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Abstract. This paper investigates how hyperspectral re-

flectance (between 350 and 1800 nm) can be used to infer

ecosystem properties for a semi-arid savanna grassland in

West Africa using a unique in situ-based multi-angular data

set of hemispherical conical reflectance factor (HCRF) mea-

surements. Relationships between seasonal dynamics in hy-

perspectral HCRF and ecosystem properties (biomass, gross

primary productivity (GPP), light use efficiency (LUE), and

fraction of photosynthetically active radiation absorbed by

vegetation (FAPAR)) were analysed. HCRF data (ρ) were

used to study the relationship between normalised differ-

ence spectral indices (NDSIs) and the measured ecosystem

properties. Finally, the effects of variable sun sensor view-

ing geometry on different NDSI wavelength combinations

were analysed. The wavelengths with the strongest corre-

lation to seasonal dynamics in ecosystem properties were

shortwave infrared (biomass), the peak absorption band for

chlorophyll a and b (at 682 nm) (GPP), the oxygen A band

at 761 nm used for estimating chlorophyll fluorescence (GPP

and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI

with the strongest correlation to (i) biomass combined red-

edge HCRF (ρ705) with green HCRF (ρ587), (ii) GPP com-

bined wavelengths at the peak of green reflection (ρ518,

ρ556), (iii) LUE combined red (ρ688) with blue HCRF (ρ436),

and (iv) FAPAR combined blue (ρ399) and near-infrared

(ρ1295) wavelengths. NDSIs combining near infrared and

shortwave infrared were strongly affected by solar zenith an-

gles and sensor viewing geometry, as were many combina-

tions of visible wavelengths. This study provides analyses

based upon novel multi-angular hyperspectral data for val-

idation of Earth-observation-based properties of semi-arid

ecosystems, as well as insights for designing spectral char-

acteristics of future sensors for ecosystem monitoring.

1 Introduction

Hyperspectral measurements of the Earth’s surface pro-

vide relevant information for many ecological applications.

An important tool for spatial extrapolation of ecosystem

functions is to study how spectral properties are related

to in situ measured ecosystem properties. These relation-

ships found the basis for upscaling using Earth observa-

tion (EO) data. Continuous in situ measurements of hyper-

spectral reflectance in combination with ecosystem proper-

ties are thereby essential for improving our understanding of

the functioning of the observed ecosystems. Strong relation-

ships have, for example, been found between information in

the reflectance spectrum and ecosystem properties such as

leaf area index (LAI), fraction of photosynthetically active

radiation (PAR) absorbed by the vegetation (FAPAR), light

use efficiency (LUE), biomass, vegetation primary produc-

tivity, vegetation water content, and nitrogen and chlorophyll

content (e.g. Thenkabail et al., 2012; Tagesson et al., 2009;
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Gower et al., 1999; Sjöström et al., 2009; Sims and Gamon,

2003). In situ observations of spectral reflectance are also

important for parameterisation and validation of canopy re-

flectance models, as well as space- and airborne products

(Coburn and Peddle, 2006).

Very few sites across the world exist with an instrumen-

tal setup designed for multi-angular continuous hyperspec-

tral measurements. Leuning et al. (2006) present a system

mounted in a 70 m tower above an evergreen eucalyptus for-

est in New South Wales, Australia, which measures spectral

hemispherical conical reflectance factors (HCRFs)1 hourly

throughout the year between 300 and 1150 nm at four az-

imuth angles. Hilker et al. (2007, 2010) describe an au-

tomated multi-angular spectro-radiometer for estimation of

canopy HCRF (AMSPEC) mounted on a tower above a

coniferous forest in Canada. Spectral HCRF is sampled be-

tween 350 and 1200 nm year-round under different viewing

and sun angle conditions, achieved by collection of data in

a near 360◦ view around the tower with adjustable viewing

zenith angles. Even though in situ measurements of multi-

angular hyperspectral HCRF are fundamental for the EO re-

search community, such data sets are still rare and, at the

present state, they do not cover different biomes at the global

scale (Huber et al., 2014).

There are many methods for analysing relationships be-

tween hyperspectral reflectance and ecosystem properties,

such as multivariate methods, derivative techniques, and ra-

diative transfer modelling (Bowyer and Danson, 2004; Cec-

cato et al., 2002; Danson et al., 1992; Roberto et al., 2012).

Still, due to its simplicity, the combination of reflectance

into vegetation indices is the major method for upscaling

using EO data. By far, the most commonly applied vege-

tation indices are those based on band ratios, e.g. the nor-

malised difference vegetation index (NDVI), which is calcu-

lated by dividing the difference in the near-infrared (NIR)

and red wavelength bands by the sum of the NIR and red

bands (Tucker, 1979; Rouse et al., 1974). The NIR radiance

is strongly scattered by the air–water interfaces between the

cells, whereas red radiance is absorbed by chlorophyll and

its accessory pigments (Gates et al., 1965). The normalisa-

tion with the sum in the denominator is a means to reduce

the effects of solar zenith angle, sensor viewing geometry,

and atmospheric errors as well as enhancing the signal of the

observed target (e.g. Qi et al., 1994; Inoue et al., 2008).

Wavelength specific spectral reflectance is known to be re-

lated to leaf characteristics such as chlorophyll concentra-

1Different reflectance terminologies have been used to inform

on spectral measurements in the field by the remote sensing com-

munity leading to suggestions to the proper use of the terminol-

ogy (Martonchik et al., 2000). All field spectro-radiometers mea-

sure HCRF (hemispherical conical reflectance) if the field of view

(FOV) of the sensor is larger than 3◦ (Milton et al., 2009). HCRF

is therefore used throughout this paper to support the correct in-

ference and usage of reflectance products (Schaepman-Strub et al.,

2006; Milton et al., 2009).

tion, dry matter content, internal structure parameters, and

equivalent water thickness (Ceccato et al., 2002). Hyper-

spectral reflectance data can be combined into a matrix of

normalised difference spectral indices (NDSIs), following

the NDVI rationing approach. Correlating the NDSI with

ecosystem properties provides a way to gain an improved

empirically based understanding of the relationship between

information in the reflectance spectrum with ground surface

properties (e.g. Inoue et al., 2008). Several studies have anal-

ysed relationships between hyperspectral HCRF, NDSI, and

ecosystem properties (e.g. Thenkabail et al., 2000; Cho et al.,

2007; Psomas et al., 2011; Inoue et al., 2008; Gamon et al.,

1992; Feret et al., 2008; Thenkabail et al., 2012). Still, it is

extremely important to examine these relationships for dif-

ferent ecosystems across the Earth and investigate their ap-

plicability for different environmental conditions and under

different effects of biotic and abiotic stresses.

