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Abstract. The purpose of this review is to address the rea-

sons and methods for conducting optical remote sensing

within the flux tower footprint. Fundamental principles and

conclusions gleaned from over 2 decades of proximal re-

mote sensing at flux tower sites are reviewed. The organizing

framework used here is the light-use efficiency (LUE) model,

both because it is widely used, and because it provides a use-

ful theoretical construct for integrating optical remote sens-

ing with flux measurements. Multiple ways of driving this

model, ranging from meteorological measurements to re-

mote sensing, have emerged in recent years, making it a con-

venient conceptual framework for comparative experimen-

tal studies. New interpretations of established optical sam-

pling methods, including the photochemical reflectance in-

dex (PRI) and solar-induced chlorophyll fluorescence (SIF),

are discussed within the context of the LUE model. Multi-

scale analysis across temporal and spatial axes is a central

theme because such scaling can provide links between eco-

physiological mechanisms detectable at the level of individ-

ual organisms and broad patterns emerging at larger scales,

enabling evaluation of emergent properties and extrapolation

to the flux footprint and beyond. Proper analysis of the sam-

pling scale requires an awareness of sampling context that

is often essential to the proper interpretation of optical sig-

nals. Additionally, the concept of optical types, vegetation

exhibiting contrasting optical behavior in time and space, is

explored as a way to frame our understanding of the con-

trols on surface–atmosphere fluxes. Complementary normal-

ized difference vegetation index (NDVI) and PRI patterns

across ecosystems are offered as an example of this hypoth-

esis, with the LUE model and light-response curve provid-

ing an integrating framework. I conclude that experimental

approaches allowing systematic exploration of plant optical

behavior in the context of the flux tower network provides

a unique way to improve our understanding of environmen-

tal constraints and ecophysiological function. In addition to

an enhanced mechanistic understanding of ecosystem pro-

cesses, this integration of remote sensing with flux measure-

ments offers many rich opportunities for upscaling, satellite

validation, and informing practical management objectives

ranging from assessing ecosystem health and productivity to

quantifying biospheric carbon sequestration.

1 Introduction

The global flux tower network has greatly expanded our un-

derstanding of the exchange of mass and energy between

terrestrial ecosystems and the atmosphere (Baldocchi et al.,

2001). Emerging from a long history of research in the

micrometeorological community, eddy covariance has in-

creasingly been integrated with ecophysiological perspec-

tives to become an essential tool for understanding terres-

trial ecosystem photosynthesis and productivity. Examples

of this integration include eddy covariance studies that apply

the concept of light response curves to the analysis of whole

ecosystem fluxes (Wofsy et al., 1993; Goulden et al., 1997).

Originally derived from the ecophysiological literature us-

ing steady-state gas exchange (Björkman, 1981), photosyn-

thetic response curves enable powerful functional analyses of

the physiological controls on gas exchange (von Caemmerer

and Farquhar, 1981; Long and Bernacchi, 2003). When ap-

plied to surface–atmosphere fluxes, response curves can re-

veal insights into the environmental and biological controls

on these fluxes. They can also be used for partitioning net

flux into gross (photosynthetic) and respiratory fluxes (Re-

ichstein et al., 2012). The light-response curve also provides

a powerful theoretical construct for integrating optical and
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flux data within the framework of the light-use efficiency

(LUE) model, allowing a deeper, physiological examination

of ecosystem function than possible from monitoring fluxes

or optical signals alone.

Like eddy covariance, remote sensing emerged from a

physical sciences background, and its history has often fo-

cused on mapping and monitoring broad vegetation types or

a few key biophysical parameters (e.g., leaf area index (LAI),

biomass, or fPAR) rather than providing a functional under-

standing of underlying ecosystem physiological responses.

In part, this limitation derives from the relatively coarse scale

of most global Earth observations. Observations of large-

scale phenology through broad spatial and temporal pat-

terns of greenness (normalized difference vegetation index

(NDVI); Tucker et al., 1985), and the redefinition of terres-

trial biomes through their spatially and temporally dynamic

NDVI properties (Defries and Townshend, 1994), are clas-

sic studies that illustrate the power of remote sensing to

map vegetation patterns over continental regions and yearly

timescales. The development of the MODIS net primary pro-

duction (NPP) products (Running et al., 2004) have moved

beyond depictions of spatial and temporal patterns of vege-

tation to a more functional description of vegetation dynam-

ics and productivity, but still at relatively coarse spatial and

temporal scales that can be difficult to directly relate to flux

tower sites. Biome-scale comparisons of aggregated optical

properties to yearly integrated NPP (Goward et al., 1985) and

gross primary production (GPP, Frankenberg et al., 2011)

demonstrate the parallel abilities of optical remote sensing

and flux measurements to characterize broad-scale patterns

of ecosystem–atmosphere exchange and ecosystem produc-

tion, even if the mechanistic details operating at finer tempo-

ral and spatial scales remain obscure. Our current challenge

is to fill in those details, and proximal remote sensing within

the flux tower footprint provides an important means to ac-

complish this.

In the past, remote sensing and flux measurements have

often been seen as fundamentally different disciplines, and

the integration of these methods to address ecosystem–

atmosphere fluxes is a relatively new phenomenon. An im-

portant stimulus of this transition to an integrated approach

has been NASA’s field campaigns, particularly FIFE (Sellers

et al., 1992b) and BOREAS (Sellers et al., 1997). These large

studies began to integrate eddy covariance and remote sens-

ing in a systematic way, and exposed entire generations of

scientists to the kind of interdisciplinary thinking needed for

ecosystem physiology and global ecology. Since that time,

the advent of new tools – principally improved field spec-

trometers and sampling platforms – have enabled more de-

tailed optical studies of the flux tower footprint. The emer-

gence of optical sampling networks such as SpecNet (Gamon

et al., 2006b, 2010), EuroSpec (this issue), and the Phenocam

network (Richardson, 2009) have drawn attention to the need

for more systematic integration of proximal remote sensing

within the flux tower network.

In this review, I will argue that direct integration of re-

mote sensing with flux measurements within the context of

the global flux tower network improves our understanding

of both fluxes and remote sensing. This integration offers

greater insights into the underlying controls on biospheric–

atmospheric fluxes than possible with either method alone.

While optical sampling is readily scalable, a key focus will

be on proximal remote sensing explicitly designed to match

the sampling scale of flux measurements as a means of under-

standing functional processes. Proximal sampling can also

be readily linked to conventional remote sensing, providing

critical validation (e.g., “ground truthing”) and extrapolation

of fine-scale measurements to larger regions (“upscaling”).

