sions drawn from studies which use a single model should

be viewed cautiously in the absence of rigorous validation

against observations across the region of interest.

New observations from current and upcoming field cam-

paigns such as Carbon in Arctic Reservoirs Vulnerability Ex-

periment (CARVE) and the Arctic Boreal Vulnerability Ex-

periment (ABoVE) should be used to confirm the results of

this study. Future model evaluations will benefit from contin-

ued development of consistent benchmarking data sets from

field measurements and remote sensing. Regarding tower

data, any new measurements must be supported by refine-

ments in the models used to partition the measured NEE

flux into GPP and ER components. Regarding these and

similar model intercomparisons, investments must be made

which will minimize or eliminate differences in a priori cli-

mate forcings used in the simulations. At a programmatic

level support for these activities should lead to well-designed

model intercomparisons which minimize, to the extent possi-

ble, differences in model spinup, forcings and other elements

which confound model intercomparisons.
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