A strong correlation between an NDSI and an ecosys-

tem property does not necessarily indicate that the NDSI is

a good indicator of vegetation conditions to be applied to

EO systems. Visible, NIR, and shortwave infrared (SWIR)

have different sensitivity to variations in solar zenith angles,

stand structure, health status of the vegetation, vegetation and

soil water content, direct/diffuse radiation ratio, and sensor

viewing geometry. The influence of sun–sensor geometry on

the reflected signal has been studied using radiative trans-

fer models and airborne (e.g. AirMISR) as well as satellite-

based data from instruments such as CHRIS-PROBA, MISR,

or POLDER (Huber et al., 2010; Maignan et al., 2004; Javier

García-Haro et al., 2006; Jacquemoud et al., 2009; Verhoef

and Bach, 2007; Laurent et al., 2011). However, effects of

variable sun angles and sensor viewing geometries are not

well documented in situ for different plant functional types

of natural ecosystems except for some individual controlled

experiments (Hilker et al., 2008; Sandmeier et al., 1998;

Schopfer et al., 2008). Improved knowledge regarding the in-

fluence from sun–sensor variability on different NDSI com-

binations is thereby essential for validating the applicability

of an NDSI for EO upscaling purposes.

The Dahra field site in Senegal, West Africa, was es-

tablished in 2002 as an in situ research site to improve

our knowledge regarding properties of semi-arid savanna

ecosystems and their responses to climatic and environmen-

tal changes (Tagesson et al., 2015b). A strong focus of this

instrumental setup is to gain insight into the relationships

between ground surface reflectance and savanna ecosystem

properties for EO upscaling purposes. This paper presents a

unique in situ data set of seasonal dynamics in hyperspectral

HCRF and demonstrates how it can be used to describe the

seasonal dynamics in ecosystem properties of semi-arid sa-

vanna ecosystems. The objectives are threefold: (i) to quan-

tify the relationship between seasonal dynamics of in situ hy-

perspectral HCRF between 350 and 1800 nm and ecosystem

properties (biomass, gross primary productivity (GPP), LUE,

and FAPAR), (ii) to quantify the relationship between NDSI
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Table 1. Information about the instrumental setup for the measured environmental variables. HCRF is hemispherical conical reflectance

factor, GPP is gross primary productivity, LUE is light use efficiency, and FAPAR is fraction of photosynthetically active radiation absorbed

by the vegetation. Min and Max are minimum and maximum values measured, respectively, DW is dry weight, C is carbon, and MJ is

megajoules. The year started is the first year with measurements. Time is in UTC. For more information about the instrumental setup, see

Tagesson et al. (2015b).

Variable Year Unit Sensor company Sensor Data Aggregation Data Min Max

started size method gaps

Hyperspectral HCRF 2011 – FieldSpec 3 ASD Inc., Colorado, USA 371 Daily median 31 % 0 1

Herbaceous biomass 2006 g DW m−2 – – 12 Daily mean 28 plots – 0 223

GPP 2010 g C d−1 LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 285 Daily sums 56 % −14.22 −0.22

Gill Instruments, Hampshire, UK

LUE 2010 g C MJ−1 LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 272 Daily estimates 28 % 0.02 1.89

Gill Instruments, Hampshire, UK

FAPAR 2004 – Quantum SKP 215 Skye Instruments Ltd, 369 Daily averages 10:00–16:00 1 % 0.07 0.77

Llandridod Wells, UK

with different wavelength combinations (350 to 1800 nm)

and the measured ecosystem properties, and (iii) to analyse

and quantify effects of variable sun angles and sensor view-

ing geometries on different NDSI combinations.

2 Materials and method

2.1 Site description

All measurements used for the present study were conducted

at the Dahra field site in the Sahelian ecoclimatic zone north-

east of the town Dahra in the semi-arid central part of Senegal

(15◦24′10′′ N, 15◦25′56′′W) during 2011 and 2012 (Fig. 1).

Rainfall is sparse in the region, with a mean annual sum

of 416 mm (1951–2003). More than 95 % of the rain falls

between July and October, with August being the wettest

month. The mean annual air temperature is 29 ◦C (1951–

2003); May is the warmest month and January the cold-

est, with mean monthly temperatures of 32 and 25 ◦C, re-

spectively. The Dahra site has a short growing season (∼ 3

months) following the rainy season, with leaf area index

generally ranging between 0 and 2 (Fensholt et al., 2004).

South-western winds dominate during the rainy season and

north-eastern winds during the dry season. The area is dom-

inated by annual grasses (e.g. Schoenefeldia gracilis, Dig-

itaria gayana, Dactyloctenium aegypticum, Aristida muta-

bilis, and Cenchrus biflorus) (Mbow et al., 2013), and trees

and shrubs (e.g. Acacia senegal and Balanites aegyptiaca)

are relatively sparse (∼ 3 % of the land cover) (Rasmussen et

al., 2011). The average tree height was 5.2 m and the peak

height of the herbaceous layer was 0.7 m (Tagesson et al.,

2015b). A thorough description of the Dahra field site is

given in Tagesson et al. (2015b).

2.2 Meteorological and vegetation variables

A range of meteorological variables have been measured

from a tower at the Dahra field site for more than 10 years:

air temperature (◦C) and relative humidity (%) were mea-

sured at 2 m height; soil temperature (◦C) and soil moisture

(volumetric water content (m3 m−3
× 100) (%)) were col-

lected at 0.05 m depths; rainfall (mm) was measured at 2 m

height; incoming (inc) and reflected (ref) PAR (µmol m−2 s−1)

was measured at 10.5 m height; and PAR transmitted through

the vegetation (PARtransmit) was measured at six plots at

∼ 0.01 m height (Table 1) (Tagesson et al., 2015b). The

PARtransmit was measured within a distance of 7 m from the

tower. PAR absorbed by the vegetation (APAR) was esti-

mated by

APAR= PARinc−PARref− (1−αsoil)×PARtransmit, (1)

where αsoil is the PAR albedo of the soil, which was mea-

sured as 0.20 (Tagesson et al., 2015b). FAPAR was estimated

by dividing APAR by PARinc (Tagesson et al., 2015b). All

sensors were connected to a CR-1000 logger in combination

with a multiplexer (Campbell Scientific Inc., North Logan,

USA). Data were sampled every 30 s and stored as 15 min

averages (sum for rainfall).

