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Abstract. There has been growing interest in quantifying

the capacity of seagrass ecosystems to act as carbon sinks

as a natural way of offsetting anthropogenic carbon emis-

sions to the atmosphere. However, most of the efforts have

focused on the particulate organic carbon (POC) stocks and

accumulation rates and ignored the particulate inorganic car-

bon (PIC) fraction, despite important carbonate pools associ-

ated with calcifying organisms inhabiting the meadows, such

as epiphytes and benthic invertebrates, and despite the rele-

vance that carbonate precipitation and dissolution processes

have in the global carbon cycle. This study offers the first

assessment of the global PIC stocks in seagrass sediments

using a synthesis of published and unpublished data on sedi-

ment carbonate concentration from 403 vegetated and 34 ad-

jacent un-vegetated sites. PIC stocks in the top 1 m of sedi-

ment ranged between 3 and 1660 Mg PIC ha−1, with an av-

erage of 654± 24 Mg PIC ha−1, exceeding those of POC re-

ported in previous studies by about a factor of 5. Sedimen-

tary carbonate stocks varied across seagrass communities,

with meadows dominated by Halodule, Thalassia or Cymod-

ocea supporting the highest PIC stocks, and tended to de-

crease polewards at a rate of −8± 2 Mg PIC ha−1 per degree

of latitude (general linear model, GLM; p < 0.0003). Using

PIC concentrations and estimates of sediment accretion in

seagrass meadows, the mean PIC accumulation rate in sea-

grass sediments is found to be 126.3± 31.05 g PIC m−2 yr−1.

Based on the global extent of seagrass meadows (177 000 to

600 000 km2), these ecosystems globally store between 11

and 39 Pg of PIC in the top metre of sediment and accumu-

late between 22 and 75 Tg PIC yr−1, representing a signifi-

cant contribution to the carbonate dynamics of coastal areas.

Despite the fact that these high rates of carbonate accumula-

tion imply CO2 emissions from precipitation, seagrass mead-

ows are still strong CO2 sinks as demonstrated by the com-

parison of carbon (PIC and POC) stocks between vegetated

and adjacent un-vegetated sediments.
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1 Introduction

Calcium carbonate (CaCO3) accounts for about a 25 % of the

surface marine sediments (Balch et al., 2005). Contemporary

oceanic carbonate sediments are mainly composed of two

main mineral forms of calcium carbonate, calcite (including

Mg calcite, magnesium-rich calcite) and aragonite, both pri-

marily formed by biogenic precipitation (Smith, 2013). The

coastal ocean accounts for around 33 % of the global CaCO3

production (Smith, 2013), but it is where the highest propor-

tion of carbonate sediment accumulation takes place (nearly

two-thirds of its production), whereas in open ocean sedi-

ments only one-third of the CaCO3 produced is accumulated

(Milliman and Droxler, 1996; Smith, 2013). A broad range

of communities are involved in the production and subse-

quent accumulation of CaCO3 in marine sediments, includ-

ing benthic ecosystems dominated by coral reefs (Chave et

al., 1972; Smith, 2013), calcareous algae (Milliman, 1993)

and maerl beds (Bosence and Wilson, 2003); and plank-

tonic communities including coccolithophores (Westbroek et

al., 1989), foraminifera (Langer et al., 1997), and pteropods

(Fabry, 1990). More recently the important contribution of

echinoderms (Lebrato et al., 2010), molluscs (Chauvaud et

al., 2003) and fish (Wilson et al., 2009) to CaCO3 production

has been revealed. Relative to other ecosystems, the produc-

tion of CaCO3 in seagrass meadows ecosystems and its accu-

mulation in the sediments is poorly studied and not explicitly

considered in any of the existing assessments of the global

ocean carbonate budget (Milliman et al., 1993; Milliman and

Droxler, 1996; Lebrato et al., 2010), despite the important

load of carbonate often found in their sediments and leaves

(Canals and Ballesteros, 1997; Gacia et al., 2003; Perry and

Beavington-Penney, 2005; Serrano et al., 2012; Enríquez and

Schubert, 2014) and their role as a source of carbonate sand

for beach formation and preservation (De Falco et al., 2003;

Tigny et al., 2007). Indeed, a global estimate of the carbon-

ate stock in seagrass sediments is not yet available and the

potential contribution of these systems to the global ocean

carbonate budget remains to be evaluated.

There is considerable interest in quantifying the capacity

of the world’s ecosystems to trap and store carbon, as this can

offset anthropogenic carbon emissions to the atmosphere.

