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Abstract. The Arctic Ocean is considered the most vulnera-

ble ecosystem to ocean acidification, and large-scale assess-

ments of pH and the saturation state for aragonite (�arag)

have led to the notion that the Arctic Ocean is already close

to a corrosive state. In high-latitude coastal waters the reg-

ulation of pH and �arag is, however, far more complex than

offshore because increased biological activity and input of

glacial meltwater affect pH. Effects of ocean acidification on

calcifiers and non-calcifying phototrophs occupying coastal

habitats cannot be derived from extrapolation of current and

forecasted offshore conditions, but they require an under-

standing of the regimes of pH and�arag in their coastal habi-

tats. To increase knowledge of the natural variability in pH in

the Arctic coastal zone and specifically to test the influence

of benthic vegetated habitats, we quantified pH variability in

a Greenland fjord in a nested-scale approach. A sensor ar-

ray logging pH, O2, PAR, temperature and salinity was ap-

plied on spatial scales ranging from kilometre scale across

the horizontal extension of the fjord; to 100 m scale verti-

cally in the fjord, 10–100 m scale between subtidal habitats

with and without kelp forests and between vegetated tidal

pools and adjacent vegetated shores; and to centimetre to

metre scale within kelp forests and millimetre scale across

diffusive boundary layers of macrophyte tissue. In addition,

we assessed the temporal variability in pH on diurnal and

seasonal scales. Based on pH measurements combined with

point samples of total alkalinity, dissolved inorganic carbon

and relationships to salinity, we also estimated variability in

�arag. Results show variability in pH and �arag of up to 0.2–

0.3 units at several scales, i.e. along the horizontal and verti-

cal extension of the fjord, between seasons and on a diel basis

in benthic habitats and within 1 m3 of kelp forest. Vegetated

intertidal pools exhibited extreme diel pH variability of> 1.5

units and macrophyte diffusive boundary layers a pH range

of up to 0.8 units. Overall, pelagic and benthic metabolism

was an important driver of pH and �arag producing mosaics

of variability from low levels in the dark to peak levels at

high irradiance generally appearing favourable for calcifica-

tion. We suggest that productive coastal environments may

form niches of high pH in a future acidified Arctic Ocean.
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1 Introduction

The Arctic Ocean is considered to be the most vulnerable

ecosystem to ocean acidification (OA) due to the combined

effects of low temperature, which increases the solubility of

CO2 and, in places, dilution of the buffering capacity of sea-

water by freshwater inputs (Fabry et al., 2009; AMAP, 2013).

Indeed, large-scale assessments of pH in combination with

saturation states for aragonite (�arag) < 1 have led to the no-

tion that the Arctic Ocean is already close to a corrosive state

(Fabry et al., 2009). However, whereas this has been doc-

umented for offshore waters, the Arctic contains a massive

coastline where the regulation of pH and �arag is far more

complex than that offshore (Hofmann et al., 2011; Duarte et

al., 2013). In coastal waters, the role of air–sea CO2 exchange

in regulating pH operates along with watershed effects driven

by the discharge of freshwater and the effects of metaboli-

cally intense communities on pH (Duarte et al., 2013). The

Greenland Ice Sheet is melting at a rate that has more than

doubled in the last decade (Helm et al., 2014) and Greenland

fjords are hence potentially among the most susceptible to

the effects of freshening and acidification.

As most calcifiers occupy coastal habitats, the assessment

of risks of Arctic acidification to these vulnerable species

cannot be derived from extrapolation of the current and fore-

casted offshore conditions alone, requiring instead an under-

standing of the regimes of pH and �arag in the coastal habi-

tats they occupy, and the same is true regarding potential ef-

fects of ocean acidification on coastal phototrophs (calcify-

ing or non-calcifying) (Mercado and Gordillo, 2011). Such

information is currently largely lacking for the Arctic in gen-

eral and for Greenland in particular, which calls for efforts

to understand variability in pH in the coastal zone informing

on the factors controlling pH and ultimately determining the

sensitivity of the coastal Arctic Ocean ecosystem to ocean

acidification.

Greenland has a vast and highly indented coastline, ex-

tending approximately 44 000 km and representing ca. 12 %

of the world’s coastline (Krause-Jensen and Duarte, 2014).

This coastline forms a complex network of fjords and open

coasts that contains multiple features contributing to hetero-

geneity, such as continental ice and freshwater discharge at

the headwaters, variable slopes and substrates, differential

water residence time conducive to widely distinct tempera-

ture regimes within neighbouring areas (Olesen et al., 2015),

and tides that generate intertidal habitats and force flow pat-

terns. In addition, Greenland fjords often support highly pro-

ductive kelp forests (Krause-Jensen et al., 2012) and inter-

tidal seaweed communities (Høgslund et al., 2014), which

have been suggested to have the capacity to affect pH and

�arag locally (Krause-Jensen and Duarte, 2014). Such ef-

fects have been demonstrated for Antarctic and temperate

kelp/macroalgal ecosystems (Middelboe and Hansen 2007;

Delille et al., 2009; Cornwall et al., 2013a) as well as for

subtropical and tropical seagrass meadows (e.g. Hofmann et

al., 2011; Hendriks et al., 2014). Calcifiers such as bivalves,

brittle stars and sea urchins, which are potentially vulnera-

ble to OA, are ecologically important as they contribute sig-

nificantly to carbon cycling in both the subarctic and Arc-

tic Greenland, where their distribution ranges from the in-

tertidal zone to > 300 m depth (Sejr et al., 2002; Blicher et

al., 2007, 2009, 2013; Blicher and Sejr, 2011). Phototrophs

such as kelps, while being able to affect the pH regime, may

also respond to OA, which has been shown to stimulate their

growth (Olischläger et al., 2012) and affect the competition

between kelps and understory red algae (Connell and Russell

2010).