The total above-ground green biomass (g m−2) of the

herbaceous vegetation was sampled approximately every 10

days during the growing seasons 2011 and 2012 at twenty-

eight 1 m2 plots located along two ∼ 1060 m long diagonal

transects (Fig. 1f) (Mbow et al., 2013). The method applied

was destructive, so even though the same transects were used

for each sampling date, the plots were never positioned at

exactly the same location. The study area is flat and charac-

terised by homogenous grassland savanna and the conditions

in these sample plots are generally found to be representative

for the conditions in the entire measurement area (Fensholt

et al., 2006). All above-ground green herbaceous vegetation

matter was collected and weighed in the field to get the fresh

weight. The dry matter (DW) was estimated by oven-drying

the green biomass. For a thorough description regarding the

biomass sampling we refer the reader to Mbow et al. (2013).
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Figure 1. Map and photos of the Dahra field site and measured areas. The map shows the location of Dahra within the Sahel (orange

area). (a) Photo of the footprint of the eddy covariance (EC) tower; (b) photo of the EC tower; (c) photo of the meteorological tower with

the spectroradiometers; (d) photo of the instantaneous field of view (IFOV) of the spectroradiometers during the rainy season; (e) photo

of the IFOV of the spectroradiometer during the beginning of the dry season; and (f) Quickbird image from the Dahra field site from

11 September 2011 showing the location of the meteorological tower, the EC tower, the biomass sampling plots, and the footprint of the EC

measurements. The EC footprint area is the median 70 % cumulative flux distance from the eddy covariance tower. The photos of the EC

tower and its footprint are taken during the rainy season, whereas the photo of the meteorological tower shows the late dry season.

2.3 Estimates of gross primary productivity and light

use efficiency

Net ecosystem exchange of CO2 (NEE) (µmol CO2 m−2 s−1)

was measured with an eddy covariance system, consisting of

an open-path infrared gas analyser (LI-7500, LI-COR Inc.,

Lincoln, USA) and a three-axis sonic anemometer (Gill in-

struments, Hampshire, UK) from 18 July 2011 until 31 De-

cember 2012 (Table 1). The sensors were mounted 9 m above

the ground on a tower (placed 50 m south of the tower in-

cluding the meteorological and spectroradiometric sensors)

(Fig. 1b and f). Data were sampled at 20 Hz rate. The post-

processing was done with the EddyPro 4.2.1 software (LI-

COR Biosciences, 2012), and statistics were calculated for

30 min periods. The post-processing includes 2-D coordinate

rotation (Wilczak et al., 2001), time lag removal between

anemometer and gas analyser by covariance maximisation

(Fan et al., 1990), despiking (Vickers and Mahrt, 1997) (plau-

sibility range: window average ±3.5 SD), linear detrending

(Moncrieff et al., 2004), and compensation for density fluc-

tuations (Webb et al., 1980). Fluxes were also corrected for

high-pass (Moncrieff et al., 1997) and low-pass filtering ef-
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fects (Moncrieff et al., 2004). The data were filtered for

steady state and fully developed turbulent conditions, follow-

ing Foken et al. (2004), and according to statistical tests as

recommended by Vickers and Mahrt (1997). Flux measure-

ments from periods of heavy rainfall were also removed. For

a thorough description of the post processing of the raw eddy

covariance data, see Tagesson et al. (2015a).

A possible source of error in a comparison between EC-

based variables and spectral HCRF is the difference in foot-

print/instantaneous field of view (IFOV) between the sensors.

The IFOV of the spectroradiometer setup contains only soil

and herbaceous vegetation. The footprint of the EC tower

was estimated using a model based on measurement height,

surface roughness, and atmospheric stability (Hsieh et al.,

2000). The median point of maximum contribution is at

69 m, and the median 70 % cumulative flux distance is at

388 m from the tower. The footprint of the EC tower contains

semi-arid savanna grassland with ∼ 3 % tree coverage, and

the EC data are thereby affected by both woody and herba-

ceous vegetation (Fig. 1a and f). But given the low tree cov-

erage, and the dominant influence of herbaceous vegetation

on the seasonal dynamics in CO2 fluxes, we still consider it

reasonable to compare EC fluxes with seasonal dynamics in

spectral HCRF of the herbaceous vegetation.

The daytime NEE was partitioned into GPP and ecosys-

tem respiration using the Mitscherlich light-response func-

tion against PARinc (Falge et al., 2001). A 7-day moving win-

dow with 1-day time steps was used when fitting the func-

tions. By subtracting dark respiration (Rd) from the light-

response function, it was forced through 0, and GPP was es-

timated:

GPP=−(Fcsat+Rd)×

(
1− e

(
−α×PARinc
Fcsat+Rd

))
, (2)

where Fcsat is the CO2 uptake at light saturation (µmol

CO2 m−2 s−1) and α is the quantum efficiency or the ini-

tial slope of the light-response curve (µmol CO2 (µmol

photons)−1) (Falge et al., 2001). Vapour pressure deficit

(VPD) limits GPP and to account for this effect, the Fcsat

parameter was set as an exponentially decreasing function:

Fcsat =

{
Fcsat× e

−k(VPD−VPD0) VPD> VPD0

Fcsat VPD< VPD0
(3)

where VPD0 is 10 hPa following the method by Lasslop et

al. (2010).

Gaps in GPP less than or equal to 3 days were filled us-

ing three different methods: (i) gaps shorter than 2 h were

filled using linear interpolation, (ii) daytime gaps were filled

by using the light-response function for the 7-day moving

windows, and (iii) remaining gaps were filled by using mean

diurnal variation 7-day moving windows (Falge et al., 2001).

A linear regression model was fitted between daytime GPP

and APAR for each 7-day moving window to estimate LUE,

where LUE is the slope of the line.