To date, most work on the carbon pools in seagrass ecosys-

tems has focused on the amount of particulate organic carbon

(POC) stored (Fourqurean et al., 2012; Lavery et al., 2013),

whereas, except for Posidonia oceanica in the Mediterranean

Sea (Serrano et al., 2012), the inorganic component, partic-

ulate inorganic carbon (PIC), has not yet been considered in

the assessment of carbon deposits in seagrass meadows. Sea-

grass ecosystems support diverse and active communities of

calcifying organisms and through their photosynthetic activ-

ity their canopies provide pH environments that facilitate car-

bonate deposition (Hendriks et al., 2014). While PIC, in the

form of shells and other skeletal remains represent a substan-

tial carbon stock, the production of PIC through calcification

may act as a source of CO2 to the atmosphere (Frankignoulle

et al., 1994; Gattuso et al., 1998; Smith, 2013). Thus, under-

standing the amount of carbonate in seagrass ecosystems is

crucial to determining its role in the global atmospheric car-

bon cycle. The evaluation of carbonate accumulation rates

and stocks in seagrass sediments is also relevant as it may

significantly contribute to sediment accretion in coastal ar-

eas, a fundamental mechanism supporting the role of sea-

grass in coastal protection (Duarte et al., 2013).

Seagrass meadows accumulate PIC through calcium car-

bonate production by calcifying organisms inhabiting the

meadows, such as epiphytes (Frankovich and Zieman, 1994;

Perry and Beavington-Penny, 2005; James et al., 2009; En-

ríquez and Schubert, 2014) and benthic invertebrates (Jeudy

de Grissac and Boudouresque, 1985) and the deposition of

carbonate associated with sedimentation of particles (Gacia

et al., 2003). In addition, a recent study demonstrates a di-

rect implication of the seagrass Thalassia testudinum in the

formation of aragonite needles that accumulate internally in

the cell walls and as external deposits on the blades (En-

ríquez and Schubert, 2014). Other evidence for the existence

of active carbonate processes in seagrass beds include cal-

cification and carbonate dissolution in the canopy, associ-

ated with the daily cycles of photosynthesis and respiration

(Frankovich and Zieman, 1994; Barrón et al., 2006; Yates

and Halley, 2006), and the dissolution of calcium carbonate

in the sediment as a result of below-ground release of CO2

by respiratory processes (Hu and Burdige, 2007).

All the processes mentioned (precipitation, dissolution and

sedimentation) partially depend on seagrass metabolic activ-

ity and plant structural features and thus CaCO3 stocks in

seagrass sediments are likely to vary across meadows of dif-

ferent species (Duarte, 1991). In addition, CaCO3 stocks in

seagrass meadows will likely vary with latitude, as tempera-

ture regulates the seawater saturation state for carbonate min-

erals that increases with increasing temperature (Zeebe and

Ridgwell, 2011), thereby favouring biogenic carbonate pre-

cipitation in warmer waters (Mutti and Hallock, 2003).

Here we provide the first global assessment of the PIC de-

posits in seagrass ecosystems. We do so through a synthe-

sis of published and unpublished data on carbonate stocks in

seagrass sediments. We examine the variability of PIC stocks

with biogeographic region, latitude and taxonomic composi-

tion of the seagrass community. We also compare the PIC and

POC stocks in seagrass ecosystems with those in adjacent

un-vegetated sediments, provide a first global assessment of

the PIC : POC ratio over sediment depth profiles and discuss

its implications for current estimates of CO2 sequestration in

seagrass ecosystems.

2 Material and methods

We compiled published data available on carbonate stocks

in seagrass meadows and adjacent un-vegetated sediments.
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Figure 1. Distribution of the data of PIC stocks in seagrass meadows (average top metre; Mg PIC ha−1) compiled in this study by the

biogeographic regions described by Hemminga and Duarte (2000). The size of the pie charts is proportional to the top metre of PIC stocks

in each region. The fraction of PIC stocks estimated from surface sediments (yellow) and short sediment cores (P < 100 cm, orange) and

longer cores than 100 cm (P > 100 cm, brown) is indicated.

We considered the total pool of CaCO3 reported without

distinguishing between the different possible biogenic car-

bonate mineral forms (calcite, Mg calcite and aragonite).

Fourqurean et al. (2012) provided data for 201 sites, and a

literature search using both the Web of Knowledge (using

the search terms “seagrass∗” AND “inorganic carbon∗” AND

[“calcific∗ OR sediment∗ OR CaCO3 OR dissolut∗ OR dia-

genesis”]) and Google Scholar (using the search terms “sea-

grass carbonate”) yielded data for an additional 82 sites. We

amended the database with unpublished values for 154 ad-

ditional sites sampled by the authors. This yielded a total

of 437 sites with data on sediment carbonate concentration

in coastal areas occupied by seagrasses, of which 34 corre-

sponded to sand patches adjacent to seagrass meadows (Sup-

plement). The final database comprised estimates for 403

seagrass vegetated sites, of which 219 consisted of values for

sediment surface samples (ca. 1–30 cm depth) and 184 con-

sisted of values for sediment cores of variable length (149

cores < 100 cm long, and 35 cores ≥ 100 cm long).