While optical methods will be the primary focus, other meth-

ods (e.g., LIDAR, thermal, microwave, or acoustic) can also

be applied to a wide range of ecological questions within

the flux footprint. A primary conceptual framework will be

the LUE model, in part due to the rich history of this ap-

proach, but also because many potential parameterizations of

this model remain largely unexplored, providing rich oppor-

tunities for new advances. When properly applied, proximal

remote sensing offers many prospects for a deeper, physio-

logical examination of whole ecosystem function, and can

be seen as an emerging ecophysiological frontier.

2 Sampling context

A well-designed proximal remote sensing campaign must

consider sampling context, including the scale of biologi-

cal responses in temporal and spatial dimensions. Attention

to the temporal and spatial context is essential because op-

tical and flux instrumentation, and the biological processes

they detect, operate with different time constants over differ-

ent spatial scales (Figs. 1 and 2). The context also includes

the angular response of illumination and the measured sig-

nals. Attention to the spectral (wavelength) domain is also

needed as optical instruments and the biological phenomena

they measure can be very particular when it comes to spectral

responses.

We can illustrate the spectral–spatial–temporal domain by

defining the realm of optical sampling using ecosystem pho-

tosynthetic carbon uptake and its underlying biological con-

trols as an example. Plants possess a myriad of ways to adjust

the receipt and distribution of light energy, all of which can

be detected optically (Fig. 1). These photosynthetic regula-

tory processes operate over a wide range of scales. At fine

spatial and temporal scales, leaves adjust light energy distri-

bution via energy dissipation mechanisms, including chloro-

phyll fluorescence (red text in Fig. 1), which responds to il-

lumination in milliseconds and relaxes to steady-state lev-

els over seconds to minutes (Jones, 2013). At slightly longer

timescales (seconds to hours), non-radiative energy dissipa-

tion via the xanthophyll cycle (Demmig et al., 1987) provides

further means of adjusting energy distribution (left side of
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Figure 1. Distribution of absorbed radiation within a leaf, show-

ing processes of productive photosynthesis (blue text and arrows),

energy dissipation (red text and arrows), regulatory processes asso-

ciated with the xanthophyll cycle (black text and arrows within box

on left), and carotenoid and chlorophyll pigment pools, all of which

can be assessed with optical sampling, but at different temporal,

spatial and spectral scales, as discussed in the text.

Fig. 1), and these changes can be monitored via fluorescence

and spectral reflectance (Gamon et al., 1990, 1997; Peñue-

las et al., 1995). Critical biochemical aspects of photosyn-

thetic regulation (e.g., Rubisco activation) occur over simi-

larly short timescales, and this biochemical capacity, illus-

trated as carboxylation capacity (Vcmax) and electron trans-

port capacity (Jmax) in Fig. 1, can be assessed with optical

methods (Serbin et al., 2012). In parallel to these photochem-

ical and biochemical regulatory processes, leaf structure, ul-

trastructure, and pigmentation are adjusted over minutes (in

the case of chloroplast or rapid leaf movement) to days or

weeks (in the case of pigment pool sizes and leaf area in-

dex) (Björkman and Demmig-Adams, 1994). These adjust-

ments affect leaf and canopy light absorption (blue text in

Fig. 1), and can be detected via spectral transmittance (Brug-

noli and Björkman, 1992) or reflectance (Zygielbaum et al.,

2012; Wong and Gamon, 2015a).

At the scale of the flux tower footprint, vegetation’s ca-

pacity to absorb light based on the amount of green canopy

material determines its potential photosynthetic rate and net

primary productivity. This capacity varies with canopy and

stand structure, often expressed as green leaf area index, leaf

angle distribution, or percent cover, which can be measured

as the fraction of PAR irradiance absorbed (fAPAR) using a

number of vegetation reflectance indices, most notably the

NDVI (Gamon et al., 1995; Running et al., 2004).

Each of these optically detectable processes influences

photosynthetic rates, and thus NPP or net ecosystem ex-

change (NEE), and can be best detected over a particular

range of temporal, spatial, and spectral scales (Fig. 2). De-

pending upon whether we are monitoring rapid physiolog-

ical adjustments or slower structural changes, a combina-

tion of optical sampling methods (irradiance, absorption, re-

Figure 2. The sampling domain defined by time, space, and spectral

space (z dimension) axes, illustrating how the optical sampling scale

varies with the process being measured. The time and space axes

are typically log scales (Osmond and Chow, 1988). The spectral

or wavelength axis (represented as the z dimension), will also vary

with the type and purpose of optical sampling. Similarly, the appro-

priate degree of data aggregation in temporal, spatial, and spectral

domains will also vary with the purpose at hand.

flectance, or fluorescence) might be deployed, and the opti-

mal sampling scale and method of interpretation will vary.

When judiciously applied within the flux footprint, these op-

tical methods provide a powerful range of tools for an im-

proved understanding of the physiological and structural con-

trols on fluxes at different scales, independently of the flux

measurements themselves. When used in combination across

sampling scales, they also facilitate exploration of emergent

properties, allowing us to determine which underlying con-

trols can become obscured, and which ones emerge as critical

to the whole-ecosystem performance (sensu Michaletz et al.,

2014).

3 The light-use efficiency model as a unifying concept

When estimating ecosystem photosynthesis or production

from remote sensing, a common approach is to use the light-

use efficiency (LUE) model in one of its many forms. De-

rived from the seminal work of Monteith (1977) on crops,

the original LUE model states that dry matter yield can be ex-

pressed as a function of the amount of intercepted solar radi-

ation (IPAR, typically expressed as photosynthetically active

radiation), and the efficiency (ε) with which that radiation is

converted to biomass.

Yield= IPAR× ε (1)

Monteith’s LUE formulation provided an elegant concep-

tual model that has been further developed, and extensively
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tested for many of the world’s terrestrial ecosystems. Over

the years, the original LUE model has expanded to become

a family of models with slightly different formulations, pa-

rameterizations, and implications for flux-optical analyses.

While similar in concept, these variations differ in practice,

often leading to strikingly different conclusions (Gitelson

and Gamon, 2015). To consider these implications as they

apply to this discussion, it is necessary to briefly examine

some of the key features of these newer models.

In the remote sensing literature, a common formulation of

the LUE model is to express GPP as a function of absorbed

radiation and the efficiency (ε) with which that absorbed ra-

diation is converted to fixed carbon.