2.4 Hyperspectral HCRF measurements and NDSI

estimates

Ground surface HCRF spectra were measured every 15 min

between sunrise and sunset from 15 July 2011 until 31 De-

cember 2012 using two FieldSpec 3 spectrometers with fibre

optic cables (Table 1) (ASD Inc., Colorado, USA). The spec-

troradiometers cover the spectral range from 350 to 1800 nm

and have a FOV of 25◦. The spectral resolution is 3 nm

at 350–1000 nm and 10 nm at 1000–1800 nm and the sam-

pling interval is 1.4 nm at 350–1000 nm and 2 nm at 1000–

1800 nm. From these data, 1 nm spectra were calculated by

using cubic spline interpolation functions. One sensor head

was mounted on a rotating head 10.5 m above the surface (at

the same tower including instruments to measure meteoro-

logical variables), providing measurements of the herbaceous

vegetation from seven different viewing angles in a transect

underneath the tower (nadir, 15, 30, and 45◦ off-nadir angles

towards east and west). No trees or effects of shading of trees

are present in the IFOV of the data used in this study (Fig. 1).

A reflective cosine receptor is used to measure full-sky irra-

diance by having the second sensor head mounted on a 2 m

high stand pointing to a Spectralon panel (Labsphere Inc.,

New Hampshire, USA) under a glass dome.

Each sensor measurement starts with an optimisation to

adjust the sensitivity of the detectors according to the specific

illumination conditions at the time of measurement. The op-

timisation is followed by a dark-current measurement to ac-

count for the noise generated by the thermal electrons within

the ASD instruments that flow even when no photons are en-

tering the device. The measurement sequence starts with a

full-sky-irradiance measurement, followed by measurements

of the seven angles of the land surface and finalised by a sec-

ond full-sky-irradiance measurement. Thirty scans are aver-

aged to one measurement to improve the signal-to-noise ra-

tio for each measurement (optimisation, dark current, full-

sky irradiance, and each of the seven target measurements).

The full measurement sequence takes less than 1 min. The

two ASD instruments are calibrated against each other be-

fore and after each rainy season. Poor-quality measurements

caused by unfavourable weather conditions, changing illu-

mination conditions, and irregular technical issues were fil-

tered by comparing full-sky solar irradiance before and af-

ter the target measurements (Huber et al., 2014). The spec-

tral HCRF was derived by estimating the ratio between the

ground surface radiance and full-sky irradiance. For a com-

plete description/illustration of the spectroradiometer setup,

the measurement sequence, and the quality control, see Hu-

ber et al. (2014).
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NDSI using all possible combinations of two separate

wavelengths were calculated as

NDSI=

(
ρi − ρj

)(
ρi + ρj

) , (4)

where ρiand ρj are the daily median HCRF in two separate

single wavelengths (i and j ) between 350 and 1800 nm. In or-

der to minimise the influence of errors we used daily median

hyperspectral HCRF in the analysis (since the median pro-

vides the most common model output and is thereby more

robust against outliers than average values).

2.5 Effects of varying sun and sensor viewing geometry

on NDSI

The effects of variable solar zenith angles on different NDSI

combinations were studied with nadir HCRF measurements.

In order to capture the seasonal dynamics, data were taken

over 15 days during four periods: (1) the dry season in 2012

(day of year (DOY) 71–85), (2) the fast growth period in

2011 (start of the rainy season) (DOY 200–214), (3) the peak

of the growing season in 2011 (DOY 237–251), and (4) the

senescent period in 2011 (the end of the rainy season) (DOY

278–293). Only days with full data coverage were used in

order not to include bias in the results from days with incom-

plete data sets. The median HCRF of the 15 days was cal-

culated for each wavelength for every 15 min between 08:00

and 18:00 (UTC). These HCRF values were combined into

NDSI with different wavelength combinations. Finally, daily

mean and standard deviation for all wavelength combinations

were calculated. Diurnal variability in the NDSI was assessed

with the coefficient of variation (COV), which is the ratio be-

tween the standard deviation and the mean. The COV gives

an indication of effects related to variable solar zenith angles.

To capture directional effects in the NDSI related to the

variable view zenith angles (15, 30, and 45◦ off-nadir angles

towards east and west) the NDSI was calculated using me-

dian HCRF values from the four above-mentioned periods

for the different viewing angles. Only data measured between

12:00 and 14:00 (UTC) were used so as to avoid effects of

variable solar zenith angles. The anisotropy factor (ANIF) is

defined as the fraction of a reflected property at a specific

view direction relative to the nadir, and it was calculated by

ANIF(λ,θ)=
NDSI(λ,θ)

NDSI0 (λ)
, (5)

where NDSI(λ,θ ) is NDSI for the different wavelengths (λ)

and the different viewing angles (θ ), and NDSI0(λ) is the

nadir-measured NDSI (Sandmeier et al., 1998).

2.6 Relationship between hyperspectral HCRF, NDSI,

and ecosystem properties

We examined the relationship between predictor variables

(daily median hyperspectral HCRF, and NDSI from nadir

observations) and response variables (biomass, GPP, LUE,

and FAPAR). A comparison between fitted linear and ex-

ponential regression models indicated no improvement by

fitting exponential regression models; we hence choose to

use linear regression analysis (Supplement). Possible er-

rors (random sampling errors, aerosols, dust or water on

the sensor heads, electrical senor noise, filtering and gap-

filling errors, errors in correction factors, sensor drift, and

instrumentation errors) can be present in predictor and re-

sponse variables. We thereby used a reduced major axis lin-

ear regression to account for errors in both the predictor

and response variables when fitting the regression lines. In

order to estimate the robustness of the empirical relation-

ships, we used a bootstrap simulation methodology, where

the data sets were copied 200 times (Richter et al., 2012).

The runs generated 200 sets of slopes, intercepts, and co-

efficients of determination (R2), from which the median

and standard deviation were estimated. The generated sta-

tistical models were validated against the left-out subsam-

ples within the bootstrap simulation method by calculating

the root-mean-square error (RMSE) and the relative RMSE

(RRMSE= 100×RMSE×mean(observed)−1); median and

standard deviation were estimated. Within the regression

analysis, all variables used were repeated observations of

the same measurement plot. The dependent and independent

variables are hence temporally autocorrelated and cannot be

regarded as statistically independent. We thereby choose not

to present any statistical significance. The analyses, however,

still indicate how closely coupled the explanatory variables

are with the ecosystem properties.

A filter was created for the analysis between NDSI and

ecosystem properties; all NDSI combinations with a COV

higher than 0.066 in any of the four periods (dry season,

fast growth period, peak of the growing season, and senes-

cent period) and all NDSI combinations with ANIF values

higher than 1.2 and lower than 0.8 in any of the four periods

were filtered. The ANIF thresholds of 1.2 and 0.8 and the

COV threshold of 0.066 were used since values then vary less

than 20 % due to effects of variable sun–sensor geometry.

NDSI including the water absorption band (1300–1500 nm)

was also removed as it is strongly sensitive to atmospheric

water content and is less suitable for spatial extrapolation

of ecosystem properties using air/spaceborne sensors (Asner,

1998). Finally, NDSI combinations including wavelengths

between 350 and 390 nm were removed owing to low signal-

to-noise ratio in the ASD sensors (Thenkabail et al., 2004).

3 Results

3.1 Seasonal dynamics in meteorological variables,

ecosystem properties, and hyperspectral HCRF

Daily average air temperature at 2 m height ranged between

18.4 and 37.8 ◦C, with low values during winter and peak val-
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Figure 2. Time series of the measured variables: (a) daily averaged

air temperature (black line), as well as soil temperature at 0.05 m

depth (grey line); (b) daily sums of rainfall; (c) daily average of

soil moisture at 0.05 m depth; (d) hyperspectral hemispherical con-

ical reflectance factor (HCRF) normalised by calculating the ratio

between daily median HCRF for each wavelength (350–1800 nm)

and the average HCRF for the entire measurement period; (e) gross

primary productivity (GPP) (black dots) and ecosystem respiration

(grey dots); (f) the light use efficiency (LUE); and (g) the fraction

of photosynthetically active radiation absorbed by the vegetation

(FAPAR). The black vertical lines are the start and end of the rainy

seasons (first and final day of rainfall). The gaps are caused by tech-

nical issues due to loss of power supply, broken sensors, or filtering

of data due to bad weather conditions.

ues at the end of the dry season (Fig. 2a). Yearly rainfall was

486 and 606 mm for 2011 and 2012, respectively. Soil mois-

ture ranged between 1.9 and 14.1 %, and it clearly followed

the rainfall patterns (Fig. 2b and c). The CO2 fluxes were low

during the dry period and high during the rainy season (July–

October) (Fig. 2e). The LUE followed GPP closely (Fig. 2f).

FAPAR was low at the start of the rainy season, followed by

a maximum towards the end of the rainy season, and then

slowly decreased over the dry season (Fig. 2g).

The range in HCRF is large across the spectral space, and

would hide the seasonal dynamics in hyperspectral HCRF if

directly shown. Therefore, to clearly illustrate these seasonal

dynamics, the ratio between daily median nadir HCRF and

the average HCRF for the entire measurement period was

calculated for each wavelength (350–1800 nm). This gives a

fraction of how the HCRF for each wavelength varies over

Figure 3. The coefficient of variation (COV), i.e. the ratio between

daily standard deviation and the daily mean (measurements taken

between 08:00 and 18:00 (UTC)), for different normalised differ-

ence spectral index (NDSI) wavelength (i, j ) combinations for 12

days at the peak of the growing season 2011 (day of year 237–251;

n= 576). The COV indicates how strongly the NDSI are affected

by variable sun angles. The upper right half of the chart shows the

unfiltered R2 values, whereas the lower left half shows filtered R2,

based on the filtering criteria described in Sect. 2.6.

the measurement period in relation to the average of the en-

tire period (Fig. 2d). In the visible (VIS) part of the spec-

trum (350–700 nm) there was a stronger absorption during

the second half of the rainy season and at the beginning of

the dry season than during the main part of the dry season

and the start of the rainy season. There was stronger NIR ab-

sorption (700–1300 nm) at the end of the rainy season and

the beginning of the dry season, whereas the absorption de-

creased along with the dry season. Strong seasonal variation

was observed in the water absorption region around 1400 nm

following the succession of rainy and dry seasons. HCRF in

the SWIR (1400–1800 nm) generally followed the seasonal

dynamics of the visible part of the spectrum.

3.2 Effects of sensor viewing geometry and variable

sun angles on NDSI

The strongest effects of solar zenith angles and variable view-

ing geometry on NDSI were observed at the peak of the

growing season 2011 (Figs. 3 and 4, and S1–S5 in the Sup-

plement). In the main section of the paper, we hence choose

to present the figures from this period; figures from remain-

ing periods are located in the Supplement. The most pro-

nounced effects of solar zenith angles were observed for

NDSI combining SWIR and NIR wavelengths, and with VIS

wavelengths between 550 and 700 nm (n= 576) (Fig. 3).

The same effects were seen for the view zenith angles; the

strongest effects were seen for NDSI with SWIR and NIR
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Figure 4. The anisotropy factor (ANIF) for different normalised

difference spectral index (NDSI) wavelength (i, j ) combinations for

15 days at the peak of the growing season 2011 (day of year 237–

251) for the different sensor viewing angles: (a) 15◦ E, (b) 15◦W,

(c) 30◦ E, (d) 30◦W, (e) 45◦ E, and (f) 45◦W. In order not to include

effects of solar zenith angles in the analysis, only data measured

between 12:00 and 14:00 (UTC) were used in the ANIF calculations

(n= 48). The upper right half of each chart shows the unfiltered R2

values, whereas the lower left half shows filtered R2, based on the

filtering criteria described in Sect. 2.6.

combinations, as well as for VIS wavelengths between 550

and 700 nm (Fig. 4). Remaining VIS wavelengths were less

affected. It was also clear that ground surface anisotropy in-

creased strongly as a function of increasing viewing angle

(Fig. 4). Moreover, some band combinations showed already

angular sensitivity at view zenith angles of 15◦, while other

band combinations only manifest anisotropic behaviour with

higher view angles. Some band combinations, however, do

not show any increased anisotropy at all (areas coloured in

green in all six plots).

3.3 Relationship between hyperspectral HCRF, NDSI,

and ecosystem properties

3.3.1 Biomass

HCRF values for all wavelengths except the water absorp-

tion band at 1100 nm were strongly correlated with biomass

Figure 5. Median correlation coefficient (±1 SD) between seasonal

dynamics in hyperspectral hemispherical conical reflectance factors

(HCRF) 2011–2012 and (a) dry weight biomass (n= 12; g m−2),

(b) gross primary productivity (GPP) (n= 285; g C day−1), (c) light

use efficiency (LUE) (n= 272; g C MJ−1), and (d) fraction of pho-

tosynthetically active radiation absorbed by the vegetation (FA-

PAR) (n= 369). The water absorption band (1300–1500 nm) was

removed as it is strongly sensitive to atmospheric water content,

and wavelengths between 350 and 390 nm were removed owing to

low signal-to-noise ratio in the ASD sensors.

(Fig. 5a). The strongest correlation was found at ρ1675 (me-

dian ±1 SD; r =−0.88± 0.09), but biomass was almost

equally well correlated with blue, red, and NIR wavelengths.

All presented correlations and relationships throughout the

text are based on filtered data. Negative correlations indi-

cate that the more biomass there is, the higher the absorp-

tion, and hence the lower the HCRF. A small peak of pos-
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Figure 6. Coefficient of determination (R2) between normalised

difference spectral index (NDSI) and (a) dry weight biomass

(n= 12; g m−2), (b) gross primary productivity (GPP) (n= 285;

g C day−1), (c) light use efficiency (LUE) (n= 272; g C MJ −1),

and (d) fraction of photosynthetically active radiation absorbed

by the vegetation (FAPAR) (n= 369). The upper right half of

each chart shows the unfiltered R2 values, whereas the lower left

half shows filtered R2, based on the filtering criteria described in

Sect. 2.6.

itive correlation is seen at 1120–1150 nm. NDSI combina-

tions with HCRF in the red edge (ρ680–ρ750) and HCRF

in the VIS region explained seasonal dynamics in biomass

well (Fig. 6a). The strongest relationship (R2
= 0.88± 0.07;

RRMSE= 18.6± 5.7 %) between NDSI and biomass was

found for NDSI combining 705 and 587 nm (NDSI[705,

587]) (Table 2, Fig. 7a).

3.3.2 Gross primary productivity

The relationship between GPP and nadir-measured hyper-

spectral HCRF is inverted as compared to other correlation

coefficient lines (Fig. 5b), since GPP is defined as a with-

drawal of CO2 from the atmosphere with higher negative val-

ues for a larger CO2 uptake. The seasonal dynamics in GPP

was strongly positively correlated with HCRF in the blue,

red, SWIR wavelengths, and the water absorption band at

1100 nm, whereas it was strongly negatively correlated with

the NIR HCRF. The study revealed the strongest positive and

negative correlations for HCRF at 682 nm (r = 0.70± 0.02)

and 761 nm (r =−0.74± 0.02), respectively. NDSI com-

binations that explained most of the GPP variability were

different combinations of the VIS and NIR or red and

SWIR wavelengths (Fig. 6b). However, the strongest re-

lationship was seen at NDSI[518, 556] (R2
= 0.86± 0.02;

RRMSE= 34.9± 2.3 %) (Table 2; Fig. 7b).

Figure 7. The least-squares linear regressions with the strongest

relationships between the normalised difference spectral index

(NDSI) and (a) dry weight biomass, (b) gross primary productivity

(GPP), (c) light use efficiency (LUE), and (d) fraction of photosyn-

thetically active radiation absorbed by the vegetation (FAPAR). In

the equations, the slope and intercepts (±1 SD) is given.

3.3.3 Light use efficiency

LUE was negatively correlated with HCRF in the blue and

red spectral ranges and in the water absorption band at

1100 nm, and it was positively correlated in the NIR wave-

lengths (Fig. 5c). HCRF at 761 nm yielded the strongest pos-

itive correlation (r = 0.87± 0.01). When combining the dif-

ferent wavelengths to NDSI, the VIS wavelengths explained

variation in LUE well, with the strongest relationships in the

red and blue parts of the spectrum (Fig. 6c). LUE corre-

lated most strongly with NDSI[436, 688] (R2
= 0.81± 0.02;

RRMSE= 52.8± 3.8 %)) (Table 2; Fig. 7c).

3.3.4 Fraction of photosynthetically active radiation

absorbed by the vegetation

FAPAR was negatively correlated with nadir-measured

HCRF for most wavelengths (Fig. 5d); the higher the FA-

PAR, the higher the absorption, and thereby the lower the

HCRF. The strongest correlation was found at a blue wave-

length ρ412 (r =−0.9 2± 0.01). When wavelengths were

combined to NDSI, combining violet/blue with NIR and

SWIR wavelengths generated the NDSI with the strongest

relationships (Fig. 6d) with a maximum R2 of 0.81± 0.02

(RRMSE= 14.6± 0.7 %) for NDSI[399, 1295] (Table 2;

Fig. 7d).
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Table 2. Wavelengths of the hemispherical conical reflectance factors (HCRF) (ρi, j ; nm) used in the normalised difference spectral indices

(NDSI) that generated the strongest correlations with ecosystem properties. DW is dry weight, FAPAR is the fraction of photosynthetically

active radiation absorbed by the vegetation, Avg. is average, SD is standard deviation, RMSE is root-mean-square error, and RRMSE is

relative RMSE.

Ecosystem property Sample size ρi ρj R2 Observation (Avg.±SD) RMSE RRMSE (%)

Biomass 12 587 705 0.88± 0.07 153± 59 28.4± 8.7 18.6± 5.7

(g DW m−2)

Gross primary productivity 285 518 556 0.86± 0.02 −4.3± 4.0 1.5± 0.1 34.9± 2.3

(g C m−2 d−1)

Light use efficiency 272 688 436 0.81± 0.02 0.53± 0.65 0.26± 0.02 52.8± 3.8

(g C MJ−1)

FAPAR 369 399 1295 0.81± 0.02 0.41± 0.16 0.06± 0.003 14.6± 0.7

4 Discussion

4.1 Effects of sensor viewing geometry and variable

sun angles on the NDSI

Effects of solar zenith angles and sensor viewing geometry

were similar (Figs. 3 and 4), since they affect HCRF mea-

surements in a similar way (Kimes, 1983). In dense and erec-

tophile canopies, HCRF increases with sensor viewing and

solar zenith angles, because a larger fraction of the upper

vegetation canopy is viewed/illuminated, whereas the shad-

owed lower part of the canopy contributes less to the mea-

sured signal as shown previously by several studies (Huete

et al., 1992, 2014; Jin et al., 2002; Kimes, 1983). However,

the radiative transfer within a green canopy is complex, and

differs across the spectral region (Huber et al., 2014). Less

radiation is available for scattering of high-absorbance spec-

tral ranges (such as the VIS wavelengths), and this tends to

increase the contrast between shadowed and illuminated ar-

eas for these wavelengths, whereas in the NIR and SWIR

ranges, more radiation is scattered and transmitted, which

thereby decreases the difference between shadowed and illu-

minated areas within the canopy (Kimes, 1983; Hapke et al.,

1996). A recognised advantage of NDSI calculations is that

errors/biases that are similar in both wavelengths included

in the index are suppressed by the normalisation. However,

for a given situation where errors/biases are different for the

wavelengths used, such as effects generated by sun–sensor

geometry, errors/biases will affect the value of the index.