Although the variability in pH and �arag in Greenland

fjords has not been reported, available oceanography and en-

vironmental surveys suggest that this may be substantial. For

instance, in Young Sound, Sejr et al. (2011) found that the

extent of sea-ice cover and inputs of glacial melt water af-

fect seawater pCO2 levels and sea–air exchange at spatial,

seasonal and interannual scales. Seasonal dynamics of au-

totrophic and heterotrophic plankton metabolism have also

been found to markedly affect pCO2 levels in Kobbefjord, a

subarctic fjord in SW Greenland (Sejr et al., 2014). However,

information on scales of variability in pH and�arag in Green-

land fjords is still lacking, precluding the assessment of their

current and future vulnerability to ocean acidification.

Here we quantify pH variability in Kobbefjord, SW Green-

land. This subarctic fjord supports dense and productive sub-

tidal kelp forests, intertidal macroalgal habitats and high

abundance of bivalves and sea urchins with important roles

in the ecosystem (Blicher et al., 2009; Krause-Jensen et al.,

2012). We hypothesize that Kobbefjord contains a mosaic of

pH environments nested across a range of scales of variabil-

ity and that primary production in general, and by macroal-

gae in particular, may be an important driver of pH variabil-

ity relevant for benthic calcifiers. We first assess seasonal and

spatial variability in the open-water pH at the kilometre scale

along the horizontal extension and at 100 m scale vertically

in the fjord. We then examine diel variability in pH within

subtidal benthic habitats colonized by kelp forest or microal-

gae/scattered filamentous algae as well as in vegetated tidal

pools and adjacent vegetated intertidal shores, with the dis-

tance between parallel deployments at the 10–100 m scale.

We further explore the pH variability three-dimensionally at

centimetre to metre scale within the kelp forest ecosystem

and at millimetre scale across the diffusive boundary layer

(i.e. the layer in which molecular diffusion is the dominant

transport mechanism for dissolved material; see e.g. de Beer

and Larkum, 2001) of key macrophyte species. Whereas our

assessment focuses on pH, we also discuss the associated

variability in �arag.
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Figure 1. (a) Location of Kobbefjord, Nuuk. (a) Location of sampling sites in Kobbefjord: fjord-scale sites (CTD, CT, AT: filled circles;

CTD: open circles), vegetated subtidal sites (open circles #1–3), and intertidal sites (open circles #4). (c) Photopanel of benthic habitats: a

typical kelp forest habitat (dominated by Saccharina longicruris) and habitat colonized by microalgae/scattered filamentous algae (example

from site #1, representative of sites #1–3 in map) and a vegetated intertidal pool and the adjacent vegetated shore dominated by Ascophyllum

nodosum and Fucus spp. (site #4 in map).

2 Methods

2.1 Study area

Kobbefjord is located in the extensive Godthåbsfjord sys-

tem in southwest Greenland (Fig. 1a). The fjord is 17 km

long and 0.8–2 km wide and has a maximum depth of 150 m.

It is subjected to marked exchange of coastal water driven

by a tidal range of 1–4.5 m (Richter et al., 2011) and re-

ceives freshwater mainly from a river in the innermost part

of the fjord, leading to a salinity gradient in the surface wa-

ter. Sea ice usually covers the inner part of the fjord from

December to early May, but the outer part of the fjord is

permanently ice-free. Light attenuation in the water column

has been reported to range from 0.083 m−1 in February to

0.197 m−1 in May to 0.135 m−1 in September (Sejr et al.,

2014). Whereas the phytoplankton community is the main

primary producer in the central parts of the fjord (Sejr et

al., 2014), subtidal macroalgae, dominated by Saccharina

longicruris and Agarum clathratum, form productive benthic

habitats along the shores to water depths of ca. 40 m (Krause-

Jensen et al., 2012) interspaced with communities of benthic

microalgae (Glud et al., 2010; Attard et al., 2014) as well

as with scattered eelgrass (Zostera marina) meadows at 1–

3 m depth (Olesen et al., 2015). Communities of intertidal

macroalgae, dominated by Fucus spp. and Ascophyllum no-

dosum, are prominent in the intertidal zone, where they form

an important habitat for blue mussels, for example (Blicher

et al., 2013).

Three field campaigns targeting seasonal- and fjord-scale

variability in pH in the pelagic zone were conducted in the

spring (19 April), midsummer (18 July) and late summer

(3 September) of 2013 (Fig. 1b). The late summer survey was

associated with an intensive campaign (27 August–6 Septem-

ber 2013) exploring pH variability in shallow subtidal kelp

habitats and neighbouring habitats colonized by benthic mi-

croalgae and scattered filamentous algae (Fig. 1c). A final

late summer campaign (22–30 August 2014) addressed pH

variability in vegetated tidal pools and surface waters of adja-

cent vegetated shores (Fig. 1c). All pH data from fjord-scale

to microscale are reported on the total pH scale.

2.2 Fjord- and seasonal-scale pH variation

To determine the large-scale spatial and seasonal variation

in physical and chemical parameters in the water column of

Kobbefjord, vertical profiles were performed at 11 stations

located along a longitudinal gradient following the main cen-

tral axis of the fjord on 19 April, 18 July, and 3 Septem-

ber 2013 (Fig. 1b). We used a Sea-Bird CTD (SBE 19plus)

equipped with sensors for temperature, conductivity, fluores-

cence (Seapoint chlorophyll fluorometer), oxygen (SBE 43,

Sea-Bird) and pH (SBE 18, Sea-Bird). Alongside CTD pro-

files, water samples were collected using a 5 L Niskin bot-

tle at 1, 5, 10, 20, 30, and 40 m depth. Water was collected

www.biogeosciences.net/12/4895/2015/ Biogeosciences, 12, 4895–4911, 2015
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for dissolved oxygen measurement using Winkler titration

(Parsons et al., 1984), which was used to calibrate the CTD

oxygen optode. The pH sensor was calibrated using NIST

buffers and a seawater Tris buffer prepared according to

Dickson (2007). Unfiltered water was transferred to 150 mL

borosilicate glass bottles for pH analysis. The samples were

poisoned with a saturated mercuric chloride solution, cooled

and stored in darkness until arrival. Back in the lab, pH was

measured potentiometrically using a glass reference elec-

trode (Orion, Ross Ultra pH/ATC Triode) calibrated with

NIST buffers and a seawater Tris buffer prepared according

to Dickson (2007). The measurements were used to correct

the offset of the SBE 18 pH measurements.

For estimation of the saturation state of aragonite (�arag),

samples for analyses of dissolved inorganic carbon (CT) and

total alkalinity (AT) were collected at five stations on one oc-

casion (3 September 2013). Triplicate 12 mL samples were

collected at 5, 10, 20, 30, and 40 m depth and near the bot-

tom. Samples were carefully siphoned through Tygon tub-

ing from Niskin bottles to 12 mL septum-capped glass vial

(Exetainers), allowing the water to overflow for two vol-

ume changes. The samples were poisoned with 100 µL 5 %

HgCl2 to avoid biological alteration. CT was analysed with

a CT analyser (AS-C3, Apollo SciTech Inc). The accuracy

of the analysis was 2.4 µmol kg−1 (average numerical devi-

ation from the reference material value) and the precision

was 1.4 µmol kg−1 (average standard deviation of triplicate

samples). AT was analysed on an alkalinity titrator (AS-

ALK2 from Apollo SciTech), with verification against the

same certified reference material used for pH measurements

or a Metrohm Titrando 808 by open-cell titration (Dickson et

al., 2007) using Batch 136 supplied by the Andrew Dick-

son lab at UC San Diego for verification. Average analy-

sis accuracy was 2.9 µmol kg−1 (average numerical devia-

tion from the reference material value). Relationships be-

tween the point samples of AT and salinity (S) were used to

verify the published relationship for the Godthåbsfjord sys-

tem (TA= 159+ 63 S; Meire et al., 2015), which was sub-

sequently applied for estimation of AT for the full Septem-

ber data set. �arag and pCO2 were calculated from AT and

pH using the CO2SYS Excel program version 2.1 (Pierrot et

al., 2006) with the K1 and K2 constants from Mehrbach et

al. (1973), as modified by Dickson and Millero (1987).

2.3 Small-scale and diurnal-scale pH variation

To measure small-scale and diurnal-scale variation in pH and

physico-chemical variables in kelp forests and adjacent sub-

tidal habitats colonized by microalgae and scattered filamen-

tous algae we constructed metal frames measuring approxi-

mately 0.90 m× 0.90 m× 1.10 m. Each frame was equipped

with instruments that allowed continuous measurements of

temperature, salinity, water level, oxygen concentration, pho-

tosynthetically active radiation (PAR) and pH at ca. 50 cm

above the seafloor (Fig. A1). Measurements were made ev-

ery 10 min or less. We selected three dense (close to 100 %

cover) kelp beds located in shallow water (average depth 2–

5 m) in different sites of the fjord. All kelp beds were domi-

nated by S. longicruris with co-occurrence of A. clathratum

and were surrounded by habitats colonized by microalgae

and varying amounts of scattered filamentous algae. We con-

ducted parallel deployments of frames with loggers in kelp

beds vs. surrounding non-kelp habitats in each of the three

sites, with each deployment lasting about 48 h. The typical

distance between kelp and non-kelp habitats at each site was

approximately 100 m. Conductivity, temperature and water

level were measured with a Hydrolab DS5X and a MicroCAT

(SBE37, Sea-Bird). Oxygen concentration was measured us-

ing miniDOT oxygen loggers (Precision Measurement En-

gineering) and a Hydrolab DS5X. PAR was measured us-

ing Odyssey PAR loggers from Dataflow Systems Pty Lim-

ited. pH was measured using Hydrolab DS5X and SeaFET

pH loggers from Satlantic. Hydrolab DS5X pH sensors were

calibrated with a routine two-point calibration using NIST

buffers of pHNBS 7.0 and 10.0. Before and after each deploy-

ment all instruments were placed in a 50 L tank with sea-

water to intercalibrate sensors. All pH loggers were offset to

the same newly calibrated high-precision SeaFET pH sen-

sor, calibrated at the Satlantic facility (www.satlantic.com)

on the total scale using single-point calibration. Oxygen sen-

sors were calibrated to O2 concentrations of the tank as de-

termined from Winkler titrations.

To monitor three-dimensional pH variations on a metre

scale within the kelp canopy, we deployed a custom-built

multi-sensor array, consisting of an autonomous data logger

(dataTaker DT85) in a watertight housing (custom-built by

Albatros Marine Technologies S.I.) with 16 pre-amplified pH

electrodes (Omega, PHE-1304-NB). The pH sensors were at-

tached to the submersible logger by 5 m long cables to allow

for adjusting their position as needed (Fig. A1 in Appendix).

