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Abstract. An accurate quantification of the role of the ocean

as source/sink of greenhouse gases (GHGs) requires to ac-

cess the high-resolution of the GHG air–sea flux at the in-

terface. In this paper we present a novel method to recon-

struct maps of surface ocean partial pressure of CO2 (pCO2)

and air–sea CO2 fluxes at super resolution (4 km, i.e., 1/32◦

at these latitudes) using sea surface temperature (SST) and

ocean color (OC) data at this resolution, and CarbonTracker

CO2 fluxes data at low resolution (110 km). Inference of

super-resolution pCO2 and air–sea CO2 fluxes is performed

using novel nonlinear signal processing methodologies that

prove efficient in the context of oceanography. The theo-

retical background comes from the microcanonical multi-

fractal formalism which unlocks the geometrical determina-

tion of cascading properties of physical intensive variables.

As a consequence, a multi-resolution analysis performed on

the signal of the so-called singularity exponents allows for

the correct and near optimal cross-scale inference of GHG

fluxes, as the inference suits the geometric realization of

the cascade. We apply such a methodology to the study

offshore of the Benguela area. The inferred representation

of oceanic partial pressure of CO2 improves and enhances

the description provided by CarbonTracker, capturing the

small-scale variability. We examine different combinations

of ocean color and sea surface temperature products in or-

der to increase the number of valid points and the quality of

the inferred pCO2 field. The methodology is validated using

in situ measurements by means of statistical errors. We find

that mean absolute and relative errors in the inferred values

of pCO2 with respect to in situ measurements are smaller

than for CarbonTracker.

1 Introduction

The ocean can be thought of as a complex system in which

a large number of different processes (e.g., physical, chemi-

cal, biological, atmosphere–ocean interactions) interact with

each other at different spatial and temporal scales (Rind,

1999). These scales extend from millimeters to thousands

of kilometers and from seconds to centuries (Dickey, 2003).

There is a growing body of evidence that the upper few hun-

dred meters of the oceans are dominated by submesoscale

(1–10 km) activity and that this activity is important to under-

stand global ocean properties (Klein and Lapeyre, 2009). Ac-

curately estimating the sources and sinks of greenhouse gases

(GHGs) at the air–sea interface requires resolving these small

scales (Mahadevan et al., 2004). However, the scarcity of

oceanographic cruises and the lack of available satellite prod-

ucts for GHG concentrations at high resolution prevent us

from obtaining a global assessment of their spatial variability

at small scales. For example, from the in situ ocean measure-

ments the uncertainty of the net global ocean–atmosphere

CO2 fluxes is between 20 and 30 % (IOCCP, 2007), and
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could be higher in the oxygen minimum zones (OMZ) of

the eastern boundary upwelling systems (EBUSs) due to the

extreme regional variability in these areas (Paulmier et al.,

2008; Franco et al., 2014). Indeed, this supports the design of

proper methodologies to infer fluxes at high resolution from

presently available satellite image data in order to improve

current estimates of gas exchanges between the ocean and

the atmosphere.

The most commonly used methods to estimate air–sea

CO2 fluxes are based either on statistical methods, inverse

modeling with atmospheric transport models or global cou-

pled physical–biogeochemical models. Among others, Taka-

hashi et al. (2002, 2009) interpolate sea surface pCO2 mea-

surements with advanced statistical methods to provide cli-

matological monthly maps of air–sea fluxes of CO2 in the

global surface waters at a spatial resolution of 4◦× 5◦.

Global maps at the same spatial resolution but at higher

temporal resolution (daily) have been estimated by Röden-

beck et al. (2014) by fitting the mixed-layer carbon budget

equation to ocean pCO2 observations. An international effort

to compile global surface CO2 fugacity (fCO2) measure-

ments has recently been performed and reported in Pfeil et al.

(2013); Bakker et al. (2014), and interpolated by Sabine et al.

(2013), generating a monthly gridded product with fCO2

values in a 1◦× 1◦ grid cell. Other statistical approaches

based on the neural-network statistical method have been

shown to be useful to estimate climatological and monthly

1◦× 1◦ maps of pCO2 (Landschützer et al. (2014) and Tel-

szewski et al. (2009), respectively). Gruber et al. (2009) used

inverse modeling of sources and sinks from the network of at-

mospheric CO2 concentrations jointly with transport models.

The third type of method is based on direct computations of

the air–sea CO2 fluxes in coupled physical–biogeochemical

models incorporating the biogeochemical processes of the

carbon dioxide system. In this method, simulated surface

ocean pCO2 can be constrained with available ship obser-

vations as shown by Valsala and Maksyutov (2010).

Another new avenue for inferring air–sea GHG fluxes is

through inverse modeling applied to vertical column den-

sities (VCDs) extracted from satellite spectrometers, i.e.,

Greenhouse gases Observing SATellite (GOSAT) and SCan-

ning Imaging Absorption SpectroMeter for Atmospheric

CHartographY (SCIAMACHY), at low spatial resolution

(Garbe and Vihharev, 2012). A global estimation of CO2

fluxes in the ocean has been derived at 1◦× 1◦ spatial res-

olution from global atmosphere observations used in a data

assimilation system for CO2 called CarbonTracker (Peters

et al., 2007). In all these data sets the rather coarse spatial

resolution leads to uncertainties in the actual estimate of the

sources and sinks of CO2, calling for an improvement of the

resolution of CO2 flux estimates.

In this regard, the last few years have seen the appear-

ance of interesting new developments on multiscale process-

ing techniques for complex signals coming from Earth ob-

servations (Yahia et al., 2010). These methods make use of

phenomenological descriptions of fully developed turbulence

(FDT) in nonlinear physics, motivated by the values taken

on by the Reynolds number in ocean dynamics. As predicted

from the theory and also observed in the ocean, in a turbulent

flow the coherent vortices (eddies) interact with each other

stretching and folding the flow, generating smaller eddies or

small-scale filaments and transition fronts characterized by

strong tracer gradients (Frisch, 1995). This results in a cas-

cade of energy from large to smaller scales. Therefore the

inherent cascade of tracer variance under the turbulent flow

dominates the variability of the geometrical distribution of

tracers such as temperature or dissolved inorganic carbon,

as shown by Abraham et al. (2000), Abraham and Bowen

(2002) and Turiel et al. (2005). Geometrical organization of

the flow linked to the energy cascade allows for the study of

its properties from the geometrical properties of any tracer

for which the advection is the dominant process. The rela-

tionships between the cascade and the multifractal organiza-

tion of FDT has been set up either with canonical (Arneodo

et al., 1995; Frisch, 1995) or microcanonical (Turiel et al.,

2005; Bouchet and Venaille, 2012) descriptions. Within the

microcanonical framework (MMF) the singularity exponents

unlock the geometrical realization of the multifractal hierar-

chy. Setting up a multi-resolution analysis on the singular-

ity exponents computed in the microcanonical framework al-

lows near optimal cross-scale inference of physical variables

(Sudre et al., 2015).

These advances open a wide field of theoretical and experi-

mental research and their use in the analysis of complex data

coming from satellite imagery has been proven innovative

and efficient, showing a particular ability to perform fusion

of satellite data acquired at different spatial resolutions (Pot-

tier et al., 2008) and to reconstruct from satellite data current

maps at submesoscale resolution (Sudre et al., 2015). In this

paper we apply these novel techniques emerging from non-

linear physics and nonlinear signal processing for inferring

submesoscale resolution maps of the air–sea CO2 fluxes and

associated sinks and sources from available remotely sensed

data. We use this methodology to derive cross-scale infer-

ence according to the effective cascade description of an in-

tensive variable, through a fusion process between appropri-

ate physical variables which account for the flux exchanges

between the ocean and the atmosphere. This approach is not

only very novel in signal processing, but also connects the

statistical descriptions of acquired data with their physical

content. This makes the approach useful to reconstruct all

GHGs.

Unlike the Lagrangian approach to reconstruct tracer maps

at high resolution (Berti and Lapeyre, 2014), our methodol-

ogy works in the Eulerian framework and we do not need

to know the trajectories of oceanic tracer particles, but only

high-resolution instantaneous maps of tracers which can be

directly obtained from remote sensing.

The eastern boundary upwelling systems (EBUSs) and

oxygen minimum zones (OMZs) are likely to contribute sig-
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nificantly to the gas exchange between the ocean and the at-

mosphere (Hales et al., 2005; Waldron et al., 2009; Paulmier

et al., 2011). The Benguela upwelling system, the region of

interest in this study, is one of the highest productivity ar-

eas in the world ocean and may contribute significantly to

the global air–sea CO2 flux. Some studies using data from in

situ samples have found the region of Benguela to be an an-

nual sink of CO2 with uptakes of −1.70 (in 1995 and 1996)

and −2.02 Mt C yr−1 in 2005 (Santana-Casiano et al., 2009;

Monteiro, 2010), with a strong variability between 2005 and

2006 from −1.17 to −3.24 mol C m−2 per year, respectively

(González-Dávila et al., 2009).

This paper is organized as follows: Sect. 2 describes the

data sets used as input in our algorithm. Section 3 describes

the methodology used through the study. Statistical descrip-

tion of the input data sets is presented in Sect. 4. Results of

the inference method are given in Sect. 5 by providing out-

puts of our algorithm, then evaluating the various satellite

products and assessing the performance of the method using

in situ measurements.

2 Data

The input data combines air–sea CO2 fluxes at low resolution

and satellite ocean data at high resolution. To validate the

method we use in situ measurements of oceanic pCO2.

2.1 Input data: air–sea CO2 fluxes at low resolution

It is known that the evolution of a concentration, c, in the at-

mosphere is given by the advection–reaction–diffusion equa-

tion:

∂c

∂t
=−u∇c+

1

ρ
∇(ρTd∇c)+

1

ρ
g+F, (1)

with the wind field u, the density of the air ρ, the turbu-

lent diffusivity tensor Td, the chemical reaction rate g and

the net flux at the air–sea interface F (Garbe et al., 2007,

2014). Using optimal control and inverse problem model-

ing, a map of F can be derived using Earth observation data

(Garbe and Vihharev, 2012). It would be ideal if we could

use data of atmospheric CO2 concentrations from space mea-

sured by satellite sensors such as SCIAMACHY (SCanning

Imaging Absorption SpectroMeter for Atmospheric CHar-

tographY) aboard ENVISAT (Environmental Satellite), in

orbit since 2002, and GOSAT (Greenhouse gases Observ-

ing SATellite), in orbit since January 2009, to derive the

air–sea flux. However SCIAMACHY and GOSAT sampling

is not dense enough, with very suboptimal sampling of

the Benguela upwelling system. This led us to use data

of CO2 fluxes from CarbonTracker (http://www.esrl.noaa.

gov/gmd/ccgg/carbontracker/) at spatial resolution of 1◦× 1◦

(∼ 100 km×∼ 100 km) (Peters et al., 2007). CarbonTracker

system assimilates and integrates a diversity of atmospheric

CO2 data into a computation of surface CO2 fluxes, using a

state-of-the-art atmospheric transport model and an ensem-

ble Kalman filter.

We obtain the partial pressure of ocean CO2 by using the

equation of the net flux in the air–sea interface:

F = αK(pair
CO2
−pocean

CO2
), (2)

where α is the gas solubility, which depends on sea surface

temperature (SST) and sea surface salinity (SSS), andK , the

gas transfer velocity, is a function of wind, salinity, tempera-

ture, and sea state, which can be obtained from satellite data.

To estimate the gas transfer velocity we use well-accepted

relationships for the transfer velocity in air–sea gas ex-

change from wind speed, the parameterization developed by

Sweeney et al. (2007). The CO2 gas solubility is derived ac-

cording to Weiss (1974). Input data for SST are derived from

OSTIA (Operational SST and Sea Ice Analysis system) prod-

uct, SSS are derived from LEGOS (Laboratoire d’Etudes en

Géophysique et Océanographie Spatiales) product compiled

by Delcroix et al. (2011) and winds from Cross-Calibrated

Multi-Platform Ocean surface winds from JPL (Jet Propul-

sion Laboratory) PO.DAAC (Physical Oceanography Dis-

tributed Active Archive Center, http://podaac.jpl.nasa.gov/).

We assume pair
CO2

to be constant in the domain of study, and it

is derived from the Globalview-CO2 product of the Cooper-

ative Atmospheric Data Integration Project coordinated by

Carbon Cycle Greenhouse Gases Group (GLOBALVIEW,

2013) (www.esrl.noaa.gov/gmd/ccgg/globalview/). We use

values taken at the closest sea-level station to the Benguela,

located at Ascension Island (7.97◦ S and 14.40◦W) as our

reference atmospheric CO2. The partial pressure of CO2 is

determined from its mole fraction (xCO2), using the fol-

lowing equation (Dickson et al., 2007): pCO2= xCO2×p,

where p is the total pressure of the mixture. We assume this

pressure to be close to 1 atm for the conversion following

ORNL/CDIAC 105 report (program developed for CO2 sys-

tems calculation).

The raw data of CarbonTracker fluxes of CO2 in the area

of interest are strongly binned and exhibit strong gradients

across those bins. This turns out to be suboptimal for our

super-resolution approach. Garbe and Vihharev (2012) devel-

oped an optimal control approach to invert interfacial fluxes

using a simplified inverse problem of atmospheric transport.

The inverse problem is solved using the Galerkin finite ele-

ment method and the dual weighted residual (DWR) method

for goal-oriented mesh optimization. An adaptation of this

approach has been applied to the CarbonTracker data set.

However, the estimations are expensive and computing re-

sults for all the time frames of interest was infeasible. There-

fore, an anisotropic diffusion-based approach has been ap-

plied to the raw fluxes of the CarbonTracker data set. The

diffusion is steered by the direction of the low-altitude wind

field. The results thus retain the structure of the Carbon-

Tracker fluxes very well while suppressing artifacts. Exam-

ples of this process are shown in Fig. 1. Results are compa-
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Figure 1. Estimated fluxes from CarbonTracker data. Shown are the

results on the Benguela upwelling system on 23 March 2006. Left

are the CarbonTracker fluxes, right are our results.

rable to the physically more accurate approach of Garbe and

Vihharev (2012).

2.2 Input data: satellite ocean data at high resolution

Oceanic pCO2 is a complex signal depending, at any spatial

resolution, on sea surface temperature, salinity, chlorophyll

concentration, dissolved inorganic carbon, alkalinity and nu-

trient concentrations. Both the biological pump, with chloro-

phyll a as a proxy, and the physical pump, driven by the tem-

perature and salinity (e.g., solubility, water mass), govern the

evolution of pCO2 in the surface ocean.

We use here the high-resolution satellite ocean data for

chlorophyll a, as a proxy for the biological carbon pump

and for SST, as a proxy for the thermodynamical pump, (see

Sect. 3.2 for more details on the connection of these oceanic

variables).