This was also the case at the Dahra field site: NDSI val-

ues were strongly affected at wavelength combinations with

large differences in effects of variable solar zenith angles

(Fig. 6 in Huber et al., 2014) and variable view zenith an-

gles (Fig. 4 in Tagesson et al., 2015b). This effect is espe-

cially pronounced in the case of low index values (closer to

0), whereas larger index values (closer to 1 and −1) become

less sensitive. The relative HCRF difference between NIR

and SWIR is lower compared to indices including the VIS

domain; NIR/SWIR-based indices thereby generate lower

NDSI values with higher sensitivity to sun–sensor geometry-

generated differences between included wavelengths (Figs. 3

and 4). This can also be seen in the SIWSI–NDVI compari-

son by Huber et al. (2014); SIWSI had large relative differ-

ences depending on viewing angle (∼ 70 %), whereas NDVI

had relatively small differences (∼ 5 %) (Fig. 10 in Huber

et al., 2014). Fensholt et al. (2010a) showed the same to be

true in a comparison between SIWSI and NDVI based on

MODIS data: SIWSI was insensitive to day-to-day variations

in canopy water status due to effects of solar zenith angles

and sensor viewing geometry blurring the signal.

A strong diurnal dynamic does not necessarily mean a

poor NDSI. For example, the photochemical reflectance in-

dex (PRI) was created for assessing diurnal dynamics in the

xanthophyll cycle activity (Gamon et al., 1992). Stomatal

closure due to high temperatures could also influence diurnal

dynamics of vegetation properties (Lasslop et al., 2010), and

hence the diurnal dynamics of NDSI. However, diurnal varia-

tion in reflectance caused by diurnal variability in vegetation

status is assumed minor in relation to the diurnal variability

caused by changes in solar zenith angles. Additionally, in our

study we are interested in relationships in seasonal dynamics

between ecosystem properties and NDSI; diurnal variation

can thereby interfere and introduce uncertainty into such re-

lationships.

The importance of directional effects for the applicability

of normalised difference spectral indices has been pointed

out as an issue in numerous papers (e.g. Holben and Fraser,

1984; van Leeuwen et al., 1999; Cihlar et al., 1994; Fen-

sholt et al., 2010b; Gao et al., 2002). This study confirms

these challenges for NIR/SWIR-based indices, but the results

also indicate several wavelength combinations from which

these effects are less severe and potentially applicable to EO

data without disturbance from viewing/illumination geome-

try for this type of vegetation. Multi-angular HCRF data pro-

vide additional information of, for example, canopy struc-

ture, photosynthetic efficiency, and capacity (Bicheron and

Leroy, 2000; Asner, 1998; Pisek et al., 2013; Huber et al.,

2010), and this unique in situ-based, multi-angular, high-

temporal-resolution data set may thus be used for future re-

search of canopy radiative transfer and BRDF (bidirectional
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reflectance distribution function) modelling (Jacquemoud et

al., 2009; Bicheron and Leroy, 2000). The multi-angular data

set is also highly valuable for evaluation and validation of

satellite-based products, where the separation of view an-

gle and atmospheric effects can only be done using radiative

transfer models (Holben and Fraser, 1984).

4.2 Seasonal dynamics in hyperspectral HCRF, NDSI,

and ecosystem properties

4.2.1 Biomass

The strong correlation between biomass and most of the

spectrum indicates the strong effects of phenology on the sea-

sonal dynamics in the HCRF spectra (Fig. 5a). Variability in

VIS (350–700 nm) HCRF for vegetated areas is strongly re-

lated to changes in leaf pigments (Asner, 1998), and this can

also be seen in Fig. 2d since absorption was much stronger

during the rainy (growing) season than during the dry sea-

son. Previous studies have generally shown positive relation-

ships between NIR HCRF and biomass since a large frac-

tion of NIR radiation is reflected in green healthy vegeta-

tion to avoid overheating (e.g. Hansen and Schjoerring, 2003;

Asner, 1998). Here, a strong negative relationship between

NIR HCRF and dry weight biomass is generally observed

(Fig. 5a), indicating stronger NIR absorption with increased

biomass. However, a strong positive NIR HCRF correlation

with vegetation water content was seen (figure not shown). A

possible explanation could be that the sampled biomass at the

end of the rainy season contained some senescent vegetation,

and a correlation against vegetation water content is hence

closer to green healthy vegetation. This relationship is, how-

ever, interesting and should be studied further to better un-

derstand the respective importance of canopy water and leaf

internal cellular structure for the NIR HCRF of herbaceous

vegetation characterised by erectophile leaf angle distribu-

tion in semi-arid regions. We found the strongest correlation

for biomass with a SWIR wavelength, thereby confirming the

studies by Lee (2004) and Psomas et al. (2011) in that SWIR

wavelengths are good predictors of LAI or biomass.

The NDVI is known to saturate at high biomass because

the absorption of red light at ∼ 680 nm saturates at higher

biomass loads, whereas the NIR HCRF continues to increase

due to multiple scattering effects (Mutanga and Skidmore,

2004; Jin and Eklundh, 2014). Several studies have shown

that NDSI computed with narrowband HCRF improve this

relationship by choosing a wavelength region not as close to

the maximum red absorption at∼ 680 nm, for example using

shorter and longer wavelengths of the red edge (700–780nm)

(Cho et al., 2007; Mutanga and Skidmore, 2004; Lee, 2004)

and NIR and SWIR wavelengths (Psomas et al., 2011; Lee,

2004). The NDSI with the strongest correlation to biomass

was computed using red-edge HCRF (ρ705) and green HCRF

(ρ587). Vegetation stress and information about chlorophyll

and nitrogen status of plants can be extracted from the red-

edge region (Gitelson et al., 1996). Wavelengths around ρ550

are located right at the peak of green reflection and closely

related to the total chlorophyll content, leaf nitrogen content,

and chlorophyll / carotenoid ratio and have previously been

shown to be closely related to biomass (Inoue et al., 2008;

Thenkabail et al., 2012).