The greatest proportion of the sites (46 %) was located in

tropical and subtropical regions (20–40 degrees latitude) for

both the Southern and Northern hemispheres, whereas the

data from higher latitude regions were scarce (Fig. 1). Data

on surface sediment carbonate was broadly distributed, but

most (80 %) core data available were from subtropical and

temperate seagrass meadows (Fig. 1).

Lithogenic characteristics of the sites were not considered

in this study, as we assume that carbonate sediment stocks

have a biogenic origin. We cannot avoid mentioning that

this could lead to an overestimation of carbonate deposition

rates in areas where lithogenic carbonate might be important.

However, as the biogenic carbonate pool is considered to be

dominant in contemporary oceanic sediments (Smith, 2013),

local geological characteristics might not have a highly rele-

vant impact on the results of this study.

When only one of the variables, CaCO3 or PIC, was re-

ported, the other was estimated assuming that PIC in 12 % of

the total molar mass of CaCO3. In most cases, PIC was re-

ported as a percentage of dry weight (% DW). To estimate the

PIC concentration (mg PIC cm−3), we multiplied the PIC (%

DW) by the sediment dry bulk density (DBD; g cm−3). When

DBD was not reported (n= 113 sites), we used the average

DBD (1.03 g cm−3) reported by Fourqurean et al. (2012) for

seagrass sediments in the calculations. The error introduced

by this assumption was small, as a paired t test revealed an

average deviation of 3.3 % (t ratio= 4.32; p < 0.0001) when

we tested the differences between estimating PIC concentra-

tion using the observed DBD and the assumption of 1.03 for

the sites where an observed DBD was reported.

Due to the variability in length of the sediment cores avail-

able for the study, mean PIC concentration in seagrass sedi-

ments was estimated for the top 10 cm of sediment for a total

of 385 sampled sites, for which at least one measurement of

PIC was reported for this depth zone. To estimate the car-

bonate stock within the top metre of sediment for the total

database available we assumed a constant concentration of

www.biogeosciences.net/12/4993/2015/ Biogeosciences, 12, 4993–5003, 2015



4996 I. Mazarrasa et al.: Seagrass meadows as a globally significant carbonate reservoir

Figure 2. Frequency distribution of observed (i.e. sites reporting

data to at least 1 m, n= 35) and estimated (i.e. sites where shallower

depths were reported, n= 368) PIC stocks (Mg PIC ha−1) in the top

metre of seagrass sediments.

PIC in the top metre for those cores where shallower pro-

files were reported, as almost half (46 %) of the long cores

(length > 100 cm, n= 35) showed no significant change in

PIC concentration with depth within the first top metre and

the remaining long cores showed only a slight increase of

0.011 % DW cm−1 on average.

The sites were classified based on (1) the seagrass biogeo-

graphic regions described by Hemminga and Duarte (2000)

(North East Pacific, South East Pacific, Tropical Western At-

lantic, North Atlantic, South Atlantic, Mediterranean, Indo-

Pacific, Western Pacific and Southern Australia), (2) 10◦

latitude bins and (3) the genus of the dominant seagrass

species (Amphibolis, Halophila, Halodule, Enhalus, Thalas-

sia, Zostera, Posidonia, Syringodium, Thalassodendron and

Cymodocea).

PIC and POC concentrations were compared along the

sediment depth profiles when both variables were reported

in the same site (n= 392). The depth profile of POC, PIC

and POC : PIC within the top metre was explored for the

longest cores (length > 100 cm) when at least three differ-

ent data points were reported within the top metre (n= 26).

For those sites from which data for sediments from adjacent

vegetated and un-vegetated patches were reported (n= 34),

POC and PIC concentrations were also compared.

We used a paired sample t test to assess the difference

between the frequency distribution and average of observed

values and estimated values of top metre stocks and the dif-

ference between PIC and POC across the data set and be-

tween adjacent vegetated and un-vegetated patches. Analy-

ses of variance (ANOVA) and post hoc Tukey tests were ap-

plied to compare the PIC stocks among the biogeographic

regions and among the dominant genera. We used general

linear models (GLMs) to test the effect of latitude on the PIC

stocks, the depth variability in the POC and PIC concentra-

tions and their POC : PIC ratio and the variability in POC and

PIC concentrations in vegetated and un-vegetated patches.

All statistical analyses were conducted using the statistical

software JMP 5.01a.