GPP= APAR× ε (2)

Absorbed radiation (APAR) can be further defined as the

product of incident photosynthetic photon flux density

(PPFD, or PAR irradiance, often called “PAR” in the re-

mote sensing literature) and the fraction of incident PPFD

absorbed by photosynthetic canopy materials (fAPAR). The

strength of this model derives in part from the strong rela-

tionship between optical vegetation indices, particularly the

NDVI and the fraction of radiation absorbed by green canopy

materials (fAPAR), which provides a metric of photosynthetic

capacity (Kumar and Monteith, 1981; Sellers, 1987; Hall et

al., 1992; Gamon et al., 1995; Running et al., 2004). Because

it is often the dominant variable in Eq. (2), APAR is funda-

mental to the determination of photosynthetic rate or GPP

with this model. While simple in concept, several factors,

including canopy structure, soil or other “background” ef-

fects (Hall et al., 1992), view angle and solar illumination

(discussed below), can all influence the NDVI signal and the

accuracy of APAR estimation. Consequently, evaluation of

these factors is critical to estimating whole-stand photosyn-

thesis from optical sampling.

3.1 Assessing efficiency (ε)

The basic LUE concept is easily illustrated using plots of hy-

pothetical leaf- and stand-level light responses (Fig. 3). At

the leaf scale, the initial slope represents the photon (quan-

tum) yield, the intrinsic LUE measured with leaf gas ex-

change (Fig. 3a). For healthy plants, there is a strong conver-

gence of photon yield values across species sharing similar

photosynthetic pathways (Björkman, 1981), contributing to

the concept of an idealized, maximal LUE. At the stand scale,

the light response of unstressed canopies is often more lin-

ear due to the patterns of light absorption with canopy depth

(Norman and Arkebauer, 1991) and LUE is the slope of this

APAR-photosynthesis relationship (Fig. 3b). Consequently,

an optically derived APAR can be compared to ecosystem

carbon gain (GEP or GEE) from gas exchange or eddy co-

variance, allowing the calculation of whole-ecosystem LUE

as the resulting slope (e.g., Huemmrich et al., 2010). If this

slope is constant, LUE can be readily inferred, providing a

Figure 3. (a) Modeled photosynthetic light-response curves (rect-

angular hyperbola) for healthy and stressed leaves, illustrating

the decline in light-use efficiency (LUE), typically termed photon

(or quantum) yield. (b) Stand-level light-response curves of gross

ecosystem production (GEP) for different vegetation types having

different moisture regimes, LUEs, and contrasting optical prop-

erties. (a) Modified from Björkman and Demmig-Adams (1994).

(b) Modified from Huemmrich et al. (2010).

key input for the LUE model, and vegetation can be function-

ally categorized according to its LUE response. If the slope is

variable, then we must reconsider this assumption, as further

discussed below.

The light-response curve provides a potent framework for

analyzing physiological responses and for deciding how to

best integrate optical and flux measurements. In this analysis,

because APAR reflects the amount of light absorbed by green

canopy structure, it provides key information on the struc-

tural control on fluxes associated with such factors as green

canopy cover and LAI, and depicts the maximum potential

photosynthesis determined by light absorption. By contrast,

the slope (efficiency, ε) represents how much of that pho-

tosynthetic potential is actually realized due to variations in

environmental conditions and physiological performance. In

this way, a changing slope can provide additional information
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on the degree of physiological control associated with photo-

synthetic adjustment and down-regulation under varying en-

vironmental conditions. This distinction between structural

and physiological controls is somewhat artificial; in nature,

structural and physiological factors interact in interesting and

complex ways. Nevertheless, it provides a useful conceptual

framework for analyzing ecosystem behavior and determin-

ing how best to parameterize the LUE model.

A strength of the LUE model is that APAR can be read-

ily assessed from optical remote sensing. A bigger challenge

than APAR assessment lies in determining the efficiency (ε)

term in the LUE model, in part because it can vary with veg-

etation type and environmental conditions (Garbulsky et al.,

2010). In some cases, for a given vegetation type and time

frame, ε can be treated as a constant, greatly simplifying the

LUE model (Monteith, 1977; Ruimy et al., 1994). This view

is analogous to the observation that all unstressed leaves of

a particular type (C3 or C4) tend towards a common photon

yield (LUE expressed at the leaf level), representing optimal

conversion efficiency (Björkman, 1981). However, nature of-

ten grossly violates the assumption of a constant LUE, and

recent studies have emphasized the large temporal variation

in ε, particularly during conditions of chronic stress (Garbul-

sky et al., 2010). In these cases, environmental factors includ-

ing temperature, moisture, and nutrients cause the efficiency

term to vary on a variety of timescales, leading to large errors

in LUE model estimates that assume a fixed ε. In extreme

cases, such as evergreen conifers that undergo winter down-

regulation of photosynthesis (Wong and Gamon, 2015b), ε

can reach zero during cold periods and become the dominant

term in the LUE model (Eq. 2). For any given ecosystem, the

shape of the light response curve (Fig. 3) can tell us which

assumption about ε is most appropriate, illustrating the value

of an integrated approach that combines optical and flux sam-

pling.

To capture these ε dynamics, some common expressions

of the LUE model partition the efficiency term into a fixed

component that represents the optimal efficiency for a given

vegetation type, and a variable component that depicts the

effect of temperature or water stress on reducing that effi-

ciency:

ε = εmax×m(T )×m(VPD), (3)

where εmax represents the maximal efficiency for a given veg-

etation type, m(T ) is a scalar that reduces efficiency due to

temperature extremes, and m(VPD) is a scalar that reduces

efficiency due to drought, often expressed as vapor pressure

deficit (VPD) (Heinsch et al., 2006). This formulation can be

used to derive efficiency from meteorological measurements,

which can be interpolated from weather stations, or derived

directly from flux tower sensors (Running et al., 2004; Hein-

sch et al., 2006). Not surprisingly, local inputs sometimes

yield better results than interpolated inputs (Running et al.,

2004), illustrating the challenge of merging disparate data

sets collected at different locations for different purposes. Of-

ten, accurate meteorological data is simply not available for

a given region, limiting the accuracy of the meteorologically

based approach.