The sensors were configured in situ in a three-dimensional

array on the metal frame occupying a volume of approxi-

mately 1 m3, with four sensors at 0.1 m from the bottom,

four sensors at 0.2 m, four sensors just underneath the canopy

and four above the canopy, which typically extended about

0.75 m above the seafloor. All pH sensors were calibrated

with a three-point calibration using NIST buffers of pHNBS

4.0, 7.0 and 10.0, allowing at least 5 min between every read-

ing for the sensors to stabilize. All pH loggers were offset to

the same newly calibrated high-precision SeaFET pH sensor

as mentioned above. On several occasions triplicate samples

for determination of CT and AT were collected and analysed

as described above to allow calculation of carbonate chem-

istry and �arag.

pH variation in vegetated tidal pools dominated by As-

cophyllum nodosum and adjacent intertidal habitats on the

shore also dominated by A. nodosum and Fucus spp. was

quantified over a diurnal cycle through sampling at low tide

just after pool formation and prior to pool inundation during

day and night. pH and�arag were calculated from CT andAT

Biogeosciences, 12, 4895–4911, 2015 www.biogeosciences.net/12/4895/2015/
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samples collected and analysed as described above and com-

puted using the CO2SYS program (Pierrot et al., 2006) with

in situ information on temperature and salinity. Salinity was

analysed from water samples based on measurements of con-

ductivity (Orion 3-Star conductivity benchtop), while oxygen

concentration and water temperature were determined using

a portable meter (Hack, HQ40d).

2.4 Microscale pH variation

pH variations at a millimetre scale were measured in the lab-

oratory on six different species of macrophytes (the intertidal

brown macroalgae Ascophyllum nodosum and Fucus vesicu-

losus, the kelps Saccharina longicruris and Agarum clathra-

tum, the green alga Ulva lactuca, and the seagrass Zostera

marina) occurring in Kobbefjord and collected either there

or, for logistic reasons, in another branch of the Godthåbs-

fjord system. From each species, a piece of approximately

5× 2 cm was cut and mounted on a microscope slide in an

aquarium with seawater before measurements. The setup was

mounted in an aquarium in a climate-controlled room with

temperature kept at 2–3 ◦C. By gently blowing the water sur-

face above the mounted slide with air supplied by an aquar-

ium pump, we generated a stable low current velocity of ap-

proximately 0.28± 0.02 (SE) mm s−1 in our observational

area. We measured pH from a point close to the leaf sur-

face up until out of the diffusive boundary layer, where the

pH was stable. We used UNISENSE micro-pH sensors with

25 or 50 µm tips, connected to a volt meter with 1-decimal

precision for millivolt measurements (Consort, R362). pH

sensors were calibrated with a three-point calibration using

NIST buffers of pHNBS 4.0, 7.0 and 10.0 before each series

of measurements. After each change in species or replica, a

resting period of > 15 min was observed to allow the diffu-

sive boundary layer to be fully developed before measure-

ments. A USB microscope (DinoCapture) connected to a PC

with on-screen visualization software aided in visually estab-

lishing the lowest point of the measurements, as close to the

macrophyte surface as possible without breaking the tip of

the electrode. A scaled picture from this lowest point allowed

for back-calculating the actual distance to the leaf surface af-

terwards. We allowed readings at this lowest point to stabi-

lize for > 5 min after which the millivolt value was written

down manually. The microsensor was then raised 20 µm with

a precise 1-D micromanipulator and thereafter 30 µm, after

which we continued with 50 µm increments and then 100 and

500 µm increments until a stable pH was obtained for three

measurements or more and we considered we were outside

the diffusive boundary layer; between subsequent points the

sensor was allowed to stabilize for at least 5 min. We eval-

uated 3 replicas of each species at a irradiance of 200 µmol

photons m−2 s−1, and calculated the 1 pH across the diffu-

sive boundary layer (defined from the tissue surface to where

pH was at 0.99×water-column pH).

3 Results

Data are available in digital form (Krause-Jensen et al.,

2015).

3.1 Fjord-scale and seasonal pH variability

Large seasonal and spatial variability was observed in pH

values along the longitudinal gradient centrally in the fjord

(Fig. 2a). pHT in surface water increased in April due to CO2

consumption by the spring bloom as evidenced by a very

high fluorescence (Fig. A2), to a maximum value of almost

8.50, most pronounced in the mouth of the fjord with val-

ues of around 8.25 in the inner part (Fig. 2). Accordingly,

a horizontal gradient of around 0.25 pH units was observed

along the main axis of the fjord. pHT values in upper lay-

ers decreased during the summer to around 8.35 in July and

with the maximum observed towards the inner part of the

fjord. A further decrease in pH was observed in September,

with more homogenous values in surface waters along the

fjord gradient resulting in a horizontal range of only 0.05 pH

units. Vertical gradients in pH from the surface to the deeper

waters of the fjord ranged from only 0.1 units in April, when

the fjord was vertically mixed, to 0.15 units in September to

0.25 pH units in July, when maximum pHT values of 8.35

occurred in a subsurface algal bloom in the inner parts of the

fjord with waters supersaturated in oxygen (up to 120 % sat-

uration, Figs. A2, A3) and minimum values of pHT 8.1 were

measured in the deeper sectors (Fig. 2a). Seasonally pH var-

ied between 0.2 and 0.3 units in both surface and deep waters

over the 5 months. �arag values were closely coupled to pH

and ranged from minimum values of 1.6, observed in the bot-

tom waters of the inner part of the fjord, to maximum values

of 2.5 in the subsurface waters in September (Krause-Jensen

et al., 2015). Corresponding pCO2 levels ranged from 162

to 325 µatm, in the range of values recently reported for the

fjord (Sejr et al., 2014).

Oxygen saturation at the fjord-scale ranged greatly from

85 to 127 % and was strongly related to pH for each of the

three periods (Fig. 3a), pointing at strong biological control

of pH variability within the fjord. The slope of the pH ver-

sus O2 relationship was steepest for the April survey, when

the highest pH levels were observed. Examination of pH val-

ues in relation to fluorescence and temperature also showed

that the warmest waters, of up to 10 ◦C, observed in July,

supported intermediate pH, while the highest pH was ob-

served in the coldest waters, corresponding to the April sur-

vey, when temperatures were uniformly low across the fjord

(Fig. 3b). On a vertical scale, the cold bottom waters with low

fluorescence generally supported the lowest pH values across

seasons. Hence, overall, pH showed much tighter correlation

with O2 levels than with water temperature, and the correla-

tion between pH and O2 implied a similar close correlation

between �arag and O2 levels.

www.biogeosciences.net/12/4895/2015/ Biogeosciences, 12, 4895–4911, 2015
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3.2 Small-scale and diurnal pH variability in kelp

forests and benthic habitats colonized by

microalgae/scattered filamentous algae

The three parallel deployments in kelp forest and habitats

colonized by microalgae and scattered filamentous algae en-

compassed six complete diurnal cycles which exhibited peak

pHT levels during the day of 8.11 (8.04–8.19) (avg. (SD))

and 8.08 (8.02–8.16), respectively, as opposed to minimum

pHT levels during night of 8.02 (7.97–8.06) and 8.01 (7.94–

8.09), respectively, with no significant difference between

habitats (t test, p > 0.05). The diurnal range of minimum

night pH to maximum day pH was slightly higher in the kelp

forest (avg.±SD= 0.098± 0.061) than above the microal-

gae/filamentous algae (0.073± 0.052) (paired, one-tailed t

test, p = 0.041).

There were large differences in the extent of diel fluctua-

tions in pH among deployments dependent on incident irra-
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Figure 4. Diurnal variability in pH, O2, water depth (all measured by Hydrolab) and irradiance (measured by Odyssey loggers) at ca. 50 cm

above the seafloor in kelp forests (a–c) and habitats colonized by microalgae/filamentous algae (e–f) during three parallel deployment in

Kobbefjord, Nuuk, 27–30 August, 30 August–2 September, and 2–5 September 2013. The deployments represent the benthic sites (#1–3,

respectively) shown on the map (Fig. 1).

diance and the shifting phase of tidal state and the solar cycle

(Fig. 4). Diel pH fluctuations were small during dark, cloudy

days and when high tide coincided with peak solar radiation,

thereby reducing incident irradiance on the benthic habitat.

In contrast, diel pH fluctuations were amplified in deploy-

ments during sunny days when low tide coincided with peak

solar radiation (Fig. 4). Hence, the interaction between tide

and the solar cycle controlled incident radiation and thereby

induced fluctuations in photosynthetic activity and pH. This

was particularly apparent in kelp forests where peak daily pH

increased as a function of maximum daily photosynthetic so-

lar radiation reaching the habitat during the day, whereas this

relationship was not significant in the water column above

the microalgae/filamentous algae (Fig. 5). Indeed, biologic

control of pH was also reflected in strong relationships be-

tween pH and O2 concentration within each deployment in

the kelp forests (R2
= 0.64–0.76), particularly during high

irradiance, as opposed to weaker pH versus O2 relationships

for the microalgae/filamentous algae sites (R2
= 0.05–0.15)

which also showed much smaller variability in O2 levels (98–

114 % saturation) than did the kelp forest (92–128 % satura-

tion) (Fig. 6). The diurnal range of O2 concentrations in the

kelp forest matched the range recorded at pelagic fjord scale

on a seasonal basis (85–127 %, Fig. 3).

Tidal changes in water masses, reflected by changes in

salinity and temperature, also contributed to variations in
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Figure 5. Maximum daily pH in a kelp forest (green dots) and above

microalgae/filamentous algae (blue dots) as a function of maximum

daily incident light over 6 full days as measured during three par-

allel deployments in Kobbefjord, Nuuk, 27–30 August, 30 August–

2 September, and 2–5 September 2013. Linear fit and coefficient of

determination are shown for the significant relationship for the kelp

forest.

pH and O2 levels. This was visible as incidences of sudden

changes in pH paralleling fluctuations in salinity and also

as differences in pH levels between deployments in water

masses of different salinity (Fig. 4). However, salinity ex-

plained much less of the variation in pH than did O2, except

in one deployment in the microalgae/filamentous algae habi-

tat when salinity explained 51 % of the variation in pH as

opposed to 15 % explained by O2 (R2
= 0.04–0.33 in kelp

forest; R2
= 0.04–0.51 in microalgae/filamentous algae, data

not shown). Thus, overall biological activity had a much

stronger influence on pH than had exchange of water masses.

The observed diurnal pH variability also translated into

important fluctuations in �arag, involving 0.18± 0.06 units

(from maximum day levels of 1.77± 0.21 to minimum night

levels of 1.60± 0.17) in the kelp forest and 0.14± 0.07�arag

units (from maximum day levels of 1.72± 0.30 to minimum

night levels of 1.58± 0.26) at the microalgae/filamentous al-

gae sites. Corresponding pCO2 levels ranged from 238 to

536 µatm at the kelp sites and from 258 to 515 µatm at the

microalgal/filamentous algal sites.

3.3 Metre- to millimetre-scale pH variability in kelp

forests

Examination of the variability in pH within 1 m3 kelp for-

est, sampled from the bottom of the canopy to the overlying

water column, using the multi-electrode array, showed very

large concurrent pH variability involving about 0.2 to 0.3 pH

unit differences at any given time and with a total pHT range

of 7.76–8.36 across deployments (Fig. 7). In general, pH

tended to be highest at the top of the canopy and in the water

just above the canopy, reflecting that the canopy top is the

O2-concentration (%)
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Figure 6. pH vs. O2 concentration for three parallel deployments

(#1–3 shown by increasing colour intensity) in subtidal habitats

colonized by kelp forests (top panel) or microalgae/scattered fil-

amentous algae (bottom panels) in Kobbefjord, Nuuk, August–

September 2013. Each deployment represents 10 min loggings by

multiloggers (Hydrolab) over ca. two diurnal cycles. Linear fits and

coefficients of determination are shown.

most photosynthetically active layer, while pH was generally

lower in the shaded bottom part of the canopy (Fig. 7), where

photosynthetic biomass and incident irradiance are lower and

respiration rates higher. The range of pH within 1 m3 of kelp

forest at any one point in time was comparable among de-

ployments, despite the different light conditions, although

the absolute values of pH differed among deployments, with

highest levels observed at peak incident irradiance (Fig. 7).

This small-scale variability in pH also translated into a vari-

ability in �arag of about 0.20 units in 1 m3 of habitat at any

time.

pH also varied significantly within the diffusive boundary

layer of the six macrophyte species examined in the light

(Fig. 8a), with pH increasing by 0.07–0.85 units, depending

on species, from the top of the 0.3–2.2 mm thick diffusive

boundary layer to the surface of the plants (Fig. 8b).
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3.4 pH variability in intertidal pools

pH and oxygen concentration showed important diel variabil-

ity in vegetated intertidal pools, with oxygen supersaturation

(up to 176 %) during the day and undersaturation (down to

11 %) at night, compared to far more uniform concentrations

in the surface waters on the adjacent vegetated shore (89–

111 % saturation, Fig. 9). Accordingly, pHT changed greatly

in intertidal pools, reaching maximum values of 9.0 during

the day and minimum values of 7.4 during night periods, i.e.

a diel range of ca. 1.6 pH units. Diel pH fluctuations in the

surface waters of the adjacent shore were much smaller (8.0–

8.5) but still high, reflecting the metabolic activity of the in-

tertidal vegetation growing on the shore (Fig. 9). The differ-

ence in pH between vegetated intertidal pools and adjacent

shores provided an additional example of variability in pH

between adjacent habitats.

4 Discussion

Our results highlight the nested scales of variability in pH

present in the Kobbefjord ecosystem involving (1) seasonal

variability, largely driven by the phytoplankton spring bloom

as a major event affecting pH; (2) diel variability acting

through complex changes in submarine irradiance modulat-

ing rates of photosynthesis and respiration of benthic vege-

tation driven by the interaction of the solar and the tidal cy-

cles; (3) large-scale variability along horizontal and vertical

fjord gradients reflecting gradients in metabolic activity in

combination with movement of water masses; (4) variability

between subtidal habitats with and without kelp forests and

between vegetated tidal pools and adjacent vegetated shores

reflecting variable degrees of biological control; (5) small-

scale three-dimensional variability due to heterogeneity in

metabolic processes and mixing in vegetated habitats; and

(6) microscale variability across the diffusive boundary layer

of macrophytes (Fig. 10).

Overall, metabolic processes played a fundamental role in

driving pH variability across scales, as reflected in strong re-

lationships between oxygen concentration and pH at the fjord

scale and at both diel and seasonal scales. Primary producers

played a major role in the regulation of pH variability, both

in the pelagic zone, where in particular the intense spring

bloom characteristic of Arctic ecosystems (Takahashi et al.,

2003; Sejr et al., 2014) induced high pH in the subsurface

layers while the respiratory process in the bottom waters re-

duced pH, and in the nearshore benthic environment, where

the presence of subtidal kelp forests and intertidal macroal-

gae induced marked spatial and diurnal variability in pH. The

mosaics of pH reflected that the density of the primary pro-

ducers, and the spatio-temporal separation of photosynthesis

and ecosystem respiration in combination with mixing of wa-

ter masses were key drivers of the variability in both plank-

tonic and benthic communities. Hence, the vertical gradient

of declining pH from upper illuminated to lower shaded habi-

tats varied from the 10–100 m scale in the planktonic com-

munity where the density of primary producers is relatively

low to the centimetre to metre scale in dense kelp forests.

The same is true on a temporal scale where the diurnal pH

variation in the benthic vegetation matches the seasonal vari-

ability in pH in the planktonic community.

The scale of seasonal pH variability in the planktonic com-

munity (Fig. 10) compared well with previous reports for

the Arctic, showing the spring bloom as a prevalent driver

of pCO2 (Sejr et al., 2011; Meire et al., 2015). Though a

multitude of factors including water depth, light regime, sea-

son, seawater retention time, density and plant species may

all affect pH variability in vegetated habitats, our results

match evidence from other latitudes of strong pH variability

in macroalgal forests and seagrass meadows. Hence, marked

diel pH variability has also been reported from a Californian

kelp forest (Frieder et al., 2012), from a Mediterranean sea-

grass bed (Hendriks et al., 2014), and, in an extreme case,

from a temperate, shallow, dense algal bed (diel range: ca. 1
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4904 D. Krause-Jensen et al.: Macroalgae contribute to nested mosaics of pH variability

Saccharina
Agarum
Fucus

Ascophyllum
Ulva

Zostera

pH

D
is

ta
nc

e 
fro

m
 b

la
de

 (μ
m

)
∆p

H
T

0

500

1000

1500

2000

2500

3000

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

A

B

0

0.2

0.4

0.6

0.8

1.0

1.2

Saccha-
rina

Agarum Fucus Asco-
phyllum

Ulva Zostera

Figure 8. Microscale pH variability across diffusive boundary lay-

ers of blades of six different macrophyte species illuminated by

200 µmol photons m−2 s−1: the kelps Saccharina longicruris and

Agarum clathratum, the intertidal brown macroalgae Fucus vesicu-

losus and Ascophyllum nodosum, the green macroalga Ulva lactuca,

and the seagrass Zostera marina. (a) pH levels (mean of 2–3 repli-

cate measurements) across blade diffusive boundary layers fitted by

an exponential model (y = y0+a×exp−b×x , R2> 0.90 for all in-

dividual fits). (b) pH range across the diffusive boundary layer of

the various species.

unit; Middelboe and Hansen, 2007) and kelp forest (diel

range: ca. 0.6–0.8 pH units; Cornwall et al., 2013a). Our pH

measurements in benthic habitats neighbouring the kelp for-

est also carried a biological signal, though less distinct, likely

reflecting the combined signal of the benthic primary pro-

ducers at the site, of the neighbouring kelp forests, and of the

planktonic community in the water masses exchanged with

tidal currents. The marked biological control of pH in kelp

forests suggests that diel pH may be even more pronounced

during sunny days with more intense photosynthesis than

during the generally overcast conditions of our survey. Thus,

while the identified pH range and pH vs. O2 relationships

for the planktonic community covered the full growth sea-

son, they solely represented a few overcast September days

in the benthic habitats and would likely involve markedly
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higher levels had they covered the full growth season. For

subantarctic giant kelp forests, the diel amplitude in pCO2

and CT (Delille et al., 2009) during spring and summer, as

well as the seasonal amplitude in pH, CT and pCO2 (Delille

et al., 2000), was reported to be markedly higher within kelp

forests as compared with unvegetated habitats, underlining

the kelps’ strong biological control of pH.

We further show, for the first time, significant 3-D variabil-

ity in pH within 1 m3 of kelp forest, with pH ranging about

0.2–0.3 pH units at any one point in time and a total vari-

ability across deployments of 7.76–8.36 pHT, resembling the

range recorded across the entire growth season in the pelagic.

Levels of pH were dependent on the position in the kelp

canopy, with the highest pH generally appearing at the top

of the canopy and decreasing toward the seafloor, likely re-

flecting the vertical structure of photosynthetic activity in the

kelp bed. The fast rates of metabolic activity in combination

with reduced flow in such densely vegetated habitats make

these 3-D patterns appear in spite of the marked exchange of

water masses resulting from the 1–4.5 m tidal range.
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Changes in pH were particularly pronounced in small tidal

pools, where photosynthesis of dense seaweed stands of pri-

marily Ascophyllum nodosum and Fucus spp. drove O2 lev-

els to large supersaturation levels (176 %) and forced pH to

extremes of up to pHT 9.0 at low tide during sunny days,

corresponding to �arag of 4.14 and pCO2 of 13 µatm com-

pared to night values of pHT 7.4, �arag of 0.27 and pCO2 of

1647 µatm driven by community respiration, which almost

depleted O2 in the pools (11 % saturation). In surface waters

of adjacent densely vegetated intertidal shores, we observed

a maximum pHT of 8.5 with corresponding �arag 2.23 and

pCO2 of 96 µatm during the day and a minimum pHT of 8.0,

with corresponding�arag of 0.54 and pCO2 of 243 µatm dur-

ing the night. While intertidal brown macroalgae thrive in

such habitats when regularly flushed as in the current study,

apparently only Ulva (Enteromorpha) intestinalis occurs in

isolated, rarely flushed rock pools, where it can drive pH to

levels > 10 (Björk et al., 2004).

At the microscale, pH also showed considerable variabil-

ity with a range of up to 0.85 pH units across the diffu-

sive boundary layer of the key species of the vegetated shal-

low ecosystems, with high pH levels at the tissue surface

declining towards the bulk water during daytime (Fig. 8).

There was substantial variability among species, with in-

tertidal macroalgae (Ascophyllum and Fucus) showing the

largest pH range. The interspecific differences likely related

to the species’ photosynthetic rates as well as to their mor-

phology, which affect the thickness of the diffusive boundary

layer (Hurd and Pilditch, 2011). This microscale pH vari-

ability across the diffusive boundary layer compared well

with previous observations for the calcifying alga Halimeda

discoidea (pH range of 0.7 across diffusive boundary layer;

de Beer and Larkum, 2001) as well as for the coralline al-

gae Sporolithon durum (light–dark pH change at tissue sur-

face 0.9; Hurd et al., 2011) and Arthrocardia corymbosa

(pH range across diffusive boundary layer 0.4, for example,

depending on flow; Cornwall et al., 2013b). The pH range

across the diffusive boundary layer of Ulva was surprisingly

low considering the ability of Ulva to elevate pH to high lev-

els (Björk et al., 2004), but it was probably the combination

of low water temperature and limited nutrient supply that

limited the photosynthetic rate. The diffusive boundary layer

thickness as well as the pH range across it depends markedly

on flow conditions. Reduced flows as present in dense veg-

etation increase the diffusive boundary layer thickness and

consequently the pH range (Hurd et al., 2011; Cornwall et al.,

2013b). The current experiment was, hence, conducted at re-

duced flow and, importantly, at the same flow for all species.

Exchange of water masses with different salinity and temper-

ature also added to the variability in pH as indicated for both
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pelagic (Fig. 3b) and benthic (Fig. 4) systems but showed

much weaker correlation to pH than did O2 concentrations

reflecting the biological control.