3 Results

Particulate inorganic carbon concentrations within

the top 10 cm of seagrass sediments ranged be-

tween 0.3 and 174 mg PIC cm−3, with an average of

62.5± 1.7 mg PIC cm−3 and a median of 54 mg PIC cm−3

(n= 385). The PIC stock in the top metre of sediment in

seagrass meadows showed a wide variability, ranging be-

tween 3 and 1660 Mg PIC ha−1, with an average± standard

error and a median of 654± 24 and 643 Mg PIC ha−1,

respectively (n= 403; Fig. 2). Estimated stocks (mean±SE,

676± 26 Mg PIC ha−1, Table S1 in Supplement) were

significantly higher than those derived from direct mea-

surements (mean±SE, 423± 52 Mg PIC ha−1, Table S1,

p > 0.05); however, estimated and measured paired values

did not show a significant difference (Fig. 2; paired t test,

p > 0.05).

The PIC stocks differed significantly among seagrass bio-

geographic regions (ANOVA, F ratio= 12.64, p < 0.0001).

The largest stocks were found in the Tropical Western At-

lantic similar to those from the Indo-Pacific and the Mediter-

ranean regions. The North Atlantic PIC stocks were signif-

icantly lower (Table 1). The largest PIC stocks were found

in equatorial and subtropical regions and tended to decrease

polewards by −8± 2 Mg PIC ha−1 per degree of latitude

(Fig. 4; GLM, ChiSquare= 13.43, p < 0.0002). The low PIC

values found between−10◦ and−20◦ in the Southern Hemi-

sphere are derived from Queensland (Australia), and the low

values between 50–60◦ and 60–70◦ (Northern Hemisphere)

correspond to meadows in northern Denmark and south-west

Greenland, respectively (Fig. 4).

The PIC stocks also differed among dominant species

(ANOVA, F ratio= 13.98; p < 0.0001). The highest PIC

stocks were found underlying Halodule, Thalassia and Cy-

modocea meadows, while the lowest stocks were supported

by Zostera and Halophila meadows (Fig. 3). Posidonia

meadows had intermediate PIC stocks.

Where both PIC and POC were measured concurrently

(392 sites; n= 3076), mean PIC concentrations tended to

exceed mean POC concentrations (paired t test: T ra-

tio= 64.77, p < 0.0001). The POC : PIC ratio ranged from

nearly 0 to 108, with an average of 0.74± 0.05 and a me-

Biogeosciences, 12, 4993–5003, 2015 www.biogeosciences.net/12/4993/2015/
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Table 1. Number of observations, mean± standard error, median and range of values for the PIC stocks in each biogeographic region

(Tropical Western Atlantic, Indo-Pacific, Mediterranean, Southern Australia and Northern Atlantic). The results of the comparison among

different regions (Tukey–Kramer HSD (honest significant difference) test) are shown in the last column where different letters represent a

significant difference (p < 0.05).

Biogeographic n Mean SE Median Range Tukey–Kramer

region (Mg PIC ha−1) (Mg PIC ha−1) (Mg PIC ha−1) (Mg PIC ha−1) HSD test

T.W. Atlantic 60 869.5 54.6 891.4 16–1660 A

Indo-Pacific 145 713.9 47.0 795.2 3–1611 AB

Mediterranean 42 654.4 71.3 658.2 87–1542 AB

S. Australia 121 603.9 34.2 566.5 8–1475 B

N. Atlantic 35 204.9 35.4 68.2 8–555 C

Table 2. Mean± standard error (SE), median, minimum and max-

imum values of particulate inorganic carbon (PIC), particulate or-

ganic carbon (POC) and the estimated POC : PIC ratio for the data

set where both POC and PIC were reported (392 sites; n= 3076).

PIC POC POC : PIC

(mg cm−3) (mg cm−3)

Mean±SE 72.5± 0.8 51.6± 0.6 0.74± 0.05

Median 68.3 49.4 0.20

Max 325.1 321.0 107.6

Min 0.2 0.4 0.00038

dian of 0.20 (Table 2; Fig. 5). For the longest cores in the

database (length ≥ 100 cm) which had a minimum of three

different observations reported over 1 m depth (n= 26), the

POC concentration (mg POC cm−3) along the sediment pro-

file of these cores tended to decrease with depth whereas PIC

(mg PIC cm−3) was more variable (Fig. S1 in Supplement).

The POC : PIC ratio declined consistently with depth in the

top metre of sediment in 69 % of these cores at an average of

−0.00054 % cm−1.

There was a strong relationship between PIC content (%

DW) in paired vegetated and un-vegetated sediments (R2
=

0.92, Fig. 6a), with a slope very close to 1 (0.99± 0.02) and

an intercept not different from 0 (0.17± 0.99), indicating that

the PIC content in seagrass sediments did not differ signifi-

cantly from that in adjacent un-vegetated sediments (paired t

test, T ratio= 1.67, p > 0.05; n= 195) (Fig. 6a). However,

no relationship was found between the POC content (% DW)

in seagrass sediments and adjacent bare sediments (Fig. 6b).