3.2 Optical Assessment of Efficiency

In part to circumvent this challenge of mismatched and miss-

ing meteorological data, many studies have explored remote

sensing to more directly assess ε. Reflectance, fluorescence,

and thermal methods can all be relevant due to their ability

to detect different stresses. One example is provided by the

photochemical reflectance index (PRI) , which was original

defined as a measure of xanthophyll cycle pigment conver-

sion, and thus provides an optical assessment of ε dynamics,

similar to chlorophyll fluorescence yield (1F / Fm′) over a

diurnal timescale (Gamon et al., 1992, 1997; Peñuelas et al.,

1995). Unlike 1F / Fm′, which is limited to proximal mea-

surement scales due to the requirement of a saturating light

pulse, PRI relies on reflected radiation and can be applied

over a range of scales, but this also adds challenges to the

interpretation. Over longer timescales, or when comparing

different species or vegetation types, a primary cause of PRI

variation is the adjustments in pigment pool sizes, notably

chlorophyll carotenoid ratios, that strongly influence the PRI

wavelengths (Garrity et al., 2011; Wong and Gamon, 2015a).

Several recent studies have explored these pool size effects

and related them to photosynthetic activity, with promising

results. For evergreen species, PRI often varies strongly with

season (Wong and Gamon, 2015a, b) or with canopy position

and light environment (Gamon and Berry, 2012) primarily

due to changing chlorophyll : carotenoid levels. This pigment

ratio declines during periods of chronic stress, providing a

readily detectable optical index of seasonally changing pho-

tosynthetic activity and ε, with further diurnal modulation

in PRI driven by the xanthophyll cycle (Wong and Gamon,

2015a, b). These observations are consistent with studies il-

lustrating the utility of pigments as optical indicators of pho-

tosynthetic activity and GPP (Sims and Gamon, 2002; Peng

et al., 2011), and are contributing to a changing view of how

we might best utilize PRI in the assessment of photosynthetic

activity.

Much of the confusion in the recent PRI literature arises

from the fact that multiple factors drive variation in PRI over

different temporal scales (Barton and North, 2001), and rel-

atively few studies have fully considered sampling context

or attempted to distinguish these multiple causes. The im-

portance of the temporal context for PRI assessment is illus-

trated in Fig. 4, showing short-term facultative changes due

to xanthophyll cycle activity dominated by long-term con-

stitutive pool size effects varying with chronic stress (e.g.,

due to drought or temperature extremes). The interaction of

these two temporally changing PRI components yields com-

plex spatial patterns of PRI within the flux footprint due to

the complex, dynamic light regimes within a stand (Hilker et

www.biogeosciences.net/12/4509/2015/ Biogeosciences, 12, 4509–4523, 2015
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Figure 4. Illustration of constitutive (pigment pool size) and fac-

ultative (xanthophyll cycle) effects on PRI time series, represent-

ing two annual cycles of PRI for evergreen vegetation. In this case,

the dominant cause of PRI variation is the constitutive adjustment

in chlorophyll : carotenoid ratios across seasons, with less variation

due to the diurnal xanthophyll cycle operation (1PRI), a facultative

process that further modulates light energy distribution (Fig. 1). In

year two, chronic stress (e.g., drought) causes reduction in the con-

stitutive component (dark-state PRI) along with additional adjust-

ments of the facultative component (1PRI). Adapted from Sims et

al., 2006 and Wong and Gamon (2015a).

al., 2008; Middleton et al., 2009). These light patterns cause

PRI to vary with canopy depth (Gamon et al., 2001, 2005)

and aspect (Gamon and Bond, 2013) with varying contribu-

tions from facultative and constitutive components (Gamon

and Berry, 2012). Direct assessment of photosynthetic activ-

ity and ε with PRI remains an area of ongoing research, re-

quiring a careful consideration of sampling context affecting

these PRI components. Some sampling methods allow sepa-

ration of PRI into its facultative xanthophyll cycle and con-

stitutive pigment pool components. These methods typically

distinguish a baseline, dark-state (constitutive) PRI from a

1PRI, the difference between the dark-state PRI and a mid-

day illuminated value (Gamon and Surfus, 1999; Sims et al.,

2006; Hilker et al., 2008, 2010; Gamon and Berry, 2012;

Soudani et al., 2014), often improving our understanding of

ε and related physiological controls on photosynthesis.

Further studies are needed to clarify the contributions of

the facultative and constitutive PRI components to photo-

synthetic regulation over temporal and spatial scales rele-

vant to whole-ecosystem fluxes. Over the past 2 decades,

the functional significance of gradual changes in carotenoid

pigment pools has received far less attention than the short-

term regulation of the xanthophyll cycle, despite the clear

importance of pigment pool sizes as indicators of vegeta-

tion stress responses (Sims and Gamon, 2002). Neither the

slow nor the rapid pigment responses have yet been fully

addressed in mechanistic models of photosynthesis, which

tend to focus more on biochemical processes (e.g., Vcmax,

Serbin et al., 2012). Thus, there is potential to develop more

integrated photosynthesis models that link the full range of

pigment responses and concurrent optical signals (including

Figure 5. Representation of the LUE model (Eq. 2), showing op-

tical measurements useful for model parameterization and valida-

tion (red text), including solar-induced fluorescence, the NDVI, the

PRI, and fluorescence yield (1F / Fm′). Alternatively, efficiency (ε)

can be addressed using meteorological data (temperature and vapor

pressure deficit) according to Eq. (3), or can be addressed with ther-

mal remote sensing and modeling methods (Anderson et al., 2008;

Schull et al., 2015). To most directly compare with eddy covariance,

which measures NEE (analogous to NPP), additional modeling, or

partitioning into gross ecosystem production (GEP, analogous to

gross primary production, GPP) and respiration (R), is needed.

both reflectance and fluorescence) to dynamic photosynthetic

activity. Recent findings of a functional link between PRI,

carotenoid biochemistry, and vegetation isoprenoid emission

(Peñuelas et al., 2013) indicate that PRI and carotenoid bio-

chemistry can offer new insights into the controls on other

trace gas fluxes in addition to CO2. Other concurrent sam-

pling methods, including thermal methods that provide inde-

pendent assessment of chronic stresses, can add even greater

insight into flux controls by integrating evapotranspiration

and energy balance with the LUE approach (Anderson et

al., 2008; Schull et al., 2015). Consequently, there is ample

opportunity for further exploration and clarification of diur-

nal and seasonal flux controls by integrating indices such as

NDVI and PRI with other sampling methods (e.g., irradiance,

fluorescence, and thermal measurements), and flux towers

properly instrumented with optical sensors offer ideal oppor-

tunities for further investigation of this topic. A full under-

standing will require a combination of empirical experiments

and modeling studies at multiple scales. To be successful, this

effort will require careful attention to standardized protocols

that address sampling context, as further defined below.

3.3 Comparing LUE model parameterizations

Several common parameterizations of the LUE model are il-

lustrated in Fig. 5, showing optical inputs in red and meteo-

rological inputs in blue. Relatively few studies consider more

than one model parameterization, and those that do are often

limited to a few of the many possible models (Zhang et al.,

2015). Consequently, the “best” parameterization remains an

open question and may depend upon the tools available and
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the particular context or question of interest, with different

investigators pursuing different approaches. A key oppor-

tunity lies in comparing these different approaches to each

other and across sites within the context of the flux tower net-

work. As discussed below, it is likely that any single param-

eterization will not apply equally well across all ecosystems,

biomes, or seasons due to operational issues and contrasting

controls on physiology and structure, but this is also an open

question.

3.4 Solar-induced fluorescence

For years, studies have noted a close association between

solar-induced chlorophyll fluorescence (SIF) and photosyn-

thetic activity (Carter et al., 1990). Recent studies, mostly

from spaceborne platforms, have demonstrated a strong link

between GPP and SIF (Frankenberg et al., 2011; Joiner et

al., 2011, 2014). The technical breakthrough of recent SIF

studies arose from the recognition that atmospheric absorp-

tion bands (e.g., the Fraunhofer lines) contain a small flu-

orescence signal that can be detected with the appropri-

ate narrow-band instruments, allowing quantification of this

small signal against a larger background of solar radiation

(Damm et al., 2010; Meroni et al., 2009). Some of these

studies are the accidental consequence of satellites designed

for other purposes, so the fluorescence measurements have

not been optimized in terms of the signal-to-noise ratio.

Because this fluorescence signal in these satellite instru-

ments is relatively weak, data must be either aggregated over

large regions, annual timescales, or both, providing coarse,

biome-scale estimates instead of site-based measurements.

This aggregation has demonstrated remarkable coarse-scale

agreement between fluorescence and GPP for most biomes

(Frankenberg et al., 2011; Joiner et al., 2011, 2014), but nec-

essarily obscures the influence of fine-scale regulatory mech-

anisms, which have yet to be fully addressed in most SIF

studies.

Despite the novelty of these recent spaceborne applica-

tions, basic fluorescence theory has been understood for

decades (see reviews by Meroni et al., 2009; Porcar-Castell et

al., 2014), and the chlorophyll fluorescence signal is known

to be affected by both the amount of illuminated chloro-

phyll (related to APAR) and the degree of photosynthetic

down-regulation (related to non-photochemical quenching

and ε) (Porcar-Castell et al., 2014; van der Tol et al.,

2014). As a demonstration of the latter point, fluorescence

yield (1F / Fm′), typically derived using the pulse-amplitude

modulated (PAM) method, provides an excellent means of

assessing (ε), closely matching short-term PRI dynamics, but

far less scalable, since the PAM technique requires a satu-

rating light pulse, restricting the measurements to proximal

measurements (Gamon et al., 1997). Thus, it is plausible that

SIF, because it is readily scalable and sensitive to both terms

of the LUE model, can provide an optical metric that of-

ten correlates with realized rates of photosynthesis or GPP,

bypassing the need for independent assessment of the LUE

model terms (Fig. 5).

Since several of the recent observations of SIF have been

at a coarse biome scale, more work is needed to confirm the

SIF–GPP hypothesis, and to compare this method against

other established optical methods over a range of tempo-

ral and spatial scales, with proper consideration of sam-

pling context. Ideally, these studies would combine empiri-

cal and modeling studies and integrate optical sampling with

photosynthetic measurements in the context of the three-

dimensional vegetation structure and dynamic canopy light

regime (e.g., van der Tol et al., 2009, 2014). As of this

writing, few off-the-shelf commercial instruments have suf-

ficient narrow bandwidth, signal-to-noise ratio, and stabil-

ity to extract a reliable fluorescence signal needed for such

work. Consequently, there is a need for better instrumenta-

tion, and several research groups are actively developing and

testing improved instruments for proximal SIF application.

Currently, there is ample opportunity for testing the SIF flu-

orescence approach using the flux tower network and LUE

model as a validation framework. Ideally, such experiments

would include not only fluxes, but also other optical measure-

ments (e.g., irradiance and NDVI and PRI) to independently

and simultaneously assess the LUE model components illus-

trated in Fig. 5.

4 Sampling considerations: a question of scale

When considering the operational scale of ecosystem flux

measurements using eddy covariance, the challenges of in-

tegration with optical sampling across scales becomes clear.

Many eddy covariance systems collect data at 10 to 20 Hz,

and report summary data on half-hourly time steps (Burba

and Anderson, 2010). When expressing net primary produc-

tion (NPP), yearly aggregated carbon uptake is a common

expression. Aggregating flux data over such large temporal

scales misses many of the fine-scale regulatory processes de-

scribed above, each of which can provide a partial under-

standing of the environmental constraints and physiological

responses that can contribute to the overall controls of photo-

synthesis or productivity. Thus, a key challenge in comparing

optical and flux measurements lies in careful consideration of

scale, and development of the most appropriate methods for

sampling and subsequent data aggregation in the temporal or

spatial dimensions. Because of the complexity of stand light

regimes, angular scale (e.g., sun angle and view angle) can

be considered an additional sampling dimension. The spec-

tral scale represents an additional sampling dimension that

must be carefully matched to the question at hand. Key ex-

amples of scaling issues as applied to optical measurements

are further discussed below.
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4.1 Spatial dimension

Due to the inherent variability of the flux tower footprint

(Vesala et al., 2008), matching the full sampling region with

optical sampling is a challenging task. From a practical per-

spective, it is difficult to obtain a meaningful, spatially rep-

resentative sampling of the footprint without disturbing the

vegetation or flux measurements themselves. While tractable

in short-statured vegetation, this becomes far more difficult

for vegetation exceeding 2–3 m in height. A brief discussion

of instrumentation is warranted here. The choice of method

and its proper application depends to a large extent on the

particular sampling objective. To follow basic physiologi-

cal processes, high-frequency leaf- or canopy-scale sampling

is often used, and automated methods may be necessary.

