

Supplement of

Ocean acidification does not affect magnesium composition or dolomite formation in living crustose coralline algae, *Porolithon onkodes* in an experimental system

M. C. Nash et al.

Correspondence to: M. C. Nash (merinda.nash@anu.edu.au)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Supplementary information for Nash et al.

Ocean acidification does not affect magnesium composition or dolomite formation in living crustose coralline algae, *Porolithon onkodes* in an experimental system

Figure S1: Example XRD scans. New settlement (pink line)(control tank 24, sample1, mol% 14.4, Asymm mol% 14.6, SI Table 3) has no peak asymmetry, the 3 month growth crust (grey line) (control 2, mol% 16.5, Asymm mol% 17.3, SI Table 1) has slight asymmetry and the bulk crust (black line) (control 2, mol% 17.6, Asymm mol% 26.7, SI Table 4) incorporating pre-experimental crust has asymmetry with an overlapping but clear peak for dolomite. Dolomite 1 is the peak position for ~50 mol% MgCO₃ for disordered dolomite (as identified by Zhang et al. 2010, discussed in Nash et al. 2011 and expanded in Diaz-Pulido et al. 2014). Dolomite 2 is the peak position for stoichiometric fully ordered dolomite (ICSD file card PDF 00-036-0426).

	Mol %	Asymm
	MgCO ₃	mol%
Pre-I 1	16.2%	17.1%
Pre-I 2	16.6%	17.0%
Pre-I 3	17.1%	17.9%
Pre-I 5	16.3%	17.5%
Pre-I 6	16.8%	17.9%
Average	16.6%	17.5%
St. Dev	0.39%	0.42%
Control 1	16.0%	17.3%
Control 2	16.5%	17.3%
Control 3	16.4%	17.5%
Control 4	16.8%	18.6%
Control 6	16.8%	*23.0%
Average	16.5%	18.8%
St. Dev	0.31%	2.45%
Med 1	17.3%	18.0%
Med 2	16.5%	17.3%
Med 3	16.2%	16.8%
Med 4	16.2%	17.3%
Med 5	15.9%	16.7%
Average	16.4%	17.2%
St. Dev	0.53%	0.51%
High 1	16.5%	18.1%
High 2	17.5%	18.9%
High 4	16.9%	17.5%
High 5	16.2%	17.1%
High 6	16.4%	18.2%
Average	16.7%	17.9%
St. Dev	0.45%	0.68%

Full data tables for XRD results

Table S1: Magnesium composition for new *P. onkodes* crust grown during first 3 months in pre-industrial (Pre-I), control and high CO₂. Asymm mol% incorporates the influence of any peak asymmetry toward dolomite. Net asymmetry is the difference between the

asymmetry mol% and the standard mol% MgCO₃. Net asymmetry $> \sim 1$ suggests dolomite is present. There was no statistically significant difference between any of the treatments for either mol%.

*This sample had halite and the XRD peak overlapped a low magnesite shoulder skewing the calculated mol% to higher values- sample excluded from average calculation for statistical analysis.

Treatment	Sample	Mol% MgCO ₃	Asymm mol%
Pre-I	Tank 19	17.1%	18.8%
Pre-I	Tank 22	16.8%	20.6%
Pre-I	Tank 17	17.0%	19.1%
Pre-I	Tank 19, S2	16.1%	19.9%
Pre-I	Tank 19, S3	16.3%	17.6%
Average		16.7%	19.2%
St. Dev.		0.42%	1.12%
Med	Tank 18	16.3%	17.8%
Med	Tank 23	16.2%	17.5%
Med	Tank 15	16.5%	19.1%
Average		16.4%	18.1%
St. Dev.		0.15%	0.84%
High	Tank 21, S1	16.4%	18.9%
High	Tank 21, S2	15.7%	18.5%
High	Tank 21, S3	16.7%	18.6%
High	Tank 16, S1	16.2%	17.7%
High	Tank 16, S2	16.8%	18.8%
High	Tank 16, S3	17.0%	18.3%
Average		16.5%	18.5%
St. Dev.		0.46%	0.44%

Table S2: Mol% MgCO₃ for new *P. onkodes* crust after 6 months. There is no difference between treatments.

Treatment	Sample no.	mol% MgCO ₃	Asymm mol%
Pre-I	Tank 19, S1	15.8%	16.0%
Pre-I	Tank 19, S2	14.3%	14.9%
Pre-I	Tank 17, S1	14.4%	14.5%
Average		14.8%	15.1%
St. Dev.		0.83%	0.77%
Control	Tank 20, S1	15.3%	15.2%
Control	Tank 20, S2	14.7%	14.8%
Control	Tank 24, S1	14.4%	14.6%
Control	Tank 24, S2	14.5%	14.5%
Average		14.7%	14.8%
St. Dev.		0.4%	0.3%
Medium	Tank 18, S1	14.2%	14.2%
Medium	Tank 18, S2	14.7%	14.7%
Medium	Tank 18, S3	15.2%	15.5%
Medium	Tank 23, S1	15.0%	15.0%
Medium	Tank 15, S1	14.4%	14.6%
Average		14.7%	14.8%
St. Dev.		0.41%	0.48%
High	Tank 16, S1	15.1%	*14.7%
High	Tank 16, S2	15.0%	16.0%
High	Tank 16, S3	14.9%	14.8%
High	Tank 13, S1	15.6%	15.8%
High	Tank 13, S2	13.8%	13.8%
Average		14.9%	15.0%
St. Dev.		0.7%	0.9%

Table S3: Mol% MgCO₃ for new settlement -unidentified CCA- after 6 months. CCA had not reached reproductive stage and were not able to be identified. In order to have enough material for XRD, each XRD sample comprised multiple (2-4) small growth patches. The range of 0.2 mol% MgCO₃ for the averages, is within measurement precision. There is no significant difference between treatments for mol% MgCO₃. There is little to no asymmetry influence on the mol% MgCO₃, this in agreement with the observation that thick crusts had not formed.

*The XRD pattern for this sample had a low calcite peak overlapping the Mg-calcite peak and accounts for the shift to lower mol% in the asymmetry measurement.

		mol%		
3 Month	Sample	MgCO ₃	Asymm mol%	Aragonite
Pre-I	Tank 2	17.4%	20.6%	0
Pre-I	Tank 5	17.8%	19.9%	1.3%
Pre-I	Tank 6	17.9%	23.9%	1.3%
Control	Tank 3	17.9%	20.4%	0
Control	Tank 4	17.2%	23.1%	11.9%
Control	Tank 2	17.6%	26.7%	0.8%
Control	Tank 1	17.5%	19.3%	0.6%
Control	Tank 6	17.9%	24.4%	3.0%
Medium	Tank 1	17.6%	21.4%	10.2%
Medium	Tank 2	16.9%	18.7%	1.3%
Medium	Tank 3	17.8%	22.9%	0
Medium	Tank 4	16.9%	20.2%	0
Medium	Tank 5	17.5%	18.7%	1.5%
High	Tank 2	17.3%	21.7%	0
High	Tank 5	17.3%	20.7%	0
High	Tank 4	17.1%	18.5%	1.7%
Average		17.5%	21.3%	
St. Dev		0.33%	2.34%	
		Mol%		
6 Month	Sample	MgCO ₃	Asymm mol%	Aragonite
Pre-I	Tank 19	18.2%	25.1%	0
Pre-I	Tank 22	17.6%	23.2%	0
Pre-I	Tank 17	18.1%	18.9%	4.10%
Pre-I	Tank 19, S2	17.9%	23.7%	0
Pre-I	Tank 19, S3	16.4%	18.9%	9.50%
Med	Tank 18	17.4%	20.6%	0.90%
Med	Tank 23	16.9%	19.1%	9.40%
Med	Tank 15	17.6%	23.7%	0
High	Tank 16, S1	17.9%	20.1%	0
High	Tank 16, S2	17.6%	25.7%	0
High	Tank 16, S3	17.6%	22.8%	0
High	Tank 21, S1	17.1%	21.5%	1.80%
High	Tank 21, S2	17.9%	24.1%	0
High	Tank 21, S3	18.2%	20.5%	1.20%
Average		17.6%	22.0%	
St Davi		0.51%	2.34%	

Table S4: Mineralogy for pre-experimental *P. onkodes* crust after 3 and 6 months experimental duration. There is no difference in mol% MgCO₃ or Asymmetry mol% for 3 and 6 months. The range of mol% MgCO₃ is from 16.4 to 18.2 mol% MgCO₃, whereas the Asymm. mol% which incorporates the dolomite influence, has a greater range, from 18.5 to 26.7 mol% MgCO₃. This indicates that samples range from having no or minimal dolomite up to being considered as dolomite -rich (as per Nash et al. 2013). Aragonite ranges from zero up to nearly 12%.

		mol%			mol%			mol%
Treatment	Spectrum	MgCO ₃	Treatment	Spectrum	MgCO ₃	Treatment	Spectrum	MgCO ₃
	Spectrum			Spectrum			Spectrum	
Control	14	59.8%	Control	23	28.3%	High	93	17.9%
	Spectrum			Spectrum			Spectrum	
High	39	58.6%	Control	56	28.3%	Pre	42	17.9%
	Spectrum	56 500	D	Spectrum	20.10/	TT' 1	Spectrum	17.50/
High	19	56.5%	Pre	57	28.1%	High	4	17.5%
II: al	Spectrum	55.00/	Dee	Spectrum	28.00/	Country 1	Spectrum	17 10/
High	10 Smootmum	55.9%	Pre	51 Smaatrum	28.0%	Control	32 Speatrum	17.1%
Control	Spectrum	52 10/	Dro	Spectrum	27 69/	Uiah	Spectrum	16 50/
Control	Spectrum	55.170	110	Spectrum	27.070	Ingn	Spectrum	10.370
High	37	51.4%	High	104	27.5%	Control	13	16.4%
mgn	Spectrum	51.170	Ingii	Spectrum	27.370	Control	Spectrum	10.170
Control	18	46.0%	High	18	27.0%	High	8	16.0%
	Spectrum		8	Spectrum		8	Spectrum	
Pre	72	45.7%	Pre	53	26.5%	High	34	15.6%
	Spectrum			Spectrum			Spectrum	
Pre	71	45.4%	Pre	55	26.0%	Control	41	15.4%
	Spectrum			Spectrum			Spectrum	
Pre	70	44.8%	Pre	61	25.9%	High	12	15.0%
	Spectrum			Spectrum			Spectrum	
Control	50	44.7%	Pre	45	24.9%	Pre	67	14.8%
~ .	Spectrum		_	Spectrum			Spectrum	
Control	68	44.7%	Pre	54	24.6%	High	22	14.4%
	Spectrum	4.4.40/		Spectrum	24.50/	TT' 1	Spectrum	14.20/
Control	11	44.4%	Control	9	24.5%	High	89	14.3%
Control	Spectrum	12 70/	Control	Spectrum	24 50/	Uiah	Spectrum	1/ 20/
Control	50 Spectrum	43.7%	Control	55 Spectrum	24.3%	піgn	99 Spectrum	14.370
Control	37	43 1%	Control	45	24 4%	Pre	81	14.1%
Control	Spectrum	73.170	Control	Spectrum	24.470	110	Spectrum	14.170
Control	47	41.9%	Pre	73	23.2%	Control	53	14.0%
	Spectrum			Spectrum			Spectrum	
High	38	41.5%	High	84	23.1%	High	3	13.6%
	Spectrum			Spectrum			Spectrum	
Control	29	41.2%	Pre	66	23.1%	Control	61	13.5%
	Spectrum			Spectrum			Spectrum	
Pre	59	40.8%	High	90	23.0%	High	7	13.5%
	Spectrum			Spectrum			Spectrum	
High	103	40.6%	High	91	22.5%	High	32	13.3%
	Spectrum	10 (0)	TT' 1	Spectrum	22.20/	D	Spectrum	12.20/
Control	46	40.6%	High	98	22.3%	Pre	69	13.2%
Dee	Spectrum	40.00/	II: al	Spectrum	22.20/	II: -1	Spectrum	12 50/
Pre	41 Secont	40.0%	High	30 Succession	22.2%	High	25 Succession	12.5%
Control	Spectrum 21	20 20/	Dro	A7	22.20%	High	Spectrum	12.0%
Control	Spectrum	39.270	110	47 Spectrum	22.270	Ingn	Spectrum	12.070
Control	22	37.6%	High	92	22.1%	Pre	76	11.9%
Control	Spectrum	571070		Spectrum			Spectrum	11.570
High	13	37.6%	Pre	68	22.0%	High	9	11.8%
0	Spectrum		-	Spectrum		0	Spectrum	
Control	55	37.4%	Control	12	21.7%	High	28	11.6%
	Spectrum			Spectrum			Spectrum	
High	108	37.3%	Pre	65	21.5%	Control	39	11.0%
	Spectrum			Spectrum			Spectrum	
Pre	43	37.2%	Pre	64	21.3%	High	35	11.0%

		mol%			mol%			mol%
Treatment	Spectrum	MgCO ₃	Treatment	Spectrum	MgCO ₃	Treatment	Spectrum	MgCO ₃
	Spectrum			Spectrum			Spectrum	
Pre	58	36.3%	High	106	21.2%	Pre	74	10.5%
	Spectrum	2 (22)	a	Spectrum	a 1 1 0 /	a	Spectrum	10.50/
Pre	44	36.2%	Control	48	21.1%	Control	49	10.5%
C	Spectrum	25.00/	TT: 1	Spectrum	21 10/	TT: 1	Spectrum	10.20/
Control	31 Size estimation	35.9%	High	23	21.1%	High	105 Succession	10.2%
Dra	Spectrum	25 90/	High	Spectrum	20.09/	Control	Spectrum	0.80/
Pie	40 Speetrum	33.8%	підп	0/ Speetrum	20.9%	Control	55 Speetrum	9.870
High	15	34 7%	Dre	78	20.4%	Control	63	9.8%
Ingn	Spectrum	34.770	110	Spectrum	20.470	Control	Spectrum	9.070
High	107	34.6%	High	88	20.4%	Control	38	9.4%
ingn	Spectrum	51.070	Ingh	Spectrum	20.170	control	Spectrum	2.170
High	17	34.1%	High	96	20.3%	Control	44	9.3%
	Spectrum		<u> </u>	Spectrum			Spectrum	
High	109	34.0%	Pre	62	20.3%	Control	60	8.1%
-	Spectrum			Spectrum			Spectrum	
Pre	52	33.3%	High	36	20.2%	Pre	79	7.9%
	Spectrum			Spectrum			Spectrum	
Pre	48	32.0%	High	27	19.8%	Control	27	7.8%
	Spectrum			Spectrum			Spectrum	
Pre	50	31.8%	High	97	19.8%	High	33	7.5%
~ .	Spectrum			Spectrum			Spectrum	
Control	15	31.5%	High	85	19.3%	High	10	7.2%
C	Spectrum	21 10/	TT: 1	Spectrum	10.20/	D	Spectrum	7.00/
Control	25	31.1%	High	26	19.2%	Pre	63	/.0%
Control	Spectrum	20.09/	High	Spectrum	10.20/	Control	Spectrum	6.09/
Control	20 Speetrum	50.9%	підп	102 Speetrum	19.2%	Control	54 Speetrum	0.9%
Control		30.2%	Control		10.0%	Control	52	6.9%
Control	Spectrum	50.270	Control	Spectrum	19.070	Control	52 Spectrum	0.970
Control	43	30.2%	Pre	56	18.9%	Control	58	6.9%
Control	Spectrum	50.270	110	Spectrum	10.970	Control	Spectrum	0.970
Control	16	29.5%	High	29	18.7%	Control	59	6.9%
	Spectrum		8	Spectrum			Spectrum	
Control	10	29.3%	High	6	18.6%	Control	57	6.7%
	Spectrum			Spectrum			Spectrum	
Control	42	29.2%	High	94	18.5%	Control	67	6.3%
	Spectrum			Spectrum			Spectrum	
Control	17	29.1%	Pre	77	18.4%	Control	26	6.2%
	Spectrum			Spectrum			Spectrum	
High	14	29.0%	Pre	75	18.2%	Control	36	6.1%
	Spectrum			Spectrum				
High	20	28.8%	High	86	18.0%			

Table S5: SEM-EDS spectrum results for mol% MgCO3.Dolomite range 36.3 - 59.8mol% MgCO3.MgCO3.

Figure S2. SEM of Pre-industrial (**a**, **b**) and High CO₂ (**c**, **d**) new *P*. onkodes crust with dolomite. (**a**) Overview of experimental growth on resin (right hand side) Pre-industrial CCA. Box is enlarged in B. (**b**) Experimental growth with dolomite (measured by EDS as 37.6 and 55.9 mol% MgCO₃) (arrows). Similarly to the control samples, experimental cells are not generally in-filled with dolomite to the extent observed in the old growth. (**c**) Overview of experimental growth on resin for High CO₂ CCA. Box enlarged in D. (**d**) Experimental growth with dolomite (EDS 40.0 mol% MgCO₃) (arrows). Similarly to control and Pre-industrial, the new cells are generally not in-filled with dolomite to the extent observed in the old growth. Scale bars: A and C = 200 microns, B and D = 10 microns.

Figure S3: Control *P. onkodes* experimental growth over resin. (a) The experimental growth over the resin can be traced back to determine the boundary for the pre-experimental growth and the experimental growth. Beneath the experimental growth on resin, part of the crust has altered to aragonite (A). White box enlarged in B. (b) Transition from pre-experimental growth with dolomite infill (D infill) to experimental growth with organic infill but no mineral infill. (c) close up of transition showing dolomite in-fill cells (d) and cells in experimental growth with organic material (O), Mg-C – Mg-calcite, D - dolomite. Scale bars A = 100 microns, B = 20 microns, C = 2 microns.

Supplementary reference

Zhang, F., Xu, H., Hironi, K., and Roden E, E.: A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series, Am. Mineral, 95, 1650, 2010.