POC content was significantly higher in vegetated sediments

(mean±SE, 0.66± 0.04) compared to adjacent bare sedi-

ments (mean±SE, 0.35± 0.017, paired t test, T ratio= -

6.57, p < 0.0001; n= 195).

Figure 3. Average PIC stocks (Mg PIC ha−1)±SE across the dom-

inant seagrass genera forming the meadows. Only genera with more

than 10 observations are shown. Identical letters indicate no signif-

icant differences between dominant species forming the meadows

(ANOVA and post hoc Tukey test).

4 Discussion

4.1 PIC global stocks and the effect of species and

latitudinal distribution

Available data on PIC stocks in seagrass meadows showed an

important geographic bias. Whereas seagrass meadows are

distributed along the coast of all continents except Antarc-

tica (Hemminga and Duarte, 2000), data on PIC stocks in

seagrass sediments are mostly restricted to tropical and tem-

perate regions, with a particularly important contribution to

the data set by meadows in Australia and the Mediterranean,

www.biogeosciences.net/12/4993/2015/ Biogeosciences, 12, 4993–5003, 2015
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Figure 4. Average PIC stocks (Mg PIC ha−1)±SE by 10◦ latitude

bins. The number above each bar indicates the number of observa-

tions reported for each latitude bin.

especially for the profiles of at least 1 m deep. Fourqurean et

al. (2012) also found a similar bias on the distribution of data

available for their review of particulate organic carbon (POC)

stocks in seagrass meadows, although the data were more

widely distributed. The geographic bias in data availability

and the great variability in PIC stocks among the sites in-

cluded in this study, add uncertainty in the assessment of the

global estimates provided here. Even scarcer are data from

un-vegetated sediments adjacent to seagrass meadows, with

a comparative approach possible in only 34 of the total of

437 sites, limiting the certainty of comparisons of PIC and

POC stocks in vegetated versus un-vegetated habitats.

The median PIC sediment top metre stocks of

643 Mg PIC ha−1 (n= 403) is nearly 5 times larger than

the median stock of POC recently estimated by Fourqurean

et al. (2012) at around 140 Mg POC ha−1 (n= 89). Based

on the available range of estimates of global seagrass area,

between 177 000 and 600 000 km2 (Mcleod et al., 2011),

seagrass meadows store globally between 11 and 39 Pg of

PIC in the top metre of sediment.

Our results show that the PIC stocks of seagrass meadows

vary depending on the seagrass genera. Large genera, with

larger leaf size and extended leaf life span (Duarte, 1991)

were expected to sustain a higher amount of calcareous epi-

phytes and favour a higher accumulation of PIC. The age of

the leaves affects the colonisation of seagrass leaves by epi-

phytes (including calcareous organisms; Heijs, 1985; Borow-

itzka et al., 1990; Cebrián et al., 1994), and the mineral load

has been found to increase with increasing leaf age (Gacia et

al., 2003). The height of the canopy, which correlates with

Figure 5. Frequency distribution of the POC : PIC ratio in the sea-

grass sediments examined (392 sites; n= 3076).

shoot size, has also been shown to determine the epiphyte

biomass and species biodiversity in meadows of Amphibolis

(Borowitzka et al., 1990). Sedimentation process and particle

trapping in a meadow are also linked to canopy height (Gacia

et al., 2003) and leaf density (Fonseca and Cahalan, 1992),

and therefore PIC sedimentation and retention may be also

favoured in seagrass meadows dominated by larger species,

where long leaves effectively slow water currents and in-

crease particle settling. In addition, larger seagrass species

may favour carbonate precipitation through their metabolic

activity as the leaf area index has been seen to be directly re-

lated to maximum and range of carbonate saturation state (�)

values in seagrass meadows (Hendriks et al., 2014). Hence,

we expected to find high storage of PIC in the sediment of

large seagrass genera. However, some large genera, such as

Posidonia, did not support particularly large stocks, while

some small genera, such as Halodule, supported large stocks.

The lack of a clear effect of the seagrass genera size could

be due to other controlling factors on the precipitation and

preservation of carbonate in the sediment at regional and lo-

cal scales not covered by the current study. These may in-

volve differences in geomorphology, salinity, water depth,

tidal and current regimes, nutrient and light availability and

CO2 balance (Lees, 1975) as well as the presence of nearby

ecosystems, such as corals in tropical regions, which may act

as sources of carbonates to seagrass sediments.