For fully characterizing the flux tower footprint, fine-grained

sampling (ideally 1 m2 on a daily time step or finer) is of-

ten optimal. Most publicly available satellite data are typ-

ically too coarse-grained to provide this level of spatially

detailed footprint monitoring. Commercial satellite options,

some of which sample at fine spatial scales, tend to be cost

prohibitive for routine applications. Airborne sampling can

provide a flexible platform to help fill this need, but typi-

cally at a high cost. Consequently, to sample in the footprint,

many new applications of field spectrometers have been de-

veloped (Fig. 6). Most of these methods are either limited in

height (Fig. 6a, c) or in spatial replication (Fig. 6b), making

full footprint sampling difficult. The advent of inexpensive

drones that can carry small spectrometers (Fig. 6d) now of-

fer improved optical coverage of the entire flux footprint, as

technical and legal issues (Elias, 2012) become resolved. Al-

ternatively, new automated, portable sensors, including two-

band NDVI or PRI sensors (Eklundh et al., 2011; Harris et

al., 2014; Gamon et al., 2015) allow greater flexibility in

sampling, particularly in the time domain. Wireless sensor

networks enable improved spatial coverage, but at added cost

and complexity. Affordable, image-based methods, includ-

ing multi-band cameras, portable imaging spectrometers, and

webcams (Fig. 6b), are now becoming widely available (e.g.,

Richardson et al., 2009) and offer the interpretive power of

imagery, but with additional analytical challenges resulting

from ill-defined sampling geometry, which can create dif-

ficulties when trying to conduct cross-site or multi-season

analyses. Due to the disparate, evolving nature of these dif-

ferent sampling methods, a key informatics challenge lies in

the integration of data collected, often with distinct propri-

etary formats, over contrasting scales. Flux tower sites pro-

vide ideal test beds for developing integrated approaches for

multiple sensors, and this could help in evaluating scaling

effects and emergent properties.

4.2 Angular dimension

Because vegetation optical signals have a strong angle-

dependency, consideration and normalization of sampling

Figure 6. Optical sampling methods applied to spatially extensive

sampling within flux tower footprint. (a) Hand sampling along a

boardwalk leading to a flux tower, (b) automated sampling with an

automated spectrometer (“AMSPEC”) and webcam mounted on a

flux tower (adapted from Hilker et al., 2010; Hilker et al., 2011),

(c) automated sampling with a tram, a motorized cart on a track,

and (d) airborne sampling with an octocopter drone (photo cour-

tesy Richard Streeter and Alasdair Mac Arthur). (a–c) depict the

“UniSpec DC” (PP Systems, Amesbury MA), a dual detector in-

strument that can be configured for manual or automatic sampling

from a variety of platforms. The “Cinestar 8” drone (d) carries

a dual field-of-view VNIR “Piccolo” spectrometer (developed by

Alasdair MacArthur NERC FSF), comprised of a spectral detector

(USB 2000, Ocean Optics, Dunedin FL, USA) with a shuttered, bi-

furcated fiber providing alternate upward and downward sampling.

Note that all methods correct for changing sky conditions, either by

simultaneous (a–c), or alternating (d) radiance and irradiance sam-

pling, allowing expanded sampling in both space and time to match

the scale of eddy covariance measurements.

geometry is needed if standard products are to be generated

and compared (Barton and North, 2001; Hilker et al., 2008,

2011). Traditionally, optical remote sensing emphasizes the

nadir (vertical) view, in part because it provides a standard

that can be readily replicated and measured from above.

Multi-angle measurements can help provide a deeper func-

tional understanding of vegetation optical signals relevant to

fluxes (Hilker et al., 2011), largely because vegetation phys-

iology and resulting patterns of reflected radiation are so re-

sponsive to illumination. This can become especially relevant

when evaluating diurnal responses or comparing measure-

ments across latitudes, seasons, or contrasting stand struc-

tures (Hilker et al., 2010). Vegetation physiology and struc-

ture both affect the measured optical signals, which are also

strongly influenced by sun angle or sky conditions (Barton

and North, 2001). The interplay between these factors can

be complex, varying with wavelength and time and vegeta-

tion type, creating an overdetermined situation that makes it
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Figure 7. Angular response of several optical vegetation indices,

including visible or near-infrared (NIR) reflectance (top panel), the

NDVI, and the PRI (bottom panel). Data from a barley (Hordeum

vulgare L.) field in Edmonton, Alberta (Canada), at solar noon on

24 July 2009 using a UniSpec DC (PP Systems, Amesbury, MA,

USA) mounted on a tram system (Fig. 6c). Each point is a mean of

52–74 samples collected along a 50m track (running E–W) within

30 min of solar noon. Sensor view angle was measured in the solar

principal plane. The backscatter direction (looking away from the

midday sun) is indicated by negative sensor view angles.

hard to resolve the underlying physiological and structural

components influencing optical signals related to fluxes. The

strong effects of view angle alone can yield contradictory

conclusions regarding the interpretation of physiological sig-

nals such as PRI (Drolet et al., 2008; Goerner et al., 2009;

Guarini et al., 2014).

The significant effect of view angle on albedo, NDVI and

PRI is illustrated for a barley (Hordeum vulgare L.) stand

in Fig. 7, demonstrating distinct patterns for each spectral re-

gion and index, and indicating a stronger midday PRI decline

towards the backscatter direction. Note that each index and

wavelength region has a unique angular response, and this

would be expected to vary with vegetation structure, latitude,

time of year, time of day, and sky conditions. For this barley

stand, NDVI and PRI both decline towards the backscatter

direction (the “hotspot,” indicated by high albedo), but in dif-

ferent ways. Due to this complexity, it is often more effective

to sample richly in time and space at multiple view angles,

allowing the generation of response curves that can be repre-

sented as continuous functions (Fig. 7). This approach allows

normalization for view angle, enabling systematic isolation

of the effect of individual factors on the resulting optical sig-

nals, sometimes greatly improving the relationship between

optical signals and fluxes (Hilker et al., 2008, 2011), and

improving agreement across sites with different vegetation

types (Hilker et al., 2010). Alternatively, diurnal measure-

ments can be used to model vegetation reflectance responses

to sun angle, also normalizing for confounding effects, sim-

ilarly improving the relationship between vegetation indices

and fluxes (Sims et al., 2006). Clearly, an optical sampling

campaign must be sensitive to stand structure and illumina-

tion, and the “best” method for addressing these angular ef-

fects remains an active area of investigation.

4.3 Temporal dimension

New developments in technology have greatly expanded our

ability to measure optical signals over a range of tempo-

ral scales, allowing continuous optical sampling within the

flux tower footprint (Huemmrich et al., 1999; Hilker et al.,

2007; Gamon et al., 2010; Eklundh et al., 2011). Tradition-

ally, optical remote sensing has been limited to clear-sky con-

ditions. In many of the world’s biomes, frequent cloud cover

restricts sampling to few clear-sky options, making represen-

tative sampling of the time domain difficult. New proximal

methods are changing this by sampling under the atmosphere

using instruments that correct for changing sky conditions,

typically by normalizing between paired sensors comparing

simultaneous upwelling and downwelling radiation (Fig. 6).

