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Abstract. Dynamic global vegetation models (DGVMs) typ-

ically rely on plant functional types (PFTs), which are as-

signed distinct environmental tolerances and replace one

another progressively along environmental gradients. Fixed

values of traits are assigned to each PFT; modelled trait vari-

ation along gradients is thus driven by PFT replacement. But

empirical studies have revealed “universal” scaling relation-

ships (quantitative trait variations with climate that are simi-

lar within and between species, PFTs and communities); and

continuous, adaptive trait variation has been proposed to re-

place PFTs as the basis for next-generation DGVMs.

Here we analyse quantitative leaf-trait variation on long

temperature and moisture gradients in China with a view

to understanding the relative importance of PFT replace-

ment vs. continuous adaptive variation within PFTs. Leaf

area (LA), specific leaf area (SLA), leaf dry matter content

(LDMC) and nitrogen content of dry matter were measured

on all species at 80 sites ranging from temperate to tropical

climates and from dense forests to deserts. Chlorophyll flu-

orescence traits and carbon, phosphorus and potassium con-

tents were measured at 47 sites. Generalized linear models

were used to relate log-transformed trait values to growing-

season temperature and moisture indices, with or without

PFT identity as a predictor, and to test for differences in trait

responses among PFTs.

Continuous trait variation was found to be ubiquitous.

Responses to moisture availability were generally similar

within and between PFTs, but biophysical traits (LA, SLA

and LDMC) of forbs and grasses responded differently from

woody plants. SLA and LDMC responses to temperature

were dominated by the prevalence of evergreen PFTs with

thick, dense leaves at the warm end of the gradient. Nutrient

(N, P and K) responses to climate gradients were generally

similar within all PFTs. Area-based nutrients generally de-

clined with moisture; Narea and Karea declined with tempera-

ture, but Parea increased with temperature.

Although the adaptive nature of many of these trait-climate

relationships is understood qualitatively, a key challenge for
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modelling is to predict them quantitatively. Models must take

into account that community-level responses to climatic gra-

dients can be influenced by shifts in PFT composition, such

as the replacement of deciduous by evergreen trees, which

may run either parallel or counter to trait variation within

PFTs. The importance of PFT shifts varies among traits, be-

ing important for biophysical traits but less so for physio-

logical and chemical traits. Finally, models should take ac-

count of the diversity of trait values that is found in all sites

and PFTs, representing the “pool” of variation that is locally

available for the natural adaptation of ecosystem function to

environmental change.

1 Introduction

The plant functional type (PFT) concept has been impor-

tant in the development of dynamic global vegetation models

(DGVMs), which combine vegetation dynamics (changes in

vegetation composition, expressed as abundances of PFTs)

at the grid-cell scale with hydrological and biogeochemical

processes driven by the physical environment and modulated

by PFT characteristics (Prentice et al., 2007; Prentice and

Cowling, 2013). PFT classifications vary among models but

nearly all include distinctions of life form (at least, woody

versus herbaceous plants), leaf habit (evergreen or decidu-

ous) and leaf form (broad or needle-leaves). Some models

also distinguish climatic tolerance classes, related primar-

ily to different overwintering mechanisms for woody plants

(Harrison et al., 2010), and most distinguish C4 plants. Usu-

ally a fixed set of properties (parameter values) is assigned

to each PFT. This expedient simplifies modelling, but it is

a potential weakness because it disregards continuous adap-

tive variation within PFTs; the fact that trait variation within

PFTs often exceeds trait differences between PFTs; and the

possibility that such variation is “universal” – that is, mani-

fested similarly within and between species, PFTs and com-

munities. Neglect of continuous adaptive variation in models

could lead to underestimation of the potential for vegetation

to adapt to environmental change and generally incorrect as-

sessments of the response of vegetation to climate (Kleidon

et al., 2009; Scheiter and Higgins, 2009) and vegetation feed-

backs to climate (Alton, 2011).

Numerous observational studies have documented contin-

uous relationships between quantitative plant traits and cli-

mate (e.g. Werger and Ellenbroek, 1978; Díaz et al., 1998;

Fonseca et al., 2000; Niinemets, 2001; Wright and Westoby,

2002; Wright et al., 2004, 2005a, b; Swenson and Enquist,

2007; Reich et al., 2007; Cornwell and Ackerly, 2009; Meng

et al., 2009; Ordoñez et al., 2009, 2010; Albert et al., 2010;

Prentice et al., 2011; Zhang et al., 2012). Analyses of trait-

environment relationships have been motivated partