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Abstract. Water deficits can cause chlorophyll degradation

which decreases the total concentration of chlorophyll a and

b (Chls). Few studies have investigated the effectiveness of

spectral indices under water-stressed conditions. Chlorophyll

meters have been extensively used for a wide variety of leaf

chlorophyll and nitrogen estimations. Since a chlorophyll

meter works by sensing leaves absorptance and transmit-

tance, the reading of chlorophyll concentration will be af-

fected by changes in transmittance as if there were a water

deficit in the leaves. The overall objective of this paper was

to develop a novel and reliable reflectance-based model for

estimating Chls of fresh and water-stressed leaves using the

reflectance at the absorption bands of chlorophyll a and b

and the red edge spectrum.

Three independent experiments were designed to collect

data from three leaf sample sets for the construction and val-

idation of Chls estimation models. First, a reflectance exper-

iment was conducted to collect foliar Chls and reflectance

of leaves with varying water stress using the ASD FieldSpec

spectroradiometer. Second, a chlorophyll meter (SPAD-502)

experiment was carried out to collect foliar Chls and meter

readings. These two data sets were separately used for devel-

oping reflectance-based or absorptance-based Chls estima-

tion models using linear and nonlinear regression analysis.

Suitable models were suggested mainly based on the coeffi-

cient of determination (R2). Finally, an experiment was con-

ducted to collect the third data set for the validation of Chls

models using the root mean squared error (RMSE) and the

mean absolute error (MAE). In all of the experiments, the

observations (real values) of the foliar Chls were extracted

from acetone solution and determined by using a Hitachi U-

2000 spectrophotometer.

The spectral indices in the form of reflectance ra-

tio/difference/slope derived from the Chl b absorption bands

(ρ645 and ρ455) provided Chls estimates with RMSE around

0.40–0.55 mg g−1 for both fresh and water-stressed samples.

We improved Chls prediction accuracy by incorporating the

reflectance at red edge position (ρREP) in regression models.

An effective chlorophyll indicator with the form of (ρ645–

ρ455) / ρREP proved to be the most accurate and stable pre-

dictor for foliar Chls concentration. This model was derived

with an R2 of 0.90 (P < 0.01) from the training samples and

evaluated with RMSE 0.35 and 0.38 mg g−1 for the valida-

tion samples of fresh and water-stressed leaves, respectively.

The average prediction error was within 14 % of the mean

absolute error.

1 Introduction

Photosynthesis is the largest-scale synthetic process on earth.

There are many kinds of photosynthetic pigments, i.e.,

chlorophylls, carotenoids, and phycobilins in plant leaves,

but chlorophylls are considered to be the key factor because

the photochemical reactions take place only at the trapped

chlorophyll molecules. Light absorbed by chlorophyll ex-

cites electrons in the molecules, enabling them to be trans-

ferred to other molecules for glucose production and thus

enabling vegetation growth. Chlorophyll content can directly

determine photosynthetic potential and primary production

(e.g., Whittaker and Marks, 1975). It is believed that about
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Table 1. Previously developed spectral indices for foliar chlorophyll estimation.

Index Formula Source

Vogelmann red edge index 1 Vog1 = ρ740/ρ720 Vogelmann et al. (1993)

Vogelmann red edge index 2 Vog2 = (ρ734− ρ747)/(ρ715+ ρ726) Vogelmann et al. (1993)

Vogelmann red edge index 3 Vog3 = (ρ734− ρ747)/(ρ715+ ρ720) Vogelmann et al. (1993)

Red edge NDVI NDVI705 = (ρ750− ρ705)/(ρ750+ ρ705) Gitelson and Merzlyak

(1994a, b)

Normalized difference

vegetation index

NDVI700 = (ρ800− ρ700)/(ρ800+ ρ700) Gitelson and Merzlyak

(1994a, b)

Simple ratio index SR700 = ρ750/ρ700 Gitelson and Merzlyak

(1996, 1997),

Boegh et al. (2012)

Weighted simple ratio wSR = ρ860/(ρ708× ρ550) Datt (1998),

Gitelson et al. (2003)

Normalized difference

vegetation index

NDVI680 = (ρ800− ρ680)/(ρ800+ ρ680) Blackburn (1998)

Modified chlorophyll

absorption reflectance index

MCARI = [(ρ700− ρ670)− 0.2(ρ700− ρ550)][ρ700/ρ670] Daughtry et al. (2000)

Modified red edge simple

ratio

mSR = (ρ750− ρ445)/(ρ705− ρ445) Sims and Gamon (2002)

Modified red edge NDVI mNDVI = (ρ750− ρ705)/(ρ750+ ρ705− 2ρ445) Sims and Gamon (2002)

MERIS total chlorophyll index MTCI = (ρ750− ρ710)/(ρ710− ρ680) Dash and Curran (2004),

Rossini et al. (2012)

Reciprocal-based simple

ratio index

rSR705 =

(
1
ρ705
−

1
ρ780

)
× ρ780 = (ρ780/ρ705)− 1 Gitelson et al. (2006)

Triangular chlorophyll index TCI = 1.2(ρ700− ρ550)− 1.5(ρ670− ρ550)(ρ700/ρ670)
0.5 Haboudane et al. (2008)

Simple ratio index SR775 = ρ708/ρ775 Féret et al. (2011)

Normalized difference

vegetation index

NDVI712 = (ρ780− ρ712)/(ρ780+ ρ712) Féret et al. (2011)

Triangular greenness index TGI =−0.5[190(ρ670− ρ550)− 120(ρ670− ρ480)] Hunt et al. (2011, 2013)

Simple ratio stress index SR760 = ρ695/ρ760 Carter (1994)

Simple ratio stress index SR420 = ρ695/ρ420 Carter (1994)

Simple ratio index broadband

red edge

CIred edge = (ρ760–800/ρ690–710)− 1 Gitelson et al. (2009)

100 billion tons of carbon is fixed annually into organic com-

pounds by photosynthetic organisms (Nobel, 2005). The for-

est, a complex ecosystem of numerous trees, shrubs, savanna,

and lichens, uptakes carbons for vegetation metabolism, and

thus it makes a positive net primary production of biomass

carbon.

Foliar chlorophyll concentration (shortened as Chls) has

always been one of the important issues of research using

vegetation remote sensing techniques in last 2 decades. As

a consequence, a number of spectral indices were developed

for foliar Chls estimation. Table 1 lists some of the chloro-

phyll indicators that have been examined by Vogelmann et

al. (1993), Elvidge and Chen (1995), Blackburn and Ferw-

erda (2008), Ustin et al. (2009), Féret et al. (2011), and Hunt

et al. (2013). Those indices integrate a couple of specific sig-

natures of visible and near-infrared bands, for example, the

reflectance at 445, 550, 680, 700, 705, 710, 720, 750, 780,

800, 860 nm for foliar Chls estimation.

Typical reflectance of vegetation in the visible–infrared re-

gion will increase as water deficit occurs (Knipling, 1970;

Gausman and Allen, 1973; Gausman et al., 1982; Hunt and

Rock, 1989; Carter, 1991 and 1993; Ceccato et al., 2001;

Zygielbaum et al., 2009; Lin et al., 2012). As leaves dehy-

drate or vegetation suffers water stress, leaf water potential

becomes increasingly negative and the rate of photosynthe-

sis is reduced (Nilsen and Orcutt, 1996; Montagu and Woo,

1999; Keenan et al., 2009; Lavoir et al., 2009) because wa-

ter deficit can cause chlorophyll degradation and thus signif-

icantly decreases foliar chlorophyll concentration (Kirnak et

al., 2001; Pirzad et al., 2011; Desotgiu et al., 2012; Ghor-

banli et al., 2013). Specifically, the magnesium ion (Mg2+)

of the chlorophyll will be removed. As a result, chlorophyll
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becomes pheophytin (chlorophyll without Mg2+) and inacti-

vates the photochemical reaction (Kaoau et al., 2007; Schel-

bert et al., 2009; Weber et al., 2009); furthermore leaves de-

crease the absorptance of blue and red light while increas-

ing the reflectance at the corresponding wavelength bands.

This underpins the first basic assumption of this study that a

spectral index that effectively integrates the reflectance at the

blue and red bands, at which the light specifically absorbed

by chlorophyll is only used for plant photosynthesis, is better

for foliar Chls estimation than the indices (listed in Table 1)

that use other than the blue and red bands.

The dynamics of pigment concentrations are diagnostic

of a range of plant physiological properties and processes

(Blackburn, 2007). A suitable chlorophyll index can offer

useful information for estimating the gross productivity of

a terrestrial ecosystem (Nave et al., 2011) and even for un-

derstanding dust storm events (Tan et al., 2011). In order

to address the effects of global climate changes, it is nec-

essary to continuously update the prediction of forest carbon

sequestration and the net primary productivity of terrestrial

ecosystem. Traditional methods of using a spectrophotome-

ter and/or fluorometer in ground leaf liquids operate on the

light absorption of leaf in a laboratory setting. Determining

foliar Chls with this technique is a standard measurement. In

recent years, chlorophyll meters have offered a fast and con-

venient alternative for foliar Chls measurement. The Minolta

SPAD 502 is used for a wide variety of leaf chlorophyll and

nitrogen estimation by measuring the amount of light trans-

mittance and absorptance in an easy and non-destructive way

(Takebe et al., 1990; Ma et al., 1995; Blackmer and Schepers,

1995; Cate and Perkins, 2003; Read et al., 2003; Rowland et

al., 2004; Hawkins et al., 2009; Rascher et al., 2009; Boegh

et al., 2012). Nevertheless, it will be extremely hard work

to extend the result of traditional methods to field study be-

cause such a single leaf measurement will be useless (due

to no connection) for up-scaling the Chls and/or the fraction

of absorbed photosynthetically active radiation (Gond et al.,

1999) for the levels at tree crown or stand canopy.

In addition, since a chlorophyll meter works based on the

sensing of leaves absorptance and transmittance, the reading

of chlorophyll concentration will be affected by changes in

transmittance as if there is a water deficit in leaves. On the

other hand, the use of the relationship between the chloro-

phyll concentration and the readings of the chlorophyll meter

may not accurately observe the chlorophyll variations due to

physiological stresses. Because remote sensing only uses the

reflectance to differentiate materials and/or discern the prop-

erties of targets, it therefore can offer good opportunity to in-

directly determine foliar Chls. Therefore, the second assump-

tion of this study is based on the fact that foliar reflectance at

the photosynthesis wavebands is a better representative of fo-

liar biochemical spectra than single leaf transmittance (hand-

held chlorophyll meter) in a non-destructive detection base.

Many studies indicated that the spectral characteristics of

red edge (RE) and green peak (GP) are directly or indi-

rectly correlated to the level of leaf chlorophyll (Horler et

al., 1983; Curran et al., 1990; Filella and Peñuelas, 1994;

Pinar and Curran, 1996; Jongschaap and Booij, 2004; Mu-

tanga and Skidmore, 2007) and can provide a method to dis-

tinguish between water and nutrient stress (Estep and Carter,

2005); they should be helpful in the prediction of leaf chloro-

phyll concentration. However, little research has examined

the effectiveness of remote sensing models in the estima-

tion chlorophyll content of both fresh and water-stressed

leaves. We therefore proposed as a major goal of our study

to develop a spectral index which could effectively integrate

the reflectance of the photosynthetic-related spectra for leaf

chlorophyll determination in a reliable non-destructive way

for field application.

Briefly, the null hypotheses specified as follows will be

examined in this paper.

H01: The reflectance at the wavelengths (e.g., 663, 645,

455, and 426 nm, that is, ChlsPn variables) directly absorbed

by chlorophyll for photosynthesis is significantly and nega-

tively related to foliar Chls with respect to variation of leaf

water content.

H02: Reflectance-based spectral indices derived from

ChlsPn/RE/GP variables are closely related to foliar Chls and

can make better estimations of Chls than other indices with-

out ChlsPn variables in respect to different degrees of water-

stressed conditions.

H03: The determination of foliar Chls using the

transmittance-based meter (e.g., SPAD chlorophyll meter) is

insensitive to leaf water content.

2 Materials and methods

There were two independent experiments adopted to develop

the foliar chlorophyll concentration models. The first was

the chlorophyll-reflectance experiment from which training

leaf samples were collected for reflectance measurement and

chlorophyll determination, and the second was the chloro-

phyll SPAD experiment in which a new set of leaf sam-

ples was collected independently for SPAD measurement and

chlorophyll concentration determination. Finally, additional

leaf samples were used as a test data set for further valida-

tion of those models developed based on foliar reflectance

experiment or SPAD absorptance experiment.

A hardwood species, namely Camphor tree (Cinnamomum

camphora (Linn.) Seib), was selected for experiments. Leaf

samples sized around 6–8 cm long by 3–4 cm wide were

collected from the campus of the National Chiayi Univer-

sity in Taiwan. The authors intended to have samples col-

lected in a wide range of pigment concentrations to meet the

needs of this study. According to the ground inventory, we

collected samples to meet leaf colors including dark green,

light green, yellowish green, red, and dark red for laboratory

experiments. Leaf samples of the data sets for chlorophyll-

reflectance experiment and chlorophyll SPAD experiment is
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50 and 45, respectively, and the additional evaluation data set

is 70 leaves.

2.1 Data acquisition

2.1.1 Determination of foliar chlorophyll contents

Wellburn (1994) demonstrated that the chlorophyll concen-

tration of leaf pigments could be determined by acetone,

chloroform, dimethylformamide, and dimethyl-sulfoxide

with spectrophotometer analysis. Concentrations of the

tested foliar chlorophyll were extracted from the 80 % ace-

tone solution and determined spectrophotometrically using

a Hitachi U-2000 spectrophotometer following the method

of Arnon (1949). Concentrations of chlorophyll a (Chl a)

and chlorophyll b (Chl b) are determined using Eqs. (1)

and (2) where Dλ stands for the absorptance at the specific

wavelength λ, and where V and W represent the volume of

ground leaf-acetone liquid (ml) and the fresh weight (g) of

the ground leaf, respectively. Total chlorophyll concentra-

tion, Chls, was expressed as milligrams of chlorophyll per

gram of fresh leaf weight (mg g−1) and can be derived by

summing up the values of Chl a and Chl b.

Chl a = (12.7×D663− 2.69×D645)× (V/1000W) (1)

Chl b = (22.9×D645− 4.68×D663)× (V/1000W) (2)

2.1.2 Foliar reflectance measurement

Spectral data were obtained from the FieldSpec Pro FR spec-

troradiometer manufactured by Analytical Spectral Devices

(ASD). This instrument measures spectra over a spectral

range of 350–2500 nm and offers 1 nm wide narrowband

spectral data. Specifically, the full-width at half-maximum

(FWHM) spectral resolution of the FieldSpec Pro FR spec-

troradiometer is 3 nm for the region 350–1000 and 10 nm

for the region 1000–2500 nm (Hatchell, 1999) which meets

the nominal sampling and resolution requirements for hy-

perspectral remote sensing applications (Curtiss and Goetz,

1994).

Procedures to gathering spectra involve optimizing the in-

tegration time (typically set at 17 ms), providing foreoptic in-

formation, recording dark current, collecting Spectralon ref-

erence radiance, and then obtaining target radiance. A 25 ◦

field-of-view (FOV) foreoptic which connected ASD spec-

troradiometer and the computer control system was mounted

35 cm above and leveled at a tripod on the top of leaf samples.

As a result, a pixel size of 1.5 cm was determined as optimal.

A black cloth was used to cover the platform to avoid the in-

fluence of background reflection. Two light sources were face

to face mounted at an elevation angle of 45 ◦ and 1 m away

from the sample. The target reflectance is determined as the

ratio of the energy reflected off the target (target radiance)

to energy incident on the reference Spectralon (reference ra-

diance). For each measurement, the radiance was taken with

spectrum averaging set to 15 and then filtered using a median

filter (Hatchell, 1999; Lin et al., 2012).

Leaves reflectance spectra were measured in a laboratory

with an artificial illuminator (USHIO jc 14.5V-50WC) be-

fore the leaves grinding process for chlorophyll determina-

tion. The ASD spectroradiometer collects one nanometer res-

olution hyperspectral data. A first derivative transformation

of the reflectance spectra (Novo et al., 1995; Dawson et al.,

1998) was applied to calculate the slope values of the fo-

liar reflectance spectra, also known as first derivative spectra

(FDS), and to determine the red edge position. This posi-

tion has the largest FDS value which indicates the maximum

change in the slope of the reflectance spectra per unit change

in wavelength. Red edge position generally moves toward the

longer wavelength if the FDS become larger which is a re-

sult of high chlorophyll concentrations in leaves. Leaf color

is generally applied to visually diagnose foliar chlorophyll

or health status. Green peak is supposed to be the main syn-

drome of foliar greenness and probably could offer potential

value in the foliar Chls estimation. Green peak position is

determined if the FDS value equals to zero.

2.1.3 Implement of spectral and chlorophyll

measurement of fresh and water-stressed leaves

Relative water content (RWC) of leaves is commonly used to

assess the water status of plants in tree physiology research.

It has been applied to describe the status of leaf water stress

in remote sensing (Pu et al., 2003; Lin et al., 2012) and is

therefore used in this study. Fresh leaf samples were first de-

tached, measured for fresh weight (FW), and then spectral

reflectance data were immediately collected. Leaf samples

were then left to dry naturally in an air-conditioned room

at 26 ◦C with air circulated with a fan. Measurements of leaf

weight and reflectance were made every 2 h during the drying

process for 24 h. After collecting the final drying leaf weight

and spectra, the leaf samples were oven-dried and the ab-

solute dry weight (WD) was recorded. Finally, the RWC of

fresh leaves and drying leaves were determined using Eq. (3).

We further refer to this experiment as the pilot experiment.

RWC=
FW−WD

FW
× 100 (3)

The first experiment is a chlorophyll-reflectance experiment

in which a total of 50 leaves were first used for spectral mea-

surement and then ground for chlorophyll concentration de-

termination. The second experiment is the chlorophyll SPAD

experiment which was designed for exploring the relation-

ship of the SPAD readings and leaf chlorophyll contents.

A chlorophyll meter SPAD-502 (Konica Minolta Sensing,

Inc.) was used for quick measurements of the chlorophyll

content. In this experiment, we had 45 samples which were

first measured by SPAD readings then ground and dissolved

in acetone solution for chlorophyll concentration determina-

tion. Data collected from these two experiments were used
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for correlation and regression analysis to derive the rela-

tionships of chlorophyll-reflectance spectra and chlorophyll

SPAD readings. The third experiment is a validation exper-

iment. An additional 70 leaf samples were first detached,

and measurements of their weight were recorded along with

SPAD and reflectance of fresh leaves, and then left to dry

naturally in the same environmental conditions as the pilot

experiment. 24 h later, spectral measurements were imple-

mented immediately after obtaining the weight and SPAD

measurements for every leaf samples. A small portion, a cir-

cle with a diameter of 1.5 cm (set Ws) of each of the leaf

samples (set Wtotal) was taken for the determination of foliar

Chls in the acetone solution, and the another part of each of

the leaf samples was oven-dried to get the dry weight for the

determination of leaf RWC based on the weight ratio of Ws

and Wtotal.

2.2 Correlation analysis and regression analysis

A correlation analysis was applied to determine the cor-

relation coefficient (r) between the foliar chlorophyll

concentration and its reflectance. All of the coefficients

were further tested using the Student’s t statistic: t =

r
√
(n− 2)/(1− r2)∼ tα/2, n−2 to examine whether it is sta-

tistical meaningful for diagnosing foliar chlorophyll status.

Arnon (1949) demonstrated that chlorophyll a and chloro-

phyll b have particular absorption features in the blue and red

spectral region in the acetone solution. Specifically, Chl a

and Chl b have two absorption peaks for photosynthesis at

the wavelengths of 426 and 663 nm, and 455 and 645 nm,

respectively. The absorption peaks of Chl a and Chl b in

other solvents, such as chloroform, shift a little from the pre-

defined wavelength (Wellburn, 1994). Since the chlorophyll

was determined by using the acetone solvent, the spectral re-

flectance at those four specific wavelengths, i.e., ρ663, ρ645,

ρ445, and ρ426 are called ChlsPn variables; the chlorophyll-

related spectra such as the position and reflectance of the

green peak feature (λGmax and ρGmax) and the red edge fea-

ture (λREP and ρREP) are called GP variables and RE vari-

ables. A transformation of two key spectral features can be

integrated by simple ratio (ρi / ρj ), simple difference (ρi −

ρj ), and normalized difference (ρi −ρj ) / (ρi +ρj ) methods

to derive a new spectral index for remote sensing analysis.

A new transformation, the slope index (SI), was defined as

the ratio of the spectral difference and the distance of any

two key features. That is SI= (ρi−ρj ) / (|λi−λj |). This in-

dex integrates two spectral reflectance values based on their

spectral curve (or spectral behavior) into a standardized in-

dex value and potentially can reduce the influence caused

by background reflection and various albedo. The original

form of the variables ChlsPn, GP, and RE and their derived

spectral indices (Eqs. 6–21) were used as variables (shown in

Table 2) in regression analysis. Reflectance-based empirical

Chls models were than validated to examine the hypotheses

of this study.

In the regression analysis of reflectance-based models, the

dependent variable is the natural-logarithm-transformed fo-

liar Chls, denoted as lnChls. The transformation is used to

stabilize the constant variance of the predicted error term.

Also, the independent variables are the ChlsPn variables, the

GP variables, the RE variables, and/or their derived spectral

indices. The statistics such as the coefficient of determination

(R2), the prediction error sum of squares (PRESS), and the

standard error of estimates (SE(Y )) were used to measure the

model adequacy. In the regression analysis of SPAD-based

chlorophyll model, the SPAD readings and acetone-extracted

chlorophyll was set to be the regressor variable and the de-

pendent variable, respectively; the fitted model is named as

the absorptance-based chlorophyll model.

2.3 Validation of reflectance-based and

absorptance-based chlorophyll empirical models

The reflectance spectra and SPAD readings collected by the

third experiment were input to the absorptance-based model

and the reflectance-based models to get the estimates of the

foliar chlorophyll concentration; each of the estimates was

then assessed by the acetone-method-determined chlorophyll

contents. In the prediction assessment, the formula of root

mean squared error (RMSE) and mean absolute error (MAE)

are listed in Eqs. (4) and (5) and applied to demonstrate how

the estimator differs from the measured value of the quan-

tity being estimated. RMSE has the same units (mg g−1) as

the quantity being estimated, and MAE is presented in per-

centage, indicating a relative degree of the estimation differs

from the observation. In Eqs. (4) and (5), n is the number of

samples, y and ŷ represent the observed and predicted value,

respectively.

RMSE=

√√√√√ n∑
i=1

(
yi − ŷi

)2
n

(4)

MAE=
1

n

[
n∑
i=1

abs(yi − ŷi)

yi
× 100%

]
(5)

3 Results

3.1 Reflectance spectra of fresh and water-stressed leaf

Figure 1a shows the spectral behavior of the fresh and water-

stressed leaves of camphor trees. RWC of the leaf sample

varied from 51 to 5 %. Four aspects could be pointed out

about the difference of reflectance spectra between fresh and

water-stressed leaves. First, reflectance spectra in the visible–

infrared region behaved like a general reflectance curve of

fresh green leaves while the curve lifts up as the RWC de-

creased. Second, the green peak of the reflectance curves

was always clearly visible and the slope from the peak at

www.biogeosciences.net/12/49/2015/ Biogeosciences, 12, 49–66, 2015
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Table 2. The meaning and the formula of some extended spectral indices derived from the ChlsPn variables, red edge, and green peak

variables.

Regressor names Meaning and mathematical formula

RDI group Reflectance difference index of two spectral features from ChlsPn, red edge, and green peak.

RDIa RDI derived based on the two absorption peaks of chlorophyll a at 663 nm and 426 nm.

RDIa = ρ663− ρ426 (6)

RDIb RDI derived based on the two absorption peaks of chlorophyll b at 645 nm and 455 nm.

RDIb = ρ645− ρ455 (7)

RDIρREP−ρGmax RDI derived based on the red edge and green peak position.

RDIρREP−ρGmax = ρREP− ρGmax (8)

SI group Slope index of two spectral features from ChlsPn, red edge, and green peak.

SIa SI determined using the two absorption peaks of chlorophyll a.

SIa = (ρ663− ρ426)/(λ663− λ426) (9)

SIb SI determined using the two absorption peaks of chlorophyll b.

SIb = (ρ645− ρ455)/(λ645− λ455) (10)

SIρREP|ρGmax
SI determined using the red edge and green peak features.

SIρREP|ρGmax
= (ρREP− ρGmax)/(λREP− λGmax) (11)

NDI group Normalized difference index of two spectral features from ChlsPn, red edge, and green peak.

NDIa NDIa = (ρ663− ρ426)/(ρ663+ ρ426) (12)

NDIb NDIb = (ρ645− ρ455)/(ρ645+ ρ455) (13)

NDIREPRDIb NDIREPRDIb = (ρREP−RDIb)/(ρREP+RDIb) (14)

NDIREPGmax NDIREPGmax = (ρREP− ρGmax)/(ρREP+ ρGmax) (15)

RI group Ratio Index of two spectral features from ChlsPn, red edge, and green peak.

RIa RIa = ρ663/ρ426 (16)

RIb RIb = ρ645/ρ455 (17)

RIRDIb/ρREP RIRDIb/ρREP
= RDIb/ρREP (18)

RIRDIb/λREP RIRDIb/λREP
= RDIb/λREP (19)

RIρGmax/ρREP RIρGmax/ρREP
= ρGmax/ρREP (20)

RISPAD RISPAD = ρ650/ρ940 (21)

green region to the lowest point at red region was signifi-

cantly decreased when RWC is less than 30 %. Third, the

significant water absorption valleys could be seen at the spec-

tral regions centered at 1450 and 1910 nm. The depth and

the area of the absorption valley are negatively closely re-

lated to leaf RWC (Lin et al., 2012). Finally, a water-stressed

leaf reflectance peaked at around 2000 nm as the RWC was

less than or equal to 16 %. Although the absorption feature

in the infrared region (2000–2200 nm) is possibly due to the

dry matter constituents (such as protein, lignin, and cellulose)

(Cheng et al., 2011), this particular phenomenon is probably

related to physiological reactivity. It should be worthwhile to

explore in further studies. Figure 1b shows the first deriva-

tive of reflectance in the visible region of a sample leaf. The

red edge and green peak of the sample leaf were detected

at around 701–697 and 540–535 nm respectively. It was ob-

served that a small shift from longer to shorter wavelengths

happened as RWC changed from 51 to 5 %. Even though the

shifts were not very significant, it still indicated that the foliar

Chls would decrease if the water content of leaves decreased.

This phenomenon agree with the one addressed by Kirnak et

al. (2001), Pirzad et al. (2011), Desotgiu et al. (2012), and

Ghorbanli et al. (2013).

3.2 Response of leaf reflectance to variations in leaf

chlorophyll concentration

Figure 2a demonstrates the reflectance spectra over the

visible–infrared wavebands of the fresh leaves in the first
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Figure 1. Foliar reflectance spectra of Cinnamomum camphora. (a) Spectral curves showed the reflectance variation of visible–infrared

bands due to the changes of water content. (b) An example of the association between the relative water content in fresh and water-stressed

leaves and the green peak and red edge spectra features.

Figure 2. Foliar reflectance spectra of Cinnamomum camphora. (a) Spectral curves showed the reflectance variation of visible–infrared

bands due to the changes of foliar chlorophyll concentration. (b) Association between the chlorophyll concentration and the green peak and

red edge spectra of fresh leaves.

experiment. The Chls of these samples ranged from 0.7 to

4.1 mg g−1. An important feature that was observed showed

that the change of reflectance in the visible region behaves

obviously different from the one in the infrared region due

to changes of foliar Chls. Leaves with smaller Chls showed

a higher reflectance in the visible portion of the spectrum.

This is very similar to the increase of the reflectance curve as

leaves are under water-stressed conditions. On the contrary,

a leaf with higher Chls demonstrated higher reflectance in

the infrared area, which is not always consistent with the in-

crease of foliar Chls among all of the samples.

The blue drop and the red drop in the visible region are due

to photons being absorbed by the chlorophylls a and b in the

photosynthesis process (Emerson and Lewis, 1943; Hopkins

and Hüner, 2004). It indicates that a sharp decrease happened

to the gradient between these two points (that is, the gradi-

ent) for the leaf with higher value of Chls. In other words, a

leaf whose reflectance in visible region will decrease (level

down), the gradient will also decline as it is maturing. As-

sociations between the green peak and the red edge features

and values of foliar Chls are shown in Fig. 2b, which indi-

cates that the green peaks and the red edge occur at wave-

lengths around 554–557 and 694–715 nm, respectively. As

foliar Chls decreased, the red edge position moves toward

shorter wavelengths, the same trend being observed for the

blue edge.

3.3 Relationship of chlorophyll concentration and

visible–infrared reflectance spectra

Leaf spectral reflectance (ρλ) is correlated to foliar Chls. Fig-

ure 3 demonstrates the generalized visible–infrared spectra

of Cinnamomum camphora leaves and associated with the

corresponding correlogram of Pearson’s correlation coeffi-

cients, denoted as r(Chls, ρλ) a correlation coefficient of the

foliar chlorophyll concentration and the reflectance at wave-

length λ. A negative coefficient r(Chls, ρλ) < 0 was found in

the visible region while a positive coefficient r(Chls, ρλ) > 0

was found in the infrared region.
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Figure 3. Generalized reflectance spectra of Cinnamomum cam-

phora leaf (solid line) and trends of the corresponding correlation

coefficients (dashed line) between the concentration of total chloro-

phyll and reflectance in the visible–infrared wavelength region. Re-

sults derived from the training data set, the 50 leaf samples.

Most of the reflectance values between 350–2500 nm have

proven to be significantly linearly related to foliar Chls

based on the Student’s t statistic t = r
√
(n− 2)/(1− r2)∼

tα/2, n−2. Exceptions are the sub-regions 730–741, 1905–

1970, and 2408–2500 nm. Reflectance of the bands at green

sub-region 530–580 nm and red edge sub-region 700–716 nm

are valuable because the absolute value of their r(Chls, ρλ)

are greater than 0.90 (P < 0.01). Although vegetation is

proven to use the light energy in blue (PS I) and red (PS II)

wavelengths for photosynthesis, the reflectance spectra ap-

pears different than the absorption spectra.

Infrared reflectance is positively related to foliar Chls. It

is observed that in the first sub-region of shortwave infrared,

a dramatic drop of reflectance curve happened in the water

absorption area (1395–1504 nm, denoted as SWIR I), with a

value of r(Chls, ρλ) around 0.75. In the second sub-region of

shortwave infrared (1905–1970 nm, denoted as SWIR II), the

reflectance is almost independent of foliar Chls because the

value of r(Chls, ρλ) is almost identical to zero, as indicated

by the Student’s t test results.

4 Discussions

4.1 Reflectance-based empirical models for the

estimation of total chlorophyll content

4.1.1 Adequacy comparison among the models with

prototype variables

Recall that a measured value of foliar chlorophyll is de-

termined by the spectrophotometrical method. This method

uses the absorptance peaks of blue spectra at 426 and 455 nm

and the absorptance peaks of red spectra at 645 and 663 nm.

The reflectance of those specific wavelengths, i.e., ρ426,

ρ455, ρ645, and ρ663 are named as the ChlsPn variables, the

red edge characteristics ρREP and λREP are named as red

edge variables, and the green peak characteristics ρGmax and

λGmax are named as green peak variables hereafter in this pa-

per.

Based on the fundamentals of remote sensing, a target will

reflect smaller amount of incident energy if it absorbs most

of the incident energy. Figure 4a–d shows that foliar chloro-

phyll concentration is negatively related to the reflectance of

the ChlsPn variables. It indicates that higher foliar chloro-

phyll concentration causes lower reflectance of the blue and

red spectra. The models with one of the ChlsPn variables

work like the spectrophotometric method. Figure 4e and f

show that the chlorophyll concentration is positively linearly

related to the red edge variables indicating a result similar to

Curran et al. (1991). The adequacy statistics R2, PRESS, and

SE(Y ) show that λREP is better than ρREP and even better than

ρ645 in the prediction of chlorophyll concentration. There are

89 % of the Chls variation could be explained by λREP while

only 30 % of the Chls variation could be explained by ρREP.

This result agrees with the research of Mutanga and Skid-

more (2007) and Reddy and Matcha (2010), who demon-

strated that the red edge position is strongly negatively cor-

related with the foliar pigment concentration in plants. The

reductions in Chls increased leaf reflectance at red spectral

region and caused the red edge shift to shorter wavelengths.

This agrees with conclusions of Carter (1993) and Carter and

Knapp (2001). Though the Chls of training samples show a

big variation, the green peak position (λGmax) changes only

in a very short span from 554 to 557 nm. There is only

10 % of Chls that could be explained by the variable λGmax

(Fig. 4g). The Chls is much better fitted by the reflectance of

the green peak position (ρGmax) with a negatively linear rela-

tionship (Fig. 4h). This model has adequacy very close to the

model with the regressor λREP.

4.1.2 Adequacy comparison among the models using a

derived spectral index

Figure 5 shows the relationship between the lnChls and the

difference index or the slope index of red and blue absorp-

tion peaks by the prototype variables, and of the green peak

and red edge variables. RDIa and SIa are negatively linearly

related to lnChls while SIa has a better model adequacy than

RDIa (Fig. 5a and b). It is observed that both predictors

RDIb and SIb have an exponential decay relationship with

the lnChls (Fig. 5c and d); the regression coefficient of the

predictor is negative which means that a lower value of to-

tal chlorophyll concentration will be observed when having

a higher value of RDIb or SIb.

The predictors RDIρREP−ρGmax
and SIρREP|ρGmax

work like a

two-order polynomial function in the prediction of lnChls.

These two models also have the same levels of the in-

dicators of model adequacy (Fig. 5e and f). The coeffi-
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Figure 4. Reflectance-based empirical models with the ChlsPn/red edge/green peak variables for leaf total chlorophyll content estimation.
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Figure 5. RDI- and SI-based empirical models for the estimation of foliar total chlorophyll concentration.

cients of first- and second-order variables are negative, in-

dicating a higher value of foliar Chls has a lower value of

RDIρREP−ρGmax
and SIρREP|ρGmax

. In other words, a leaf with

high chlorophyll concentration will have the reflectance at

the red edge position far greater than the reflectance at the

green peak position.

Figure 6 shows six empirical models with adequacy as-

sessments for the estimation of foliar chlorophyll concentra-

tion using the ratio index of spectral features. Those models

are all negatively related to the lnChls. Figure 7 shows the

behavior of normalized difference indices with respect to the

changes of foliar total chlorophyll concentration. The pre-

dictors NDIa and NDIb are linearly related to lnChls (Fig. 7a

and b). These two indices display a negative relationship in

the estimation of lnChls, with an R2 value of 0.67 and 0.83

(P < 0.01).

4.1.3 Validation of empirical reflectance-based Chls

models

The empirical reflectance-based Chls models developed us-

ing the training samples were validated using another data

set by using samples which contain fresh and water-stressed

leaves. The Chls prediction bias was presented with the in-

dicators RMSE and MAE in response to the group of fresh

and water-stressed samples, that is, RMSEf, RMSEw, MAEf,

and MAEw. The prediction biases of both fresh and water-

stressed groups were averaged to get the mean values of

RMSEa and MAEa. Details of the model validation and per-
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Table 3. Prediction accuracy assessment of the developed Chls empirical models.

Predictor Model adequacy Model validation

R2 PRESS SE(Y ) RMSEf RMSEw RMSEa MAEf MAEw MAEa

RIRDIb/ρREP
0.90 1.55 0.17 0.35 0.38 0.36 15.85 12.49 14.17

SIb 0.94 0.93 0.13 0.46 0.43 0.44 19.07 14.63 16.85

RIRDIb/λREP
0.94 0.93 0.13 0.46 0.42 0.44 19.33 14.47 16.90

RDIb 0.94 0.93 0.13 0.44 0.49 0.46 17.11 18.03 17.57

NDIREPRDIb 0.92 1.30 0.16 0.36 0.48 0.43 16.78 18.97 17.88

ρREP 0.30 10.97 0.46 0.52 0.44 0.48 20.45 20.79 20.62

NDIb 0.84 2.49 0.22 0.40 0.55 0.48 21.11 24.36 22.74

RIb 0.83 2.70 0.23 0.39 0.54 0.47 21.49 24.01 22.75

NDIa 0.68 5.08 0.31 0.73 0.67 0.70 32.83 31.12 31.98

RIa 0.66 5.36 0.32 0.64 0.70 0.67 32.05 33.05 32.55

SIa 0.87 2.00 0.20 0.85 0.54 0.71 50.56 20.47 35.51

RDIa 0.74 9.98 0.44 0.85 0.54 0.71 50.56 20.47 35.51

RISPAD 0.79 3.41 0.25 0.79 0.49 0.66 48.04 36.20 42.12

RDIρREP−ρGmax 0.92 1.25 0.15 1.20 0.78 1.01 55.63 39.73 47.68

SIρREP|ρGmax
0.92 1.25 0.25 1.15 0.78 0.98 54.55 39.34 49.95

λREP 0.90 1.59 0.18 1.18 0.64 0.95 56.05 48.43 52.24

RIρGmax/ρREP
0.93 1.06 0.14 0.40 1.17 0.88 16.33 89.52 52.93

ρ645 0.77 3.57 0.26 0.98 0.63 0.82 60.38 46.41 53.39

NDIREPGmax 0.93 1.08 0.14 0.40 1.19 0.89 16.49 90.71 53.60

ρ426 0.19 12.63 0.50 0.84 0.72 0.78 54.73 54.99 54.86

ρ663 0.55 6.99 0.37 1.12 0.60 0.90 70.54 43.91 57.23

ρ455 0.27 11.29 0.47 1.02 0.85 0.94 66.31 64.24 65.28

ρGmax 0.92 1.19 0.15 0.78 1.94 1.48 44.61 147.80 96.20

λGmax 0.10 14.09 0.52 0.90 > 1000 > 1000 57.00 > 1000 > 1000

cent variances explained are listed in Table 3. Among the 24

models, there are 11 models whose R2 is greater than 0.90

(P < 0.01), PRESS less than 1.60, and SE(Y ) less than 0.25.

Though those models have highR2 values, the predicted Chls

accuracy for the validation data set varies significantly. Some

of the models have a big difference in prediction power for

fresh leaves and water-stressed leaves samples. These results

indicate that RIρGmax/ρREP and NDIREPGmax models are only

recommended for the Chls estimation of fresh leaves, while

they failed to capture the changes caused by the water stress

effect on spectral features variations.

Five models among those 24 models could be applied to

estimate the foliar Chls of tree leaves because their predic-

tor is able to capture accurately the Chls variation due to

the changes of water content in leaves. The relatively high

performance models have MAE ranges between 15–20 and

12–19 % for fresh leaves and water-stressed leaves, and have

average MAEs between 14 and 18 %. The best validation

among those reflectance-based Chls models was observed for

the model with the predictor RIRDIb/ρREP. Accordingly, we

inferred that the reflectance variables ρ645, ρ455, and ρREP

are able to capture the key spectral features of foliar chloro-

phyll status and hence are effective predictors of foliar Chls.

In addition, the models with only one reflectance feature

of the prototype variables, i.e., ρ663, ρ425, ρ645, or ρ455, will

not be able to successfully predict foliar Chls. Finally, we

found a conflict of agreement between model adequacy and

validation for the models with the predictor λREP and ρREP.

Though λREP is fitted very well with high adequacy R2
=

0.90 (P < 0.01), its model is validated with MAEa= 52 %

and RMSEa= 0.95 mg g−1; while ρREP is not fitted very

well, its R2
= 0.30 is still significant at the 0.05 proba-

bility, and this model is validated with MAEa= 20 % and

RMSE= 0.48 mg g−1. The reflectance at green peak wave-

length (ρGmax) could be partially useful in the Chls predic-

tion of fresh leaves.

Oki (2010) showed that ratio of reflectivity is able to give

a good estimation of chlorophyll a in lake water. Our results

demonstrated that leaf chlorophyll concentration in cases of

various water contents (fresh and/or water stressed) could be

accurately predicted using spectral ratio indices such as RI

(ratio index), SI (slope index), and NDI (normalized differ-

ence index) due to those indices effectively integrating the

spectral features of chlorophyll b and additionally the red

edge characteristics. The model adequacy and the predic-

tion accuracy validation of the empirical models have the

same agreement. This leads to the answers of the hypotheses

H01 and H02. First, the reflectance of ChlsPn is linearly and

negatively related to foliar Chls, while the reflectance of red

edge and green peak is linearly and positively related to fo-

liar Chls. Second, the ChlsPn, red edge, and green peak can-

not achieve an acceptable accuracy in the estimation of foliar

www.biogeosciences.net/12/49/2015/ Biogeosciences, 12, 49–66, 2015



60 C. Lin et al.: A novel reflectance-based model for evaluating chlorophyll concentration

Figure 6. Ratio-index-based empirical models for foliar Chls concentration estimation.