2.2.1 Chlorophyll a (Chl a) from ocean color (OC)

In this study we use Chl a concentrations from two different

ocean color products: MERIS and GLOBCOLOUR. MERIS

(MEdium Resolution Imaging Spectrometer Instrument) is

on board the ENVISAT satellite and provides daily maps of

ocean color at 1/24◦ (∼ 4 km). Ocean color from GLOB-

COLOUR product is obtained by merging data provided

by MODIS (MODerate Resolution Imaging Spectroradiome-

ter), MERIS and SeaWiFS (Sea-viewing Wide Field-of-view

Sensor) instruments. The Chl a concentration is provided

daily and at the spatial resolution equal to 1/24◦ (∼ 4 km).

Ocean color data have been regridded at 1/32◦ by linear in-

terpolation. GLOBCOLOUR products are generated using

different merging methods (see the GLOBCOLOUR Product

User Guide document in http://www.globcolour.info/CDR_

Docs/GlobCOLOUR_PUG.pdf):

– Averaging from single-instrument Chl a concentration.

In this case CHL1 daily level 3 (L3) products are gen-

erated for each instrument using the corresponding L2

data. At the beginning of the averaging process, an inter-

calibration correction is applied to the MODIS and Sea-

WiFS CHL1 daily L3 products in order to get compat-

Figure 2. Snapshot of Chl a fields corresponding to 21 Septem-

ber 2006, regridded at 1/32◦ of spatial resolution from MERIS (a)

and GSM GLOBCOLOUR (b). (c) and (d) are the spatial distribu-

tion of singularity exponents of the Chl a plotted in (a) and (b),

respectively.

ible concentrations with respect to the MERIS sensor.

The merged CHL1 concentration is then computed as

the average of the MERIS, MODIS and SeaWiFS quan-

tities, both as an arithmetic mean or a weighted average

value (AVW). In the AVW method, values of CHL1 are

weighted by the relative error for each sensor on the re-

sults of the simple averaging.

– Garver–Siegel–Maritorena model (GSM). In this

method single-instrument daily L3 fully normalized

water leaving radiances (individually computed for

each band) and their associated error bars are used

by the GSM model. These radiances are not inter-

calibrated before incorporation in the model (see

Maritorena and Siegel, 2005, for more details).

Snapshots of both Chl a fields derived from MERIS and

GSM GLOBCOLOUR corresponding to 21 September 2006

are displayed in Fig. 2a and b, respectively. This example

shows the clear difference in the remote sensing coverage be-

tween the two products. The merged GLOBCOLOUR prod-

uct yields a more covered Chl a field than the one obtained

from MERIS. The merging algorithm in the GLOBCOLOUR

product tends to decrease the missing points induced by

clouds for each individual instrument.

2.2.2 Sea surface temperature (SST)

We use SST derived from OSTIA and MODIS products.

OSTIA (Operational SST and Sea Ice Analysis system) is

a new analysis of SST that uses satellite data provided by

Biogeosciences, 12, 5229–5245, 2015 www.biogeosciences.net/12/5229/2015/
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a)

c) d)

b)

Figure 3. Snapshot of SST fields corresponding to 21 Septem-

ber 2006 regridded at 1/32◦ of spatial resolution from OSTIA (a)

and MODIS (b). (c) and (d) are the spatial distribution of singularity

exponents of the SST plotted in (a) and (b), respectively.

the GHRSST (Group for High Resolution SST) project, to-

gether with in situ observations, to determine the SST with a

global coverage and without gaps in data. The data sets are

produced daily and at spatial resolution of 1/20◦ (∼ 6 km)

performing a multi-scale optimal interpolation using correla-

tion length scales from 10 to 100 km (more details in Donlon

et al., 2012). The other SST product used in this study is

derived from MODIS (MODerate Resolution Imaging Spec-

troradiometer) sensors carried on board the Aqua satellite

since December 2002. This SST product is derived from the

MODIS mid-infrared (IR) and thermal IR channels and is

available in various spatial and temporal resolutions. We use

Level-3 daily maps of SST at the spatial resolution of 1/24◦

(∼ 4 km) (Savtchenko et al., 2004). In Fig. 3a and b, we show

one snapshot of SST from OSTIA and MODIS, respectively

corresponding to the same day on 21 September 2006. In

the case of OSTIA products, the SST field is fully covered

with points while for MODIS products there are gaps due to

cloudiness. On other hand, MODIS product offers a more de-

tailed visualization of the small structures. All SST data have

been regridded at 1/32◦ by bilinear interpolation.

2.3 Validation data: in situ measurements

Among the available data in SOCAT version 2 (Bakker et al.,

2014) (Surface Ocean CO2 Atlas, http://www.socat.info)

over the 2000–2010 period in our region of interest, we find

the following cruises with pCO2 measurements:

– 2000, one cruise: ANT-18-1

– 2004, one cruise: 0404SFC-PRT

– 2005, five cruises: QUIMA2005-0804, QUIMA2005-

0821, QUIMA2005-0922, QUIMA2005-1202,

QUIMA2005-1220

– 2006, nine cruises: GALATHEA, QUIMA2006-0326,

QUIMA2006-0426, QUIMA2006-0514, QUIMA2006-

0803, QUIMA2006-0821, QUIMA2006-0921,

QUIMA2006-1013, QUIMA2006-1124

– 2008, seven VOS cruises: QUIMA2008-1,

QUIMA2008-2, QUIMA2008-3, QUIMA2008-4,

QUIMA2008-5, QUIMA2008-6, QUIMA2008-7

– 2010, one cruise: ANT27-1

The small number of cruises found in 1 decade (24 cruises)

shows that the scarcity of cruises in the Benguela region is a

fact. This indeed demonstrates the crucial need of developing

a robust method to infer high-resolution pCO2 from space.

Moreover for some of these cruises, for instance, the track

of GALATHEA cruise is too close to the coast and is out of

the original CarbonTracker domain. Due to this restriction

we only document the offshore conditions of this upwelling

system. Owing to the relatively large number of cruises dur-

ing 2005, 2006 and 2008 (a total of 20 cruises, representing

83 % of all available cruise data from 2000 through 2010), in

this validation, we focus the analysis on the set of QUIMA-

cruises during 2005 (QUIMA2005), 2006 (QUIMA2006)

and 2008 (QUIMA2008) and we present the global analy-

sis using all available cruises during these 3 years. Santana-

Casiano et al. (2009) analyzed this data to study the sea sur-

face pCO2, fCO2 and CO2 air–sea fluxes in the offshore

Benguela upwelling system between 2005 and 2006 (for each

month from July 2005 up to November 2006) and González-

Dávila et al. (2009) extended the study including cruises data

from 2007 to 2008. The QUIMA line crosses the region be-

tween 5 and 35◦ S, with all the cruises following the same

track.

3 Method

The idea behind the methodology hinges on the fundamen-

tal discovery of a simple functional dependency between the

transitions – those being measured by the dimensionless val-

ues of the singularity exponents computed within the frame-

work of the microcanonical multifractal formalism – of the

respective physical variables under study: SST, ocean color

and oceanic partial pressure (pCO2). With that functional

dependency being adequately fitted into a linear regression

model, it becomes possible to compute, at any given time, a

precise evaluation of pCO2 singularity exponents using SST,

ocean color and low resolution acquired pCO2. Once these

singularity exponents are computed, they generate a multi-

resolution analysis from which low-resolution pCO2 can

www.biogeosciences.net/12/5229/2015/ Biogeosciences, 12, 5229–5245, 2015
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be cross-scale-inferred to generate a high-resolution pCO2

product. In this study we choose SST and Chl a, and not other

variables such as sea surface height, because we focus on the

use of physical variables which are correlated spatially and

temporally to pCO2 and that can be obtained from satellite

at high resolution.