Latitude also influenced the size of the PIC stocks in

seagrass sediments, which tended to decrease with increas-

ing latitude, consistent with the higher epiphyte carbonate

loads in seagrass leaves in tropical compared to temperate re-

gions (Gacia et al., 2003). This general trend of decline with

Biogeosciences, 12, 4993–5003, 2015 www.biogeosciences.net/12/4993/2015/



I. Mazarrasa et al.: Seagrass meadows as a globally significant carbonate reservoir 4999

Figure 6. Relationship between (a) PIC content (% DW) in seagrass sediments (x axis) and adjacent un-vegetated sediments (y axis) and

(b) POC content (% DW) in seagrass sediments (x axis) and adjacent un-vegetated sediments (y axis). The dashed line shows the 1 : 1

relationship whereas the continuous line in (a) represents the linear regression model between PIC content (% DW) in vegetated patches vs.

adjacent un-vegetated patches.

increasing latitude has been observed in other carbonate-

intense ecosystems, such as reef-building corals (Veron and

Minchin, 1992; Veron, 1995) and encrusting red algae com-

munities, which are more heavily calcified in warm tropi-

cal than in cold temperate waters (Lowenstam and Weiner,

1989). The latitudinal distribution of carbonate stocks may

be explained by temperature and salinity dependence of the

saturation state of carbonate minerals (�) (Zeebe and Wolf-

Gladrow, 2001). The saturation of calcium carbonate in sea-

water is mostly dependent on the availability of CO2−
3 , as

Ca2+ concentration is 2 orders of magnitude higher than

CO2−
3 concentrations (Gattuso et al., 1998). From a ther-

modynamic perspective, cold and fresh water generally pro-

motes lower � saturation states and prevents CaCO3 pre-

cipitation (Mucci, 1983). As both salinity and temperature

tend to decrease with increasing latitude, the carbonate satu-

ration state decreases polewards with respect to tropical and

temperate waters (Hoegh-Guldberg et al., 2007). Hence, the

precipitation of biogenic CaCO3 is favoured in tropical and

subtropical areas compared to temperate regions (Mutti and

Hallock, 2003). Discrepancies from the general trend, such

as the low carbonate stocks reported in the latitudinal bins

10◦ S to 20◦ S are probably explained by local factors that al-

ter the � saturation states, such as inputs of fresh water and

terrigeneous sediments from river discharges in the sites of

study (Mellors et al., 2002; Fisher and Sheaves, 2003).

4.2 PIC estimated accumulation rates in seagrass

meadows

Our review of the literature indicated that PIC accumula-

tion in seagrass sediments is high and comparable to other

carbonate producing ecosystems. Based on our identified

mean PIC concentration of 62.5± 1.7 mg PIC cm−3 in the

top 10 cm of seagrass sediments (sites= 385, n= 802) and

a mean rate of sediment accretion in seagrass meadows of

0.2± 0.04 cm yr−1 (Duarte et al., 2013), we estimate that the

PIC accumulation rates in seagrass sediments would aver-

age 126.3± 31.05 g PIC m−2 yr−1. This rate is somewhat be-

low the range of PIC sedimentation rates reported by Ga-

cia et al. (2003) in seagrass meadows of SE Asia, based

on direct measures of daily sediment deposition at eight

different sites (145–9443 g PIC m−2 yr−1) but higher than

the average PIC accumulation rate in sediments of Posi-

donia oceanica meadows (54.3± 1.9 g PIC m−2 yr−1) esti-

mated from sediment stock assessment and sediment dat-

ing (Serrano et al., 2012). Extrapolation, assuming an esti-

mated range of global area of seagrass meadows between

177 000 and 600 000 km2 (Mcleod et al., 2011), suggests a

total accumulation of PIC in seagrass sediments ranging be-

tween 22± 5 and 76± 19 Tg PIC yr−1. These estimates are

subject to uncertainties derived from the high variability in

PIC stocks among regions and species, and the absence of

estimates on seagrass extent for each region/system con-

sidered in this study. Assuming that tropical seagrass rep-

resent two-thirds of the total seagrass, PIC accumulation

rates can be calculated separately for tropical (17.6± 4.5 and

59.7± 15.2 Tg PIC yr−1) and temperate meadows (4.5± 1.5

and 15.3± 4.9 Tg PIC yr−1, for the low and high global

seagrass area estimates, respectively), yielding a range for

global PIC sequestration in seagrass meadows from 22± 6

to 75± 20 Tg PIC yr−1, depending on the global seagrass ex-

tent considered.
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Table 3. Estimated area, and PIC accumulation rates globally (Tg PIC yr−1) and per surface area (g PIC m−2 yr−1) for different carbonate

producing ecosystems including the results found for seagrasses in this study and a global estimation considering neritic, slopes, and pelagic

areas along with organism-level data.