Chls (for example MAE< 20 %) when they are used alone

as predictors. Third, the ChlsPn variables can be integrated

to produce a spectral difference index (RDIb = ρ645− ρ455)

or a spectral slope index SIb = (ρ645−ρ455)/(λ645−λ455) to

achieve an acceptable accuracy. Finally, ChlsPn and red edge

characteristics can also be integrated as new spectral indices

by the combination of reflectance difference and simple ratio.

Specifically, foliar Chls is significantly more related to the

reflectance of ρ645 and ρ63 than ρ455 and ρ426. But the spec-

tral difference index (RDIb) and the slope index (SIb) work

much better than each of the four variables. Moreover, the

prediction accuracy of the spectral difference index can be

further improved by 17 % if it is synergized with the re-

flectance at red edge position. That is an appropriate pre-

dictor and can be derived by (ρ645− ρ455)/ρREP, denoted as

RIRDIb/ρREP in Table 2, for better prediction accuracy of fo-

liar Chls in respect to various foliar water contents.

4.1.4 A comparison with previously developed spectral

indices of chlorophyll indicators

Relationships between lnChls and the previous 18 spectral

indices in Table 1 were developed using the training sam-

ples. The lnChls (y in Table 4) is mostly linearly and pos-

itively or negatively related to the indices, while an expo-

nential decay relationship is observed between the lnChls

and the indices TCI and SR775. R2 values for those models

are mostly greater than 0.90, only the model with NDVI680
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Figure 7. Normalized-difference-index-based empirical models for foliar Chls concentration estimation.

has an R2 of 0.60, showing a relatively poor model ade-

quacy. Chls prediction accuracy of those models is between

RMSE 0.87–4.57 mg g−1 or MAE 39–177 % for both the

fresh and water-stressed leaves (Table 5). The best accuracy

was achieved by the indicator CIred edge with an RMSE of

0.72 and 1.00 mg g−1 and an MAE of 27 and 53 % for the

fresh and water-stressed validation samples. The foliar Chls

is linearly and positively related to CIred edge, as shown in Gi-

telson et al. (2009).

Although Ollinger (2011) suggested that the near-infrared

region is the most important to vegetation remote sens-

ing, a spectral index that combines the reflectance of near-

infrared and red edge wavelengths was not able to achieve

the same accuracy level of the predictor RIRDIb/λREP . Specifi-

cally, taking the average of the prediction accuracy of both

fresh and water-stressed samples, the indicator CIred edge

could achieve an accuracy of RMSE= 0.87 mg g−1 and

MAE= 39 %. That is almost 2.5 times the average accu-

racy (RMSE= 0.36 mg g−1 and MAE= 14 %) indicated by

RIRDIb/ρREP . This is probably due to the structure of the foliar

mesophyll which has changed when foliar water deficit hap-

pened. For example, Wuyts (2012) found that leaf thickness

is conserved in response to water deficit under both high and

low cumulative light regimes while mesophyll cells change

in volume and shape. The change of the near-infrared re-

flectance is more complicated. Additional studies might be

needed to explain the behavior of infrared reflectance in the

future.

4.2 Evaluation of the absorptance-based Chls model

(the SPAD-502 method)

4.2.1 Nonlinearity relationship between

ln_transformed chlorophyll and SPAD readings

SPAD readings and total chlorophyll concentration relation-

ship was explored from an independent experiment of 45

fresh leaf samples of Cinnamomum camphora. A three-

parameter rational function, Y = (1+aX)/(b+cX)was most

appropriate for presenting the relationship of SPAD reading

(X) and the lnChls (Y ) based on the ANOVA F test of the

fitted model and the t test of the model’s parameters. Fig. 8

showed that SPAD readings are nonlinearly dependent on the

natural-log-transformed Chls. Specifically, the coefficients a,

b, and c of this fitted model were further t tested to be signifi-

cant at the 0.01 level. In total, 95.77 percent of the variance of

lnChls could be explained by the SPAD chlorophyll rational

model. Compared with the measured value determined by the

acetone method, the fitted rational model has an average ac-

curacy of 0.22 mg g−1 RMSE and 15 % MAE that differ from

the measured chlorophyll content for the training data set.
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Table 4. Narrow-band-based spectral indices developed as chlorophyll indicators.

Indicator Chls estimation models (y is lnChls) R2 PRESS SE(Y )

Vog1 y =−4.0302+ 3.4801Vog1 0.94 0.95 0.13

Vog2 y =−0.4049− 19.4238Vog2 0.94 0.95 0.13

Vog3 y =−0.3766− 17.3277Vog3 0.94 0.94 0.13

NDVI705 y =−0.8710+ 3.6844NDVI705 0.92 1.21 0.15

NDVI700 y =−1.0487+ 3.1896NDVI700 0.91 1.46 0.17

SR700 y =−0.8609+ 0.4175SR700 0.94 1.00 0.14

wSR y =−0.3406+ 5.5226wSR 0.91 1.47 0.17

NDVI680 y =−5.5313+ 7.5436NDVI680 0.60 6.29 0.35

MCARI y = 1.3432− 0.0192MCARI 0.82 2.86 0.24

mSR y =−0.9494+ 0.5288mSR 0.94 0.91 0.13

mNDVI y =−0.8980+ 3.2961mNDVI 0.92 1.31 0.16

MTCI y =−0.4718+ 0.9146MTCI 0.94 1.01 0.14

rSR705 y =−0.4432+ 0.6887 rSR705 0.94 0.91 0.13

TCI y = 3.7126 · exp(−0.0743TCI) 0.88 1.94 0.19

SR775 y = 22.5416 · exp(−8.1018SR775) 0.90 1.56 0.17

NDVI712 y =−0.6772+ 4.7009NDVI712 0.93 1.15 0.15

TGI y = 1.7411− 0.0011TGI 0.93 1.11 0.15

SR760 y =−0.3563+ 3.4783 · exp(−6.6687SR760) 0.91 1.50 0.17

SR420 y = 1.8611− 0.4905SR420 0.66 5.24 0.32

CIred edge y =−0.5205+ 0.4737CIred edge 0.93 1.05 0.14

4.2.2 Limitation of the SPAD reading-based rational

model

According to the experiment, we found that the SPAD read-

ing increases positively relative to the chlorophyll concentra-

tion in fresh leaves. The SPAD reading remained at a high

value even when leaves were under serious water stress, that

is, the SPAD reading rises to a high level even the chloro-

phyll content is decreasing. It revealed that the previously

mentioned nonlinear rational model is not suitable for those

wilting leaves. Figure 9 showed a deficiency of the SPAD

reading-based model in the estimation of foliar chlorophyll

content. The Chls estimates of fresh leaves (presented as

solid black circles) are mostly located under the real Chls

line (i.e., under estimation), and the Chls estimates of water-

stressed leaves (presented as open circles) are mainly lo-

cated above the real Chls line (i.e., overestimation). The bi-

ases RMSE and MAE of Chls estimation were evaluated to

be 0.29 mg g−1 and 16 % for the fresh leaves sample and

0.92 mg g−1 and 60 % for the water-stressed leaf sample.

The fresh leaves sample has biases very close to the values

(RMSE 0.22 mg g−1 and MAE 15 %) of the original model-

ing data set, but the water-stressed leaves sample has biases

almost 4 times that of the original modeling data set. This

finding indicates that the SPAD rational model can achieve

a very good and acceptable Chls estimates in case of fresh

leaves, while unfortunately it fails if the leaves are under

water-stressed conditions. This result leads to the acceptance

of the null hypothesis H03 and concludes that the determina-

tion of Chls using the chlorophyll meter (absorptance-based

Figure 8. Rational regression model for foliar chlorophyll contents

estimation. Number of data points is 45. In the rational model,

the independent variable SPAD readings could be used to ex-

plain 95.77 % (R2) variation of the dependent variable, lnChls, the

natural-logarithm-transformed foliar chlorophyll content.

model) has a significant bias or uncertainty due to its failure

in responding to the influence of water stress.

5 Conclusions

Typical vegetation reflectance is significantly related

to foliar biochemistry and biophysical characteristics.

A stronger negative relationship exists between the
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Table 5. Foliar Chls prediction accuracy of the previously developed spectral indices.

Error index RMSE (mgg−1) MAE (%)

Chls indicator Fresh sample Wilted sample All Fresh sample Wilted sample All

Vog1 1.91 0.33 1.37 78.35 13.96 46.15

Vog2 3.01 0.41 2.15 111.33 27.99 69.66

Vog3 3.27 0.39 2.33 115.85 25.78 70.81

NDVI705 1.43 0.54 1.08 78.32 39.56 58.94

NDVI700 1.36 0.86 1.14 82.51 63.74 73.12

SR700 4.28 0.48 3.04 155.11 34.37 94.74

wSR 3.65 2.49 3.12 93.48 170.68 132.08

NDVI680 1.27 0.47 0.95 78.15 32.27 55.21

MCARI 1.06 1.55 1.33 71.17 119.34 95.26

mSR 6.44 0.41 4.57 173.85 28.68 101.26

mNDVI 1.46 0.57 1.11 78.08 42.21 60.14

MTCI 2.80 0.34 1.99 95.57 22.05 58.81

rSR705 3.62 0.54 2.59 129.23 39.78 84.50

TCI 2.67 3.67 3.21 85.89 268.02 176.95

SR775 5.98 0.38 4.24 171.87 26.43 99.15

NDVI712 1.49 0.54 1.12 72.86 40.55 56.71

TGI 0.57 2.33 1.70 30.13 178.95 104.54

SR760 1.93 0.54 1.41 102.96 38.92 70.94

SR420 0.99 0.83 0.92 63.28 61.48 62.38

CIbroad band 0.71 1.00 0.87 27.10 51.86 39.48

chlorophyll concentration and the visible reflectance while

the relationship of the chlorophyll concentration and the in-

frared reflectance is positive. As water stress occurred, the

reflectance over the visible and infrared area will increase.

The estimation of chlorophyll concentration using only the

remotely sensed reflectance will be seriously affected by the

reflectance changes caused by a departure of water content

from the non-water-stressed conditions. The significant un-

certainty for the estimation of chlorophyll concentration is

caused by the reflectance changes induced by variations of

the foliar water content. Red edge characteristics, such as

position (λREP) and reflectance (ρREP), are also sensitive to

water stress. Each of them, as a predictor of foliar Chls, has

a significant positive linear relationship with foliar chloro-

phyll concentration. This is similar to the results of Matson

et al. (1994) and Belanger et al. (1995).

The ChlsPn variables, such as the reflectance at the wave-

lengths 663, 645, 455, and 426 nm, are in particular directly

related to the light absorption by chlorophyll a and chloro-

phyll b and therefore can characterize the foliar chlorophyll

concentration. The relationship between Chls and each of

the variables ρ426, ρ455, ρ645, and ρ663 is statistically signif-

icant, but is still not good enough to be used alone for Chls

estimation. The best adequacy (R2) of the four reflectance-

based ChlsPn models using one of the ChlsPn variables

as the predictor is 0.77, meanwhile the best average accu-

racy achieved is MAE= 54 % and RMSE= 0.78 mg g−1 for

both fresh and water-stressed leaves. Spectral indices de-

rived from ChlsPn variables by the methods of normalized

Figure 9. Evaluation of the prediction accuracy of the SPAD chloro-

phyll regression model. Number of data points is 70. For testing

fresh samples, the estimation error is 0.2858 mg g−1; for testing

samples which are water stressed, the error is 0.9173 mg g−1. Aver-

age error is 0.6794 mg g−1 for all of the testing data points.

difference, simple difference, slope transformation, and sim-

ple ratio can effectively improve the estimation accuracy of

the reflectance-based Chls spectral index models. The bet-

ter accuracy is the model using the slope index SIb with

MAE= 17 % and RMSE= 0.44 mg g−1 or the difference

index RDIb with MAE= 18 % and RMSE=0.46 mg g−1.

By integrating the reflectance at the red edge position, the

www.biogeosciences.net/12/49/2015/ Biogeosciences, 12, 49–66, 2015
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difference-based simple ratio index (ρ645− ρ455)/ρREP can

achieve the best accuracy of the Chls of fresh and water-

stressed leaves. The MAE and RMSE are further decreased

down to 14 % and 0.36 mg g−1, respectively.

Plant growth and productivity are mostly affected by wa-

ter shortage. This stress condition induces plant cell dehy-

dration and then causes the decreased chlorophyll in older

leaves. Since the influence of water stress on foliar spectral

reflectance could be effectively reduced by the reflectance

at the red edge and the wavelengths of 645 and 455 nm, we

recommend the following three spectral indices as an effec-

tive chlorophyll indicator (ECI) for dealing with the poten-

tial influence of foliar water deficit for applications. The first

predictor is the difference-based red edge reflectance ratio in-

dex ECI1= (ρ645−ρ455)/ρREP, then the slope index ECI2=

(ρ645−ρ455)/(λ645−λ455), and finally the difference-based

red edge position ratio index ECI3= (ρ645− ρ455)/λREP.

ECI1 is negatively and linearly related to chlorophyll con-

centration, while ECI2 and ECI3 are exponential and neg-

atively related to the natural-log-transformed foliar chloro-

phyll concentration. A temporal and spatial estimation of the

chlorophyll content for the terrestrial ecosystems could be

retrieved more feasibly and accurately using these effective

chlorophyll indicators.
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Goulas, Y., Guanter, L., Gutiérrez-de-la-Cámará, O., Hamdi, K.,
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