3.1 Singularity exponents and the multifractal

hierarchy of turbulence

In the ocean, the turbulence causes the formation of unsteady

eddies on many scales which interact with each other (Frisch,

1995). Most of the kinetic energy of the turbulent motion is

contained in the large-scale structures. The energy cascades

from the large-scale structures to smaller-scale structures by

an inertial and essentially inviscid mechanism. This process

continues, creating smaller and smaller structures which pro-

duces a hierarchy of eddies. Moreover, the ocean is a system

displaying scale-invariant behavior, that is, the correlations

of variables do not change when we zoom in or we zoom out

the system, and can be represented by power laws in particu-

lar, with the scaling exponents h.

It can be shown that the scaling exponents are the values

taken on by localized singularity exponents, which can be

computed at high precision in the acquired data using the

microcanonical multifractal formalism. Hence, within that

framework, the multifractal hierarchy of turbulence, defined

by a continuum of sets (Fh) indexed by scaling exponents

(h), is obtained as the level sets of the geometrically local-

ized singularity exponents.

We will not review here the details of the computation of

the singularity exponents h(x), leaving the reader to consult

references (Turiel et al., 2005, 2008; Pont et al., 2011b; Maji

and Yahia, 2014; Sudre et al., 2015) for an effective descrip-

tion of an algorithm able to compute the h(x) at every point

x in a signal’s domain.

Some examples of the singularity exponents of Chl a and

SST images for the different products described in Sect. 2.2

are shown in Figs. 2c, 2d, 3c, 3d, respectively. As compared

to the corresponding images of Chl a and SST shown in

Figs. 2a, 2b, 3a, 3b, one can see the ability of the singularity

exponents to unveil the cascade structures arisen by tracer-

gradient variances hidden in satellite images.

3.2 Functional dependencies between the singularity

exponents of intensive physical variables

Another important idea implemented in the methodology is

the coupling of the physical information contained in SST

and OC images with the ocean pCO2. For instance, it is

known that marine primary production is a key process in

oceanic carbon cycling, and variations in the concentration

of phytoplankton biomass can be related to variations in car-

bon concentrations. Surface temperature is also related to

gas solubility in the ocean, and areas with high tempera-

tures are more suitable for releasing CO2 to the atmosphere.

We have studied the relationship of SST and Chl a vari-

ables with pCO2 using the outputs of a coupled Regional

Ocean Modeling System (ROMS) with the BIOgeochemical

model of the Eastern Boundary Upwelling System (BIOE-

BUS) (Gutknecht et al., 2013). The ROMS includes several

levels of nesting and composed grids, which makes it an ideal

model for the basis of our methodology in working in two

spatial resolutions. BIOEBUS has been developed for the

Benguela to simulate the first trophic levels of the Benguela

ecosystem functioning and also to include a more detailed

description of the complete nitrogen cycle, including denitri-

fication and anammox processes as well as the oxygen cycle

and the carbonate system. This model coupled to ROMS has

been also shown to be skillful in simulating many aspects

of the biogeochemical environment in the Peru upwelling

system (Montes et al., 2014). When one compares SST and

Chl a with pCO2 one finds undetermined functional depen-

dency. However, when comparing their corresponding sin-

gularity exponents one obtains a clear simpler dependency.

This is due to the fact that SST, Chl a and pCO2 are vari-

ables of different dimensions while singularity exponents are

dimensionless quantities. These results show that there is a

good correlation between the turbulent transitions given by

the singularity exponents and that singularity exponents are

good candidates for a multi-resolution analysis performed on

the three signals, SST, Chl a and pCO2. Furthermore, the

log-histograms and singularity spectrum show that singular-

ity exponents of pCO2 images possess a multifractal charac-

ter. Therefore, such signals are expected to feature cascading,

multiscale and other characteristic properties found in turbu-

lent signals as described in Turiel et al. (2008) and Arneodo

et al. (1995). Consequently the use of nonlinear and multi-

scale signal processing techniques is justified to assess the

properties of the pCO2 signal along the scales.

Therefore, in our methodology, the local connection be-

tween different tracer concentrations (SST and Chl a) with

pCO2, is performed in order to obtain a proxy for pCO2 at

high resolution by using the following linear combination of

multiple linear regressions:

S(pCO2)(x)= a(x)S(SST)(x)+ b(x)S(Chl a)(x)+

c(x)S(pCO2
LR)(x)+ d(x), (3)

where S(pCO2)(x) refers to the singularity exponent of

pCO2 at x, S(SST)(x) to singularity exponent of SST at x,

S(Chl a)(x) to singularity exponent of Chl a signal at x. In

order to propagate the pCO2 signal itself along the scales in

the multi-resolution analysis we introduce S(pCO2
LR) to re-

fer to the singularity exponent from pCO2 at low resolution

interpolated on the high-resolution grid. a(x), b(x) and c(x)

are the regression coefficients associated with singularity ex-

ponents, and d(x) is the error associated with the multiple-

linear regression. These regression coefficients are estimated

using simulated data from the ROMS-BIOEBUS model de-
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veloped for the Benguela upwelling system and described

above.

Once we have introduced these coefficients in the linear

combination on satellite data, we obtain a proxy for singular-

ity exponents of pCO2 at high resolution and we can perform

the multi-resolution analysis to infer the information across

the scales.

3.3 Cross-scale inference of pCO2 data

Among the functionals that are most commonly used for

analyzing the scaling properties of multifractal systems,

wavelets occupy a prominent position. Wavelets projections

are integral transforms that separate the relevant details of

a signal at different scale levels, and since they are scale-

tunable, they are appropriate for analyzing the multiscale be-

havior of cascade processes and for representing them. How-

ever, as shown in Pottier et al. (2008), Yahia et al. (2010)

and Pont et al. (2011a), not all multi-resolution analyses are

equivalent; the most interesting are those which are optimal

for inferring information along scales, in particular, in a con-

text where information is to be propagated along the scales

from low resolution to high resolution.

The effective determination of an optimal wavelet for a

given category of turbulent signals is, in general, a very dif-

ficult open problem. This difficulty can be contoured by con-

sidering multi-resolution analysis performed on the signal of

the singularity exponents h(x) themselves. Indeed, since the

most singular manifold (the set Fh associated with the lowest

singularity exponents) is associated with the highest frequen-

cies in a turbulent signal, and since the multifractal hierarchy

Fh converges to this set, it is physically evident that the mul-

tifractal hierarchy corresponds to a description of the detail

spaces of a multi-resolution analysis performed on a turbu-

lent signal. Consequently, designating the approximation and

detail spaces computed on the S(pCO2)(x) signal as Vj and

Wj , respectively, and their corresponding orthogonal projec-

tions from space L2(R2) as Aj and Pj , the reconstruction

formula,

Aj−1pCO2 = AjpCO2+Pjh, (4)

consists of reconstructing a signal across the scales using

the detail spaces of the singularity exponents and hence re-

generating a physical variable according to its cascade de-

composition. From these ideas, which are described more

fully in Sudre et al. (2015), we can deduce the following

algorithm for reconstructing a super-resolution pCO2 sig-

nal from available high-resolution SST, Chl a, and low-

resolution pCO2:

(i) After selecting a given area of study, compute the sin-

gularity exponents of SST, Chl a and pCO2 at low and

high resolution from ROMS-BIOEBUS output. This is

done once and then they can be used for every compu-

tation performed over the same area.

(ii) Using Eq. (2) estimate ocean pCO2 at low resolution:

pocean
CO2
= pair

CO2
−F/αK , where:

– F : air–sea surface CO2 fluxes provided by Carbon-

Tracker product;

– K: gas transfer velocity obtained by the parame-

terization developed by Sweeney et al, 2007, as a

function of the wind.

– α: gas solubility derived according to Weiss (1974);

– pair
CO2

: provided by Globalview-CO2 product.

(iii) Obtain the regression coefficients a, b, c and d of Eq. (3)

for the singularity exponents obtained in step (ii).

(iv) Calculate the singularity exponents of available satellite

SST, Chl a at high resolution and ocean pCO2 at low

resolution (step i).

(v) Use coefficients obtained in step (iii) and apply Eq. (3)

to the singularity exponents from satellite data (step iv)

to estimate a proxy of singularity exponents of high-

resolution ocean pCO2, S(pCO2).

(vi) Using Eq. (4), reconstruct pCO2 at high resolution

from the multi-resolution analysis computed on signal

S(pCO2) and cross-scale inference on pCO2 at low res-

olution.

(vii) Use Eq. (2) to calculate air–sea CO2 fluxes from the

inferred pCO2 obtained in step (vi).

The methodology has been successfully applied to dual

ROMS simulation data at two resolutions, obtaining a mean

absolute error of pCO2 reconstructed values with respect to

ROMS simulated high-resolution pCO2 equal to 3.2 µatm

(0.89 % of relative error) (V. Garçon, personal communica-

tion, 2014).

4 Preliminary analysis of sea surface temperature

(SST) and chlorophyll a images

Since the key element for the application of our inferring al-

gorithm relies on the ability to obtain the singularity expo-

nents and their quality, the success of our methodology ap-

plied to satellite data depends on the quality and the prop-

erties of the input data. In order to assess such properties,

we perform a statistical analysis of the different data sets.

First, we analyze the Chl a and SST probability distribution

functions (PDFs). In Fig. 4a we present the PDFs for Chl a

from MERIS, GLOBCOLOUR-GSM and GLOBCOLOUR-

AVW; the required histograms are built using daily Chl a

values over 2006 and 2008 at each point of the spatial grid

in the area of Benguela. Each one of these PDFs is broad

and asymmetric, with a small mode (i.e., the value of Chl a

at which the probability reaches its maximum) between 0.1

www.biogeosciences.net/12/5229/2015/ Biogeosciences, 12, 5229–5245, 2015



5236 I. Hernández-Carrasco et al.: Super-resolution CO2 fluxes from Earth observations

Table 1. Values of the standard deviation, skewness and kurtosis for

the different products.

PRODUCT Standard Skewness Kurtosis

deviation

MERIS 0.116 mg m−3 2.6 21.9

GLOBCOLOUR-AVW 0.122 mg m−3 4.7 204.6

GLOBCOLOUR-GSM 0.123 mg m−3 5.3 215.4

OSTIA 1.97◦C -0.05 1.9

MODIS 2.11◦C -0.17 2.6

and 0.2 mg m−3 and a heavy tail. The heavy tail (i.e., non-

Gaussianity) means that the extreme values can not be ne-

glected. In this case Chl a values are mostly low (small

mode) but there is a significant number of isolated and dis-

persed patches with very high Chl a values producing inter-

mittency (long tails in the PDF). Intermittency in the context

of turbulence is the tendency of the probability distributions

of some quantities to develop long tails, i.e., the occurrence

of very extreme events.

Further information can be obtained by computing statisti-

cal quantities such as standard deviation, skewness and kur-

tosis. Table 1 shows that standard deviation is rather the same

for the three OC products while skewness and kurtosis val-

ues differ greatly. The degree of intermittency is measured

by the kurtosis, the higher the kurtosis, the higher the inter-

mittency. We found that kurtosis is almost 10 times higher in

the GLOBCOLOUR products than in MERIS.

We have repeated the same analysis for SST data sets. The

PDFs of the SST values for OSTIA and MODIS products

are shown in Fig. 4b. In this case both PDFs possess similar

shape, broad with the mode around 18 ◦C with a much less

deviation from Gaussianity as compared to Chl a values. This

is confirmed with the computation of the statistical moments

shown in Table 1. We obtain small values of the standard

deviation and kurtosis in both cases, although slightly higher

in the case of MODIS. The kurtosis is less than 3, meaning

that there is not an important number of atypical values of

SST and therefore weak and short tails in the PDFs.

If turbulence is dominated by coherent structures localized

in space and time, then PDFs are non-Gaussian, and the kur-

tosis will be higher than 3. To analyze this feature we turn to

the statistical analysis of the singularity exponents, which, as

explained before, have the ability to unveil the cascade struc-

tures given by the tracer gradients. In Fig. 4c, it can be seen

that the PDFs of the singularity exponents of the Chl a for

the three products are rather similar with almost the same

standard deviation and with a slightly higher value of the

kurtosis in the GLOBCOLOUR-GSM product, 4.3, than for

MERIS, 3.1, and GLOBCOLOUR-AVW, 3.1, (see Table 2).

This shows that Chl a from GLOBCOLOUR-GSM product

contains more extreme values which produce intermittency

likely given by the strongest structures. The PDFs of the sin-

gularity exponents of the SST for OSTIA is narrower and

Table 2. Values of the standard deviation, skewness and kurtosis of

the singularity exponents for the different products.

PRODUCT Standard Skewness Kurtosis

deviation

MERIS 0.32 mg m−3 0.59 3.1

GLOBCOLOUR-AVW 0.36 mg m−3 0.40 3.1

GLOBCOLOUR-GSM 0.35 mg m−3 0.63 4.3

OSTIA 0.29◦C 1.0 5.1

MODIS 0.32◦C 0.5 3.2

with a highest peak than for MODIS SST. However, surpris-

ingly the kurtosis is larger for singularity exponents of OS-

TIA SST, 5.1 than for MODIS SST, 3.2.

Finally, we obtain the singularity spectra from the empir-

ical distributions of singularity exponents shown in Fig. 4c

and d. One can see in Fig. 4e that for the two GLOB-

COLOUR products the shape of the spectrum is closer to bi-

nomial cascade of multiplicative processes than for MERIS.

This is discussed in more depth in the next sections.

5 Results

5.1 Inference of super-resolution pCO2 and air–sea

fluxes of CO2 offshore the Benguela upwelling

system

We now apply the methodology to infer ocean pCO2 maps at

super resolution from pCO2 at low resolution derived from

CarbonTracker data (see Sect. 2) in the offshore area of the

Benguela region.

Henceforward we use the following notation for the three

different sources of pCO2: we refer to the values of ocean

pCO2 derived from CarbonTracker as pCOCtrack
2 , values of

inferred pCO2 at higher resolution from pCO2 at low res-

olution together with computation of the cascade onto SST

and chlorophyll a concentrations as pCOinfer
2 , and finally

pCOinsitu
2 refers to the values of the in situ measurements of

pCO2.

For the inference we use the following three com-

binations of Chl a and SST products described in

Sect. 2.1: MERIS-OSTIA, GLOBCOLOUR-OSTIA,

GLOBCOLOUR-MODIS. We do not include the MERIS-

MODIS combination in the analysis due to the fact that

the use of such satellite data results in a too drastic re-

duction of the coverage of the resulting pCOinfer
2 field, but

using merged products offers wider coverage instead. The

inferred pCO2 obtained from two merged products for

Chl a, GLOBCOLOUR GSM and GLOBCOLOUR AVW

is very similar, with a slight improvement when GSM is

used. Thus for the sake of clarity, we only show figures for

GLOBCOLOUR-GSM and some statistical results making

comparisons with AVW. Therefore from now on we use
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Figure 4. (a) Probability distribution functions (PDF) of Chl a values derived from the three products: MERIS, GLOBCOLOUR-AVW

and GLOBCOLOUR-GSM. (b) PDF of SST values for OSTIA and MODIS products. (c) PDFs for the singularity exponents of Chl a for

the different ocean color products. (d) PDFs for the singularity exponents of Chl a for the different SST products. (e) Singularity spectra

corresponding to (c). (f) Singularity spectra corresponding to (d).

GLOBCOLOUR to refer to the Chl a obtained with the

GSM merged method.

Figure 5d shows one example of pCOinfer
2 field corre-

sponding to 22 March 2006, when we use SST data from OS-

TIA (Fig. 5a), ocean color from GLOBCOLOUR (Fig. 5b) at

high resolution and pCO2 at low resolution (Fig. 5c) derived

from CarbonTracker air–sea flux of CO2 (Fig. 5e) and us-

ing the Eq. (2). The air–sea flux of CO2 at super resolution

(Fig. 5f) is obtained from the pCOinfer
2 field and a constant

value of atmospheric pCO2 equal to 385.6 µatm. On this day

the images of the pCOinfer
2 and fluxes of CO2 combine to give

good coverage and clear identification of small-scale struc-

tures and gradients, as described below. Note that the air–

sea CO2 flux from CarbonTracker presents a large land mask

close to the coast and consequently, we study the offshore

area of the Benguela upwelling. Comparing the figures one

can see that values of pCO2 and CO2 flux over the domain

(from 4.5◦ E to coast (taking out the mask of the Carbon-

Tracker domain and from 20.5 to 35◦ S) vary between 360

and 380 µatm and between −4× 10−8 and 0.5× 10−8 mol

C m−2 s−1, respectively. The resultant flux of CO2 is positive

(towards the atmosphere) in the region 25–28◦ S and from

7◦ E eastward to the coast and is negative (into the ocean)

south of 30◦ S and east of 6◦ E. Thus, we see that in the south-

ern part offshore the Benguela area there is a strong CO2 sink

and the northern part behaves as a weak CO2 source.

What is new in the reconstructed pCO2 is, for instance,

that the cascade of information across the scales enhances
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a)

d)

f)e)

c)

b)

Figure 5. Maps of (a) SST from OSTIA at 1/32◦ of spatial resolution, (b) Chl a at 1/32◦ of spatial resolution from GSM GLOBCOLOUR

products, (c) ocean pCO2 from CarbonTracker at the spatial resolution of 1◦, (d) inferred pCO2 at super resolution (4 km, i.e., 1/32◦) derived

from OSTIA SST and GLOBCOLOUR-GSM Chl a shown in (a) and (b), respectively, (e) Air–sea CO2 flux as derived from CarbonTracker

and (f) Air–sea CO2 flux computed from super-resolution pCO2 shown in (d) at 1/32◦. All images correspond to 22 March 2006. White

color corresponds to invalid pixels due to cloudiness and points inside of the CarbonTracker land mask.

gradients in the field of pCO2. It is striking that the high-

resolution map provides the position of the north–south

dipole “front” located at 30◦ S (i.e., −1.5× 10−8 isoline in

green) which could not be inferred accurately from the low-

resolution map. The low-resolution map provides an estimate

of the location of the “front” that is ∼ 1.5◦ north of the lo-

cation inferred from the high-resolution map. Moreover one

can see small structures in the pCOinfer
2 field at 33–35◦ S, 9–

12◦ E in the pCOinfer
2 field (Fig. 5d). The small spatial scale

variability is captured in the super-resolution pCO2 field and

not in pCOCtrack
2 as shown in the longitudinal profile of the

images plotted in Fig. 5 at latitude 33.5◦ S (see Fig. 6). The

same high spatial variability given by the small-scale struc-

tures of the SST and OC images can be seen in their corre-

sponding longitudinal profiles displayed in Fig. 6a and b. It is

worth noting the change in the shape of the profiles between

the pCOinfer
2 and pCOCtrack

2 and fluxes of CO2 at large scale,
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Figure 6. Longitudinal profiles of (a) SST from OSTIA products

in units of ◦C, (b) Chl a from GLOBCOLOUR-GSM ocean in

mg m−3, (c) pCOCtrack
2

(black line) and pCOinfer
2

(red line) in

µatm, and (d) air–sea CO2 fluxes from CarbonTracker (black line)

and inferred air–sea CO2 fluxes (red line) in mol C m−2 s−1. All

these longitudinal profiles correspond to the fixed latitude equal to

33.5◦ S of the plots shown in Fig. 5 for 22 March 2006.

from 5.5–10.5◦ E, showing that the method not only intro-

duces small-scale features but also modifies the large-scale

spatial variability.

5.2 Evaluation of using different satellite products

Since the underlying aim of this work is to develop a method-

ology to infer super-resolution pCO2 from space using re-

mote observations, we perform a validation study of the dif-

ferent data used in the inferring computations. This provides

us an evaluation where satellite products are more suitable

for our methodology and thus gives confidence to our method

as well as a better understanding of its limitations. The eval-

uation analysis is addressed taking into account two main

concerns: one related to the number of valid points yielded in

the pCOinfer
2 field, and another with regard to the degradation

of the information contained in the transition fronts. A valid

point is a pixel where we have simultaneous Chl a, SST and

pCO2 values from CarbonTracker, from which we can obtain

a value of pCOinfer
2 , in other words without missing informa-

tion. One example comparing the reconstructed pCO2 field

obtained from the above-mentioned product combinations is

plotted in Fig. 7. The general pattern is quite similar in all of

them with some differences in the details of the small scales

and in the missing points due to cloudiness (white patches).

a) b)

d)c)

Figure 7. (a) Map of pCO2 field at low resolution from Car-

bonTracker. Reconstructed pCO2 field at super resolution us-

ing (b) OSTIA SST and MERIS Chl a, (c) OSTIA SST and

GSM-GLOBCOLOUR Chl a and (d) MODIS SST and GSM-

GLOBCOLOUR Chl a. All maps correspond to 21 Septem-

ber 2006.

This example clearly shows how different coverage of the

pCO2 can be in the field depending on the product combina-

tion.

Similar results are found when one compares the spatial

distribution of the pCOinfer
2 values to the time averages over

2006 and 2008 for the three product combinations (Fig. 8).

The same pattern with an area of higher pCO2 between 24

and 30◦ S and lower pCO2 values outside this region is pro-

duced with the three combinations. The most noticeable dif-

ferences are located in the most northern region and in the

southeastern region off Benguela. This can be quantified by

computing the standard deviation of the reconstructed pCO2

values among the different combination of data sets. Fig-

ure 8d shows the spatial distribution of the time average over

2006 and 2008 of the standard deviation computed in each

pixel among the pCOinfer
2 values obtained from the three

product combinations. The larger values of the dispersion

(not greater than 5 µatm) are found in the area between the

latitudes of 20◦ S and 23◦ S – and in the southern region, in

particular, between the latitudes of 31.5◦ S and 35.5◦ S – and

between the longitudes of 11◦ E and 13.5◦ E. The low value

of the dispersion indicates that the method is robust when

different data sets are used in the inference.

First, we compute the number of valid points in the

pCOinfer
2 field for each product combination. Table 3 summa-

rizes the total number of valid points for each product combi-

nation for both years 2006 and 2008. As expected, the num-

ber of valid points is found to be the highest for the combina-
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Figure 8. Spatial distribution of the time averages of pCOinfer
2

val-

ues over the years 2006 and 2008 using (a) OSTIA SST and MERIS

Chl a, (b) OSTIA SST and GSM-GLOBCOLOUR Chl a and (c)

MODIS SST and GSM-GLOBCOLOUR Chl a. (d) Map with spa-

tial distribution of the standard deviation for the pCOinfer
2

among

the different combination of the data sets.

Table 3. Number of valid points in the pCO2 fields and their differ-

ence between the three combinations of MERIS or GLOBCOLOUR

Chl with OSTIA or MODIS SST in the area of Benguela.

Valid points in the inferred pCO2 fields: 2006/2008

No. total pixels domain 55 711 378

No. points OSTIA-MERIS 9800 776

No. points OSTIA-GLOBCOLOUR(AVW) 26 382 072

No. points OSTIA-GLOBCOLOUR(GSM) 27 313 043

No. points MODIS-GLOBCOLOUR(GSM) 20 397 047

OSTIA-GSM/OSTIA-MERIS ratio 2.78

OSTIA-GSM/MODIS-GSM ratio 1.33

MODIS-GSM-/OSTIA-MERIS ratio 1.08

LPOM 82 %

LPOG(AVW) 53 %

LPOG(GSM) 51 %

LPMG 63 %

tion of merged products OSTIA SST and GLOBCOLOUR-

GSM, with NGO = 27 313 043 points, followed by the com-

bination MODIS SST and GLOBCOLOUR Chl withNMG =

20 397 047 points and finally by the OSTIA SST and MERIS

Chl combination with NOM = 98 00 776 points. Looking at

the different proportions, we find that the number of valid

points is 2.78 times larger when using the merged prod-

ucts OSTIA and GLOBCOLOUR-GSM than using OS-

TIA and MERIS, 1.33 times larger than using MODIS and
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Figure 9. Comparison of the probability distribution functions of

CarbonTracker and inferred pCO2 values over the Benguela area

for the three different SST and OC product combinations: MERIS

Chl and OSTIA SST, GLOBCOLOUR merged Chl and OSTIA

SST, and GLOBCOLOUR merged Chl and MODIS SST.

GLOBCOLOUR-GSM and 1.08 times larger using OSTIA

SST and GSM Chl a than using MODIS SST and GSM

Chl a. Furthermore, if we know that the total number of

pixels in the domain taking out the points of the Carbon-

Tracker mask and for the 2 years is Np = 55 711 378, one

can estimate the loss of valid points for each combination,

LPx . LPx is computed by taking the relative difference be-

tween the number of total available pixels in the domain

Np and the number of points in the inferred pCO2 field

obtained for each product combination, Nx , and dividing

it by the total number of pixels Np, LPx =
Np−Nx
Np

100 %.

Here the subscript x refers to the product combination

(e.g., LPx =LPOM, LPOG and LPMG for the loss of valid

points with the OSTIA-MERIS, OSTIA-GLOBCOLOUR

and MODIS-GLOBCOLOUR product combinations, respec-

tively). The loss of valid points due to cloudiness in the

ocean color and SST images is less severe for the OSTIA-

GLOBCOLOUR combination, with a loss of 51 %, and is

more affected by the cloudiness the OSTIA-MERIS combi-

nation with a loss of 82 %.

Next we explore the quality of the information contained

in the transition fronts, in particular, in the non-merged

products such as MERIS OC and MODIS SST as com-

pared to the merged products: GLOBCOLOUR OC and OS-

TIA SST. The PDFs of pCO2 values from CarbonTracker

and pCOinfer
2 values for the three combinations of OC

and SST products, i.e., MERIS-OSTIA, GLOBCOLOUR-

OSTIA, MODIS-GLOBCOLOUR (see Fig. 9) show that

there is a good correspondence of all pCOinfer
2 values with

those from pCOCtrack
2 . Indeed the histograms show also a bet-

ter agreement between merged products and CarbonTracker:

the peak of the PDF for pCOinfer
2 is closer to the Carbon-

Tracker peak in the case of OSTIA and GLOBCOLOUR than

when using MERIS and MODIS products.
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Figure 10. (a) Empirical PDFs for the singularity exponents of

pCO2 fields from CarbonTracker and from the cascade of the three

product combinations. (b) Associated singularity spectra. In these

computations we use all the pCO2 values obtained in 2006 and

2008.

Furthermore, to examine the transition fronts for the dif-

ferent products, we compute the singularity spectra for the

three product combinations (see Fig. 10). At low values of

h (singularity exponent), related to the most singular mani-

folds, the shape of singularity spectrum for inferred data from

merged products better matches a binomial cascade, with an

improved description of the dimension of the sharpest tran-

sition fronts. We know from the theory that tracers advected

by the flow in the turbulent regime, as happens in the ocean,

shows multifractal behavior with a characteristic singularity

spectrum D(h), which is similar, for some types of turbu-

lence, to D(h) for the binomial multiplicative process.

5.3 Validation with in situ measurements

Next, we perform a validation analysis of the results of

our super-resolution pCO2 algorithm with field observations

of oceanic pCO2. We perform the validation using pCO2

ocean data from in situ measurements (pCOinsitu
2 ) taken in

Figure 11. Values of pCOCtrack
2

(black points), pCOinfer
2

(MODIS-

SST/GLOBCOLOUR Chl) (red points), pCOinfer
2

(OSTIA-

SST/GLOBCOLOUR Chl) (blue points) pCOinfer
2

(OSTIA-

SST/MERIS Chl) (yellow points) and pCOinsitu
2

(green points) as

a function of latitude corresponding to the valid intersections dur-

ing the QUIMA cruise through 4–6 July 2008.

the Benguela region (see Sect. 2.3). We decided to carry

out the validation directly on pCO2 rather than on the air–

sea CO2 flux since the field measurements provide oceanic

pCO2 data.

An example of the qualitative comparison of values of

pCOCtrack
2 , pCOinfer

2 for all the product combinations and

pCOinsitu
2 at the intersections of the QUIMA cruise during

4–7 July 2008, as a function of the longitudinal coordinate

of the intersections, is shown in Fig. 11. While there are vis-

ible differences between various pCO2 values, the values of

pCOinfer
2 approximate better pCOinsitu

2 values than those of

pCOCtrack
2 . The small-scale patterns are well reproduced in

the inferred pCO2 field. Values of pCOinfer
2 exhibit gradi-

ents and small-scale fluctuations, likely induced by the pres-

ence of fronts, which can be also detected in the profile of

the in situ measurements of pCO2. Most days pCOinfer
2 and

pCOCtrack
2 values overestimate pCOinsitu

2 values. On some

days, pCOinfer
2 values follow the same trend, with the same

small-scale fluctuations as pCOinsitu
2 .

First, we analyze the number of valid intersections for each

product combination. A valid intersection is a placement

in space and time common to the inferred, CarbonTracker

and in situ pCO2, without missing values. Among the 20

available cruises in the Benguela during 2005, 2006 and

2008, we find that the total number of in situ measurements

in the Benguela region under study is Ninsitu = 17 355 and

within the CarbonTracker domain this number is reduced to

NCtrack = 8377 measurements. To estimate the loss of valid

intersections due to the land mask of the CarbonTracker, we
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Table 4. Mean difference, absolute error and relative error of pCO2

values obtained from CarbonTracker and pCO2 values inferred at

super resolution with respect to values of pCO2 measurements

during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the

Benguela region.

OST-MER OST-GLOB MOD-GLOB

No. valid intersections 747 1928 1460

Linfer (%) 91 76 82

MDCtrack (µatm) 2.97 8.83 14.93

MDinfer (µatm) 0.15 3.42 8.42

AECtrack (µatm) 21.34 22.08 22.07

AEinfer (µatm) 17.77 16.47 16.62

RECtrack 0.059 0.060 0.061

REinfer 0.048 0.045 0.046

compute the relative difference of the number of intersections

between the cruise trajectories and the CarbonTracker do-

main with respect to the number of the in situ measurements,

LCrack =
Ninsitu−NCtrack

Ninsitu
100 %= 52 %, showing that half of the

measurements fall within the coastal region of the Benguela

(land masked by CarbonTracker).