Ecosystem Area Global Per surface area Reference

(1012 m2) (Tg PIC yr−1) (g PIC m−2 yr−1)

Planktonic communities 290 100–132 0.34–0.45 Catubig et al. (1998);

Milliman and Droxler (1996)

Coral reefs 0.6 84 140 Milliman and Droxler (1996)

Halimeda bioherms 0.05 20 400 Milliman and Droxler (1996)

Bank/Bays 0.8 24 30 Milliman and Droxler (1996)

Seagrass meadows 0.6–0.177 22–75 126.3 Mcleod et al. (2011);

This study

Global 1500 Lebrato et al. (2010)

The rates of PIC accumulation estimated in this study,

both globally (22–75 Tg PIC yr−1) and per surface area

(126.3± 31.05 g PIC m−2 yr−1), highlight the importance of

seagrass meadows as major sites for CaCO3 accumulation

and storage in the ocean. The global PIC accumulation rates

of seagrasses are substantially lower than in deep oceans

by pelagic communities (100–132 Tg PIC yr−1) but signifi-

cantly higher when considering their contribution per surface

area (0.34–0.45 g PIC m−2 yr−1). Seagrass PIC accumulation

rates were comparable to those of coral reefs both globally

(84 Tg PIC yr−1) and per surface area (140 g PIC m−2 yr−1).

Relative to Halimeda bioherms (20 Tg PIC yr−1), seagrass

PIC accumulation showed higher global rates but signif-

icantly lower rates per surface area (400 g PIC m−2 yr−1)

(Milliman and Droxler, 1996; Catubig et al., 1998; Table 3).

4.3 Implications in the assessment of the CO2 sink

capacity of seagrass meadows

While PIC represents a substantial carbon stock, carbonate

precipitation results in a rise of the partial pressure of CO2

(pCO2), which, can result in CO2 supersaturation and re-

lease of CO2 to the atmosphere (Ware et al., 1992). The net

release of CO2 with carbonate deposition is defined by the

molar ratio of CO2 flux : CaCO3 precipitation (9), which de-

creases with decreasing temperature while increasing with

pCO2 (Frankignoulle et al., 1994). 9 varies from 0.63 in

surface waters in low to mid-latitudes, where carbonate pre-

cipitation takes place, to 0.85 below 500 m depth throughout

the ocean, where most dissolution takes place (Smith, 2013).

Due to the vertical variation in 9, Smith (2013) identified

the pelagic carbonate system as a net sink of CO2, as most

of the surface production (9 = 0.63) dissolves as it reaches

deep waters (9 = 0.85) compensating for the CO2 emitted

by CaCO3 precipitation in surface waters. In contrast, car-

bonate deposition in shallow ecosystems, such as seagrass

meadows, would act as a CO2 source as approximate two-

thirds of the CaCO3 produced in shallow benthic ecosystems

accumulates in the sediment, and 9 has the same value for

CaCO3 precipitation and dissolution (Milliman and Droxler,

1996; Smith, 2013). Given that seagrass meadows are sites of

strong net primary production, any pCO2 increase due to cal-

cification may be more than compensated for, by organic pro-

duction. Hence, 9 has been interpreted to imply a POC : PIC

production ratio threshold, with a value of 0.63 equivalent to

no net change in pCO2 and values greater or smaller than

this value implying a net sink or source, respectively.

The median POC : PIC ratio of seagrass sediments found

in this study was 0.2, independent of depth (median of sur-

face sediments 0.17), well below the POC : PIC ratio thresh-

old of 0.63, with only 18 % of seagrass sediments showing

POC : PIC ratios > 0.6. Following the rationale above and as-

suming that organic carbon and calcium carbonate accumu-

late in the sediment in proportion to their production, these

results could be interpreted to imply that CO2 emissions de-

rived from carbonate deposition may offset the CO2 sink ca-

pacity associated with organic carbon burial in seagrass sedi-

ments globally, as discussed before for Posidonia oceanica in

the Mediterranean (Mateo and Serrano, 2012; Serrano et al.,

2012). However, such interpretation would be premature. In

general terms, the organic and inorganic carbon cycles in the

ocean run at very different rates and although organic mat-

ter is produced at much faster rates than CaCO3, it is also

decomposed more rapidly (Smith, 2013). However, the car-

bonate precipitation in seagrass meadows is intimately regu-

lated by the organic metabolic rates of the ecosystem (Smith

and Atkinson, 1983; Barrón et al., 2006; Yates and Halley,

2006; Hendriks et al., 2014), and when both organic and in-

organic carbon metabolic pathways have been measured in

situ simultaneously, seagrass meadows have been found to

be mainly net CO2 sinks systems at a yearly scale (Barrón

et al., 2006), even despite the underestimated net commu-

nity production (NCP) rates that may result from the use of

confined incubation chambers related to photooxidation pro-

cesses and subsequent CO2 increase and O2 decrease dur-

ing daytime (Champenois and Borges, 2012). In addition to

carbon burial, a significant fraction of the net community
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production of seagrass, supporting a CO2 sink, is also ex-

ported as DOC and POC (Cebrián et al., 1997; Barrón and

Duarte, 2009). Hence, the comparison of sediment stand-

ing stocks would reflect only a fraction of the sink capac-

ity of the seagrass ecosystems but not the net effect of the

organic and inorganic carbon metabolic pathways on the net

CO2 flux. Therefore, more research, which takes into account

both the organic and inorganic carbon cycles associated with

these systems, is needed to better assess the role of seagrass

ecosystems as carbon sinks or sources.