By reducing the requirement for clear sky conditions, these

methods greatly expand the ability to collect optical data

across time, better matching the continuous data collected

by eddy covariance, and providing a continuous optical phe-

nology that often closely relates to seasonal patterns of pho-

tosynthetic activity (Huemmrich et al., 1999; Gamon et al.,

2010). They also reveal impacts of sky conditions on vegeta-

tion optical responses, providing a useful analogue to eddy

covariance studies directly demonstrating effects of cloud

cover on ecosystem carbon uptake. These eddy covariance

studies have sometimes reported higher photosynthetic rates

or light-use efficiencies for vegetation stands under clouds

relative to clear skies due to deeper light penetration under

diffuse skies (Goulden et al., 1997; Knohl and Baldocchi,

2008). This seemingly counterintuitive conclusion can be

further explained by optical measurements that demonstrate

deeper light penetration under diffuse skies (Gamon et al.,

2006a). Since we now have automated methods that sample

continuously under all sky conditions, scale-appropriate opti-

cal measurements can now be used to provide an independent

explanation and validation of flux responses to changing sky

conditions. Because of the methods of temporal aggregation

used for eddy covariance data, similar temporal aggregation

of optical data may also be needed, particularly when inte-

grating optical data with fluxes.
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4.4 Spectral dimension

For practical reasons, this review has emphasized a small

number of possible optical sampling methods and bands il-

lustrative of key aspects of the LUE model. However, the

realm of optical sampling spans a wide spectral range of the

solar spectrum, from roughly 300 nm (in the near-UV) to

2500 nm (the short-wave infrared). A full consideration of

all wavebands, indices, and other spectroscopic methods is

beyond the scope of this review, and the reader is referred

to a number of recent publications for a more comprehensive

exploration of the spectral dimension (e.g., Ustin et al., 2004,

2009; Sims and Gamon 2002). However, a few salient points

are summarized here. Depending upon the specific sampling

goal, some methods use relatively few, discrete bands to as-

sess particular features, while others may utilize the full spec-

tral range, yielding a seemingly infinite number of sampling

possibilities. Similarly, analytical approaches can range from

specific targeted approaches using a few optimal formula-

tions (e.g., Sims and Gamon, 2002, 2003) to more open-

ended statistical methods to discover which bands or for-

mulations can yield the best result for a given purpose or

context (e.g., Serbin et al., 2012). Proper attention to wave-

band definition (both spectral position and bandwidth) is es-

sential, particularly for detecting specific physiological fea-

tures (e.g., pigments, water content, or chlorophyll fluores-

cence). Many narrow-band indices such as PRI are noto-

riously sensitive to formulation, requiring users and meta-

data to specify the exact band definitions used, and this may

vary slightly with instrument manufacturer (Castro et al.,

2006), or even among instruments from the same manufac-

turer (Harris et al., 2015). Greater attention to standardiza-

tion of instruments, calibration procedures, and field meth-

ods is clearly needed. Given the multiplicity of brands, cali-

bration methods, and field protocols in use, improved atten-

tion to band definitions in reporting data and metadata is also

needed, particularly if we are to compare results across in-

struments or studies (Gamon et al., 2010; Balzarolo et al.,

2011). With the increased availability of full-spectral instru-

ments leading to increased exploration of the spectral domain

(Ustin et al., 2004, 2005; Campbell et al., 2013), the topic of

the spectral dimension will undoubtedly require further at-

tention.

5 Vegetation optical types

The variation in optical behavior can reveal contrasting veg-

etation light absorption (APAR), light-use efficiency (ε),

and other functional differences, particularly when combined

with flux measurements, reflecting differing environmental

and evolutionary constraints. This introduces the hypothesis

of vegetation optical types: functionally significant variation

in optical properties resulting from a combination of leaf

traits, canopy structure, and phenology (Ustin and Gamon,

2010). This concept applies to remote sensing of biodiversity,

but also provides a useful framework for analyzing the func-

tional responses of different vegetation types, ecosystems, or

biomes having different environmental limitations on fluxes.

While full-spectral methods are often used, we illustrate the

concept and its application with a focus on NDVI and PRI,

largely because of their relevance to the LUE model and pho-

tosynthetic function.

One example of optical types emerges from the global

biome mapping effort based on NDVI phenology (Defries

and Townshend, 1994). At the ecosystem scale, using the

light-response and LUE model framework (Fig. 3b), optical

and flux measurements can be combined to distinguish op-

tical types from environments having different resource lev-

els associated with contrasting light-use efficiencies (ε val-

ues) (Huemmrich et al., 2011), providing a convenient basis

for upscaling fluxes (Huemmrich et al., 2013). At the leaf or

canopy level, there is a well-developed history of vegetation

functional categories, based on concepts of adaptation and

resource theory (Grime, 1977; Bloom et al., 1985; Wright et

al., 2004). Sampling efforts can address categorical distinc-

tions such as evergreens, annuals, or deciduous perennials

(Gamon et al., 1997), or can be represented as a continu-

ous spectrum of trait variation (Wright et al., 2004). In both

cases, optical measurements can provide useful additional

plant trait information regarding evolutionary responses or

resource limitations at a range of scales. There is ample op-

portunity to further define this concept, to apply it to the flux

tower footprint, and to use it to further clarify controls on

surface–atmosphere fluxes of mass and energy and as a foun-

dation for upscaling. Integrating optical sampling across the

global flux tower network provides an ideal opportunity to

further explore the optical type hypothesis.

In a recent review and meta-analysis of the PRI litera-

ture, Garbulsky et al. (2011) proposed that different ecosys-

tems having contrasting constraints on carbon flux should

also have contrasting optical properties reflected in PRI and

NDVI dynamics. According to this hypothesis, the relation-

ship between these optical indices and ecosystem carbon flux

should vary across ecosystems, due to the contrasting en-

vironmental constraints and evolutionary responses to these

constraints. Here, we restate this hypothesis to illustrate how

NDVI and PRI signals might vary across functionally dis-

tinct vegetation types to yield complementary information

on fluxes (Fig. 8). Accordingly, carbon fluxes in deciduous

or annual vegetation (e.g., grasslands or most crops showing

strong growth cycles) should be primarily driven by canopy

structural changes, detectable via NDVI and related to LAI,

fAPAR, and other structural parameters strongly influenc-

ing ecosystem fluxes (Fig. 8a). The hypothesis predicts that

these ecosystems would exhibit less variation associated with

changing efficiency (ε), detectable as PRI (Fig. 8c). On the

other hand, evergreen vegetation with little seasonal varia-

tion in canopy structure should show a weak relationship be-

tween NDVI and carbon fluxes (Fig. 8b), but would show
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Figure 8. Hypothesized relationships between NDVI (a and b) and

PRI (c and d) and daily NEE or GEE for annual or deciduous (left)

or evergreen (right) vegetation. In this example, more positive val-

ues indicate greater photosynthetic carbon uptake. Modified from

Garbulsky et al. (2011).

a strong correlation between PRI and fluxes (Fig. 8c), driven

by the strong seasonal changes in chlorophyll : carotenoid ra-

tios (Wong and Gamon, 2015a, b; Gamon et al., 2015).