The number of valid intersections is the largest with the

OSTIA-GLOBCOLOUR combination (Table 4). To quantify

the loss of valid intersections between the in situ measure-

ments and points in the pCOinfer
2 field, likely due to cloudi-

ness, we compute the relative difference between the num-

ber of measurements in the CarbonTracker domain and the

valid points in the inferred pCO2 field with respect to the

number of intersections measurements of each cruise and the

pCOCtrack
2 field, Linfer =

NCtrack−Ninfer

NCtrack
100 %. We repeat such

a computation for the three product combinations. The per-

centage of losses of intersections in inferred field Linfer be-

comes twice as large than in the case of the OSTIA-SST and

MERIS Chl combination, and even higher than with the Car-

bonTracker domain mask.

In order to quantitatively study the difference between

pCOCtrack
2 and pCOinsitu

2 values as well as the difference be-

tween pCOinfer
2 and pCOinsitu

2 measurements, we compute

the following statistical quantities:

– Mean difference (MD): average of all the intersections

of the difference between pCOCtrack
2 and pCOinsitu

2 val-

ues as well as the difference between pCOinfer
2 and

pCOinsitu
2 values at the same intersection, i,

MDCtrack =
1

N

N∑
i=1

(pCO2
Ctrack(i)−pCO2

insitu(i)), (5)

MDinfer =
1

N

N∑
i=1

(pCO2
infer(i)−pCO2

insitu(i)), (6)

where N is the number of intersections.

– Mean absolute error (AE): average of all the intersec-

tions of the absolute values of the difference between

pCOCtrack
2 or pCOinfer

2 and pCOinsitu
2 at the same inter-

section,

AECtrack =
1

N

N∑
i=1

∣∣∣pCO2
Ctrack(i)−pCO2

insitu(i)

∣∣∣ , (7)

AEinfer =
1

N

N∑
i=1

∣∣∣pCO2
infer(i)−pCO2

insitu(i)

∣∣∣ . (8)

– Mean relative error (RE): average of all the intersec-

tions of the errors of the estimated values of pCO2 (Car-

bonTracker or inferred) with respect to the reference

pCO2 values (in situ) at the same intersection,

RECtrack =
1

N

N∑
i=1

∣∣∣∣∣pCO2
Ctrack(i)−pCO2

insitu(i)

pCO2
insitu(i)

∣∣∣∣∣ , (9)

REinfer =
1

N

N∑
i=1

∣∣∣∣∣pCO2
infer(i)−pCO2

insitu(i)

pCO2
insitu(i)

∣∣∣∣∣ . (10)

We started the statistical validation by analyzing each

QUIMA cruise separately (not shown) and we found that in

most of the cruises, the absolute error for inferred pCO2 is

relatively small (less than 15 µatm) except on 21 August 2006

and 17 May 2008, with an error of 44 and 30 µatm, respec-

tively. Then we address the global validation using all avail-

able cruises during these years.

We summarize in Table 4 the results of the computations

of the errors given by Eq. (7–10) by taking averages of all

valid intersections found during 2005, 2006 and 2008. The

absolute error, AE is smaller in the three cases of pCOinfer
2

(17.77, 16.47 and 16.62 µatm for OSTIA-MERIS, OSTIA-

GLOBCOLOUR and MODIS-GLOBCOLOUR combina-

tions, respectively) than for pCOCtrack
2 (21.34, 22.08 and

22.07 µatm, respectively), showing that the estimated pCO2

field at super resolution using our algorithm is improving

the pCO2 field obtained from CarbonTracker. The small-

est AE is for the combination of SST and Chl provided by

merged products. The values of pCOCtrack
2 are, on average,

larger than pCOinsitu
2 (MDCtrack = 2.97, 8.83 and 14.93 µatm)

while the differences between pCOinfer
2 and pCOinsitu

2 values

compensate each other (MDinfer = 0.15, 3.42 and 8.42 µatm).

In all cases the MDCtrack and MDinfer are positive, meaning

that the pCO2 values are overestimated. Finally, comparing

the relative error of pCOCtrack
2 and pCOinfer

2 with respect to

pCOinsitu
2 , we found that the relative error is low in all cases,

smaller for pCOinfer
2 than for pCOCtrack

2 .

Finally, if we only compare the statistical errors at the

common valid intersections between the pCOinfer
2 using the

three product combinations with pCOCtrack
2 and with the in

situ measurements (see Table 5), we obtain 458 mutual in-

tersections. We obtain similar results when taking into ac-

count all the intersections. The absolute error is smaller in
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Table 5. Mean difference, absolute error and relative error of pCO2

values obtained from CarbonTracker and pCO2 values inferred at

super resolution with respect to values of pCO2 measurements

during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the

Benguela region at the same intersections.

OST-MER OST-GLOB MOD-GLOB

No. valid intersections 458 458 458

MDCtrack (µatm) 8.01 8.01 8.01

MDinfer (µatm) 4.37 1.62 3.32

AECtrack (µatm) 23.23 23.23 23.23

AEinfer (µatm) 19.92 16.31 18.85

RECtrack 0.065 0.065 0.065

REinfer 0.055 0.045 0.051

the case of pCOinfer
2 (17.65 µatm) than with pCOCtrack

2 (20.24

µatm), indicating that our algorithm improves the estimation

of ocean pCO2. The smallest AE is again for the combina-

tion with merged products. MD is positive showing that most

of the time pCOinfer
2 and pCOCtrack

2 values are overestimated

(see Fig. 11). Again the relative error is small, less than 0.06,

for all the product combinations.

6 Conclusions

In this work we have presented a method to infer high-

resolution CO2 fluxes by propagating the small-scale infor-

mation given in satellite images across scales. The method

is based on a multi-resolution analysis applied to the criti-

cal transitions given by singularity exponent analysis. More

specifically, we have reconstructed maps of CO2 fluxes at

high resolution (4 km) in the region offshore Benguela us-

ing SST and ocean color data at this resolution, and Car-

bonTracker CO2 flux data at low resolution (110 km). The

inferred representation of ocean surface pCO2 improves the

description provided by CarbonTracker, enhancing the small-

scale variability. Spatial fluctuations observed in latitudinal

profiles of in situ pCO2 have also been obtained in the in-

ferred pCO2, showing that the inferring algorithm captures

the small-scale features of the pCO2 field. The examination

of different combinations of ocean color and sea surface tem-

perature (SST) products reveals that using merged products,

i.e., GLOBCOLOUR, increases the quality and the number

of valid points in the pCO2 field. We show that mean abso-

lute errors of the inferred values of pCO2 with respect to in

situ measurements are smaller than for CarbonTracker. The

statistical comparison of inferred and CarbonTracker pCO2

values with in situ data shows the potential of our method

as well as the shortcomings of using CarbonTracker data for

the estimation of air–sea CO2 fluxes. These results indicate

that the outputs of our algorithm will be only as good as the

inputs.

We are aware that further investigations could improve the

algorithm. The multiple linear regression coefficients could

be derived differentiating the seasons (i.e., coefficients would

vary as a function of calendar month) considering the marked

seasonal cycle in the Benguela upwelling system. Addition-

ally, future work will focus on the extension of the compu-

tations to larger areas in order to infer global high-resolution

CO2 fluxes. This will allow more comprehensive and robust

validation from more in situ measurements.
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