Understanding the balance between CO2 emissions from

carbonate deposition and CO2 sequestration from organic

carbon storage in seagrass sediments should not only fo-

cus on the POC : PIC ratio, but also on resolving how sea-

grass affects the POC : PIC ratio compared to adjacent un-

vegetated sediments. When comparing the carbon content (%

DW) between vegetated and adjacent un-vegetated patches,

there was no difference in PIC, whereas the POC content

was about two-fold larger in vegetated sediments compared

to adjacent un-vegetated sediments as previously observed

(Duarte et al., 2010; Kennedy et al., 2010). This result in-

dicates that, despite the significant carbonate sediment de-

posits identified and that seagrasses favour carbonate pre-

cipitation and accumulation by epiphytes and other organ-

isms inhabiting the meadow, sediment PIC largely depends

on local environmental conditions that control carbonate pre-

cipitation and a significant fraction may derive from exter-

nal sources, such as adjacent carbonate producer systems

(corals). As a consequence, the POC : PIC ratio of seagrass

sediments (mean±SE, 0.28± 0.06) exceeded that of adja-

cent un-vegetated sediments (mean±SE, 0.19± 0.040) in

73 % of the meadows examined. Hence, the organic carbon

stock present in seagrass sediments would be expected to

be reduced by half if seagrass cover was lost, while the in-

organic stock would be comparable, thereby confirming the

role of seagrass meadows as intense CO2 sinks. It is impor-

tant to point out that the rational above is related to the con-

tent (% DW) of both PIC and POC and not to the rate of

accumulation, which may be significantly higher in seagrass

compared to adjacent sand patches due to autotrophic pro-

duction and sediment trapping.

In addition there are possible interactions between carbon-

ate and organic carbon deposition that might enhance car-

bon sequestration in seagrass meadows. One possibility may

be that high carbonate deposition rates may promote organic

carbon sequestration and storage by enhancing sediment ac-

cretion and by rapidly removing organic carbon from surface

sediments and away from the oxic zone, thereby enhancing

preservation of organic carbon. The accumulation of carbon-

ates in seagrass sediments may also influence below-ground

biomass through the stimulation of vertical growth in the sed-

iments, or through alteration of sediment composition and

nutrient availability (Short, 1987; Ferdie and Fourqurean,

2004). In fact, Erftemeijer (1994) found higher below-ground

biomass in seagrass meadows growing in carbonate sedi-

ments compared to meadows from the same species that de-

velop in terrigenous sediment. Thus, the potentially higher

below-ground production in carbonate-rich meadows may

enhance organic carbon burial.

4.4 Implications in the role of seagrass meadows as

coastal protection

Carbonate stocks represented an average of 51± 1 % of the

dry weight in the top 10 cm (range 0.2 to 100 %) of the

seagrass sediments examined, therefore contributing signif-

icantly to the sediment accretion rate and coastal protection

from increased sea level rise and storminess with climate

change (Duarte et al., 2013). The capacity of seagrass mead-

ows to raise the seafloor at speeds that could match or exceed

current sea level rise allows them to remain effective in pro-

tecting coastal areas (Duarte et al., 2013). A recent review of

coastal ecosystems sediment accretion rates found an average

accretion rate of 2± 0.4 mm yr−1 for seagrass communities

(Duarte et al., 2013; Mazarrasa et al., 2013), highlighting the

important role these ecosystems may play in climate adapta-

tion in coastal areas. Carbonate production and accumulation

supports about half of this accretion rate.

This study offers the first global compilation of carbonate

deposits in seagrass sediments. Despite some limitations in

the geographic distribution of the data available, the scarcity

of data from adjacent sand patches and the lack of local sedi-

ment accretion rates, we identified the significant role of sea-

grass ecosystems in the carbonate dynamics of coastal areas,

with carbonate stocks and rates relevant at the global scale.

Carbonate stocks, markedly higher in tropical and subtrop-

ical meadows, play a significant role in supporting the ac-

cretion rate of seagrass meadows, and while high carbonate

deposition lead to CO2 emissions, the comparison of vege-

tated vs. adjacent un-vegetated sediments still identifies sea-

grass meadows as strong CO2 sinks. In order to increase un-

derstanding of the effect of carbonate accumulation in sea-

grass meadows on the function they play as CO2 sinks, fur-

ther investigation is required, especially on the coupling of

the organic and inorganic metabolic processes that take place

within the meadows.
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