This hypothesis of contrasting, complementary physiolog-

ical and structural controls for different optical types has yet

to be fully tested across a wide range of ecosystems and con-

ditions, in part because the lack of standardized sampling

protocols and appropriate databases have made it difficult to

directly compare separate measurements from different stud-

ies, instruments, and ecosystems. Fully testing this comple-

mentarity hypothesis requires properly replicated instrumen-

tation and experimental design, something that can best be

achieved within the context of combined flux and optical net-

works. The benefit of this approach is that it can guide the ap-

plication and inform the parameterization of the LUE model

across contrasting ecosystems. In landscapes dominated by

annual or deciduous vegetation, a good characterization of

APAR via NDVI and irradiance measurements might be suf-

ficient to define the annual course of gas exchange; in land-

scapes dominated by evergreens, the additional information

on ε becomes necessary, and sampling PRI could improve

our understanding of flux controls and phenology (Wong and

Gamon, 2015a, b). Adding standardized NDVI and PRI sen-

sors to the flux tower network, and comparing ground mea-

surements to satellite measurements, presents and ideal op-

portunity to test this hypothesis of complementary NDVI and

PRI behavior associated with different vegetation types.

6 The path forward

In the past, remote sensing provided useful estimates of bio-

physical parameters and a powerful means of extrapolat-

ing beyond the flux tower footprint. However, a newer crop

of optical sampling methods has now emerged that allow

deeper exploration of both physiological and structural con-

trols on carbon fluxes. Two decades of proximal remote sens-

ing within flux tower footprints have yielded many studies

that relate optical signals to various components of ecosys-

tem carbon fluxes. However, the literature largely remains

a series of site-based observations, and we are still a long

way from a comprehensive understanding of how best to in-

tegrate optical and flux measurements across biomes. Simi-

larly, most analyses have been limited to one or a few veg-

etation indices, rather than exploring the full power of the

electromagnetic spectrum, but improvements in instrumen-

tation and data processing methods are now beginning to

change that (Ustin et al., 2004; Serbin et al., 2012; Camp-

bell et al., 2013). Comparative, experimental approaches are

needed both within and across sites. The goal of this review

has been to consider accomplishments so far, and to suggest

directions and hypotheses for future work in the context of

the global flux tower network.

Clearly, the LUE model provides a useful framework that

is readily integrated with photosynthetic flux measurements,

but we are left with several questions. Is there a single, con-

sistent way to parameterize the LUE model from remote

sensing, or does this model have to be calibrated individually

for each ecosystem? Can the optical type concept be univer-

sally useful as a means of categorizing vegetation functional

response and upscaling from sites to larger regions? Alterna-

tively, are we better served by continuous-field approaches

that interpret optical measurements in terms of continuous

responses to environmental conditions and resource gradi-

ents? How do newly emerging SIF methods compare to other

more established optical methods based on reflectance? Ex-

perimental, multi-scale, cross-site approaches are needed to

more fully address these questions.

A full functional characterization of the flux tower foot-

print requires more than the LUE model, and continued com-

parisons with other approaches are also warranted. In ad-

dition to the optical sampling methods, other methods not

fully discussed here, including thermal, lidar, microwave,

and acoustic remote sensing, can add to our understanding of

functional processes within the footprint. To obtain a deeper

mechanistic understanding, the LUE approach can be com-

pared to other, more biochemically based models of photo-

synthetic carbon flux (e.g., Sellers et al., 1992b, 1996; Serbin

et al., 2012). Presumably, integration of several different and

complementary optical methods (e.g., reflectance with fluo-

rescence and canopy absorbance, including indices and full-

spectral approaches) would provide a more complete assess-

ment of ecosystem function than any single method alone

(Fig. 5). Better integration of optical with structural (e.g.,

LIDAR) measurements, particularly using canopy radiative

transfer models (e.g., van der Tol et al., 2009), would pro-

vide further insight into the structural vs. physiological con-

trols on carbon flux, and could help explain emergent proper-
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ties. Integration of thermal sampling methods could help in-

tegrate energy balance and water vapor fluxes with the LUE

approach (Anderson et al., 2008; Schull et al., 2015).

We need to expand our optical exploration of pigments be-

yond chlorophyll content and xanthophyll cycle pigment ac-

tivity to include a wider range of plant pigments and their

functional roles, with a particular focus on the rich world of

carotenoid biochemistry and function. This should include

the evaluation of carotenoid:chlorophyll pigment pools and

novel pigment indices as a generalized stress response af-

fecting isoprenoid emissions in addition to CO2 fluxes. Cur-

rently, our understanding of the role of carotenoids as opti-

cal indicators of stress responses is in its infancy, but is an

area ripe for further exploration. As new instruments and

platforms are developed, it is likely that new and improved

pigment indices will also emerge.

To accomplish these goals, we need more systematic de-

ployment of optical sensors with better attention to con-

textual information, as discussed above. Ideally, protocols

would be sufficiently standardized or defined to allow ready

comparisons across sites and studies. To match this de-

ployment, we need a capable and flexible informatics ap-

proach that encompasses the large data volume represented

by Fig. 2. This should accommodate not only flux and opti-

cal data, but also the essential ancillary data (e.g., pigment

data or meteorological data) and metadata needed to fully

interpret the optical and flux signals. Metadata systems that

can fully capture the full context of optical measurements are

needed. Such comprehensive data systems do not yet exist,

but elements exist or are under development. Extending these

existing databases and software tools to allow a more inte-

grated analysis of complex data sets would be a good starting

point.

Together, these approaches provide a richer understand-

ing of mechanisms controlling fluxes of CO2 and other trace

gases. Using the framework of the light response and LUE

model, optical methods can help partition fluxes, provide ad-

ditional methods of gap-filling, and facilitate upscaling meth-

ods based on the LUE model framework. The deeper under-

standing provided by integrating optical with flux sampling

can also provide practical benefits, including improved as-

sessment of ecosystem health, functional diversity, produc-

tivity, carbon sequestration, and surface–atmosphere feed-

backs.
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