The processes above resulted in nested scales of pH vari-

ability in the Kobbefjord ecosystem (Fig. 10), with variabil-

ity ranging 0.2–0.85 units across spatial scales and 0.2–1.6

units over diurnal to seasonal scales. This variability pro-

vides a dynamic mosaic of niches for organisms. Niches of

high pH may be particularly important for the more vul-

nerable larval and juveniles stages of calcifiers under con-

ditions of low pH as projected for the future (Kroecker et

al., 2013). The suitability for calcifiers is best represented by

�arag, where calcifiers should be favoured by high �arag val-

ues. The Kobbefjord ecosystems host a number of calcifying

species, including bivalves such as blue mussels, scallops and

snails; echinoderms such as green sea urchins; crustaceans

such as Pseudobalanus balanoides; and calcareous algae and

foraminifers. Overall, the identified �arag conditions were

well above 1, particularly in illuminated habitats with in-

tense photosynthesis and, hence, indicated favourable condi-

tions for calcification. The phytoplankton spring bloom, de-

pleting CO2 and driving �arag to values close to 3, would

also provide adequate conditions for pelagic calcifiers, as it

would provide the double benefit of adequate environments

for aragonite deposition and food supply to support growth

and the energetic demands of calcifiers. Canopies of kelp

and intertidal seaweed environments may also provide ad-

equate niches for calcifiers during summer, when �arag val-

ues would be highest through the cumulative action of the

processes upregulating pH and�arag values discussed above.

Indeed, most calcifiers spawn and recruit in early summer

(Arendt et al., 2013), when pCO2 remains low, warmer wa-

ter temperatures lead to higher �arag and high solar radiation

and a long photoperiod allow seaweeds to draw down CO2

further (Delille et al., 2000).

The upregulating effect of primary producers on pH is

counterbalanced by the opposite effect of respiration and

decomposition prevailing in shaded and deeper basins and

periods as illustrated by the large-scale seasonal variability

in the pelagic community (Fig. 2), and paralleled in kelp

forests outside the productive period (Delille et al., 2009) as

well as during night-time and in shaded layers of the kelp

forest (Fig. 7) and tidal pools (Fig. 9). These shaded habi-

tats with diurnally low �arag could be challenging habitats

for calcifiers. Interestingly, however, blue mussels grew in

close association with macroalgae even in intertidal pools,

where they would experience maximum �arag values of up

to 4.28 when low tide occurred at noon as opposed to levels

as low as 0.28 during night (Fig. 9). Blue mussels have in-

deed been observed to abound in intertidal macroalgal habi-

tats (Blicher et al., 2013) and along with other calcifiers to

be trophically linked with habitat-forming algae such as As-

cophyllum (Riera et al., 2009), and have also been reported

to tolerate high pCO2 concentrations when food is abundant

(Thomsen et al., 2013). The recurring periods of high �arag

in combination with adequate food supply can likely com-

pensate for the potential problems of low �arag during night.

Laboratory experiments have demonstrated that semidiurnal

fluctuations of 0.3 pH units may compensate for negative ef-

fects of constantly low pH on the development of mussel lar-

vae (Frieder et al., 2014). Calcareous epiphytic organisms,

such as encrusted algae and bryozoans, would also experi-

ence high variability in�arag at the surface of the plant tissue,

where periodically high�arag values favours calcification, as

elegantly demonstrated by de Beer and Larkum (2001).

The existence of a mosaic of environments in the Kobbe-

fjord underlines the importance of metabolic processes along

with habitat configuration and interactions among commu-

nity constituents in affecting pH in coastal ecosystems as op-

posed to the simpler situation in the open ocean (Duarte et

al., 2013; Hendriks et al., 2014). This pronounced influence

of metabolic processes occurs in spite of Kobbefjord being a

macrotidal area with marked exchange of water masses with

the coastal region and is probably also the case in many other

shallow coastal areas in the Arctic, as has also been high-

lighted for areas in the temperate zone (Duarte et al., 2013).

While the current study explored pH in benthic habitats un-

der overcast situations in the early autumn of the subarctic,

kelp forests are likely to induce much more pronounced in-

creases in pH and �arag in midsummer, when irradiances are

higher and the photoperiod longer, and further north, dur-

ing high-Arctic midsummer, when the sun does not set for

months. Under scenarios of ocean acidification such vege-

tated habitats may gain increased importance as local refuges

for calcifiers. The projected poleward expansion of macro-

phytes into the Arctic with warming and reduced sea-ice

cover (Müller et al., 2009; Jueterbock et al., 2013) has been

hypothesized to provide such niches of elevated pH and�arag

during summer (Krause-Jensen et al., 2014). Similarly, in-

creased pelagic primary production as forecasted for parts of

the Arctic Ocean (Arrigo et al., 2008; Slagstad et al., 2011;

Popova et al., 2012) may also create local niches of high pH.
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Appendix A

Figure A1. Photo of deployment frame with loggers shown on the deck of the boat (upper panel) and in situ in the Saccharina longicruris-

dominated kelp forest (site #1, central panel). Markings in upper panel show the array of 16 pH sensors connected to a common pH logger;

the Hydrolab instrument measuring salinity, temperature and oxygen; and a PAR logger (Odyssey).
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Figure A2. Fjord-scale variability in fluorescence in Kobbefjord, Nuuk, 19 April, 18 July and 3 September 2013.
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Figure A3. Fjord-scale variability in O2 concentration in Kobbefjord, Nuuk, 19 April, 18 July and 3 September 2013.
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