4.2.2 Gross primary productivity

The maximum absorption in the red wavelengths generally

occurs at 682 nm as this is the peak absorption for chloro-

phyll a and b (Thenkabail et al., 2000), and this was also

the wavelength that was most strongly correlated with GPP.

HCRF at 682 nm was previously shown to be strongly re-

lated to LAI, biomass, plant height, NPP, and crop type dis-

crimination (Thenkabail et al., 2004, 2012). The NDSI with

the strongest relationship to GPP was based on HCRF in

the vicinity of the green peak. The PRI normalises HCRF

at 531 and 570 nm and it was suggested for detection of di-

urnal variation in the xanthophyll cycle activity (Gamon et

al., 1992), and it is commonly used for estimating produc-

tivity efficiency of the vegetation (e.g. Soudani et al., 2014).

The present study thereby confirms the strong applicability

of the wavelengths in the vicinity of the green peak for veg-

etation productivity studies. Again, wavelengths around the

green peak are related to the total chlorophyll content, leaf

nitrogen content, chlorophyll / carotenoid ratio, and biomass

(Inoue et al., 2008; Thenkabail et al., 2012).

4.2.3 Light use efficiency

Both LUE and GPP were most strongly correlated with

HCRF at 761 nm, which is the oxygen A band within the

NIR wavelengths. HCRF at 761 nm is commonly used for

estimating solar-induced chlorophyll fluorescence due to ra-

diation emitted by the chlorophyll, and it has been suggested

as a direct measure of health status of the vegetation (Meroni

et al., 2009). Earth observation data for estimating fluores-

cence should have very high spectral resolution (< 10 nm),

but considering the rapid technical development within sen-

sors for hyperspectral measurements, fluorescence possibly

has strong practical potential for monitoring vegetation status

(Meroni et al., 2009; Entcheva Campbell et al., 2008). Glob-

ally mapped terrestrial chlorophyll fluorescence retrievals are

already produced from the GOME-2 instrument at a spatial

resolution of 0.5◦× 0.5◦, but hopefully this will also be avail-

able with EO sensors of higher spatial and temporal resolu-

tion in the future (Joiner et al., 2013).

The strongest wavelength combinations for estimating

LUE for this semi-arid ecosystem was NDSI[688, 435]. The

688 nm wavelength is just at the base of the red-edge re-

gion, again indicating the importance of this spectral re-

gion for estimating photosynthetic activity. The wavelength

at 435 nm is at the centre of the blue range characterised

by chlorophyll utilisation, and strongly related to chloro-
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phyll a and b, senescing, carotenoid, loss of chlorophyll,

and vegetation browning (Thenkabail et al., 2004, 2012). The

NDSI[688, 435] thereby explores the difference between in-

formation about chlorophyll content and information about

senescence of the canopy, which should be a good predictor

of ecosystem-level photosynthetic efficiency.

4.2.4 Fraction of photosynthetically active radiation

absorbed by the vegetation

FAPAR is an estimate of radiation absorption in the photo-

synthetically active spectrum and thereby strongly negatively

correlated with most parts of the spectrum (Fig. 5d). FA-

PAR remained high during the dry season because of stand-

ing dry biomass that was slowly degrading over the dry sea-

son (Fig. 2g). The seasonal dynamics in FAPAR is thereby

strongly related to senescence of the vegetation, which ex-

plains why FAPAR was most strongly correlated with blue

wavelengths (ρ412). Several studies have reported a strong

relationship between NDVI and FAPAR (e.g. Tagesson et

al., 2012; Myneni and Williams, 1994; Fensholt et al., 2004),

but this relationship has been shown to vary for the vegeta-

tive phase and the periods of senescence (Inoue et al., 1998;

Tagesson et al., 2015b). As showed by Inoue et al. (2008),

and confirmed by this study, new indices combining blue

with NIR wavelengths could be used for estimating FAPAR

for the entire phenological cycle. This result has implications

for studies using the LUE approach for estimating C assimi-

lations (Hilker et al., 2008).

4.3 Outlook and perspectives

Very limited multi-angular hyperspectral in situ data exist,

even though they have been, and will continue to be, ex-

tremely valuable for an improved understanding of the inter-

action between ground surface properties and radiative trans-

fer. In this study, we have presented a unique in situ data

set of multi-angular, high temporal resolution hyperspectral

HCRF (350–1800 nm) and demonstrated the applicability of

hyperspectral data for estimating ground surface properties

of semi-arid savanna ecosystems using NDSI. The study was

conducted in spatially homogeneous savanna grassland, sug-

gesting that the results should be commonly applicable for

this biome type. However, attention should be paid to site-

specific details that could affect the indices, such as species

composition, soil type, biotic and abiotic stresses, and stand

structure. Additionally, the biophysical mechanisms behind

the NDSIs are not well understood at the moment, and further

studies are needed to examine the applicability of these in-

dices to larger regions and other ecosystems. Due to it being a

two-band ratio approach, NDSI does not take full advantage

of exploring the rich information given by the hyperspectral

HCRF measurements. In the future, this hyperspectral HCRF

data set could be fully explored using, for example, derivative

techniques; multivariate methods; and creation, parameteri-

sation, and evaluation of BRDF and radiative transfer mod-

els.

Even though several other methods exists which fully ex-

ploit the information in the hyperspectral spectrum, results of

the present study still indicate the strength of normalised dif-

ference indices for extrapolating seasonal dynamics in prop-

erties of savanna ecosystems. A number of wavelength spec-

tra that are highly correlated with seasonal dynamics in prop-

erties of semi-arid savanna ecosystems have been identified.

The relationships between NDSI and ecosystem properties

were better determined than, or at the same level as, results

of previous studies exploring relationships between hyper-

spectral reflectance and ecosystem properties (Kumar, 2007;

Cho et al., 2007; Mutanga and Skidmore, 2004; Psomas et

al., 2011; Ide et al., 2010). By also studying the impact from

varying viewing and illumination geometry, the feasibility

and applicability of using indices for upscaling to EO data

were evaluated. As such, the results presented here offer in-

sights for assessment of ecosystem properties using EO data,

and this information could be used for designing future sen-

sors for observation of ecosystem properties of the Earth.

The Supplement related to this article is available online

at doi:10.5194/bg-12-4621-2015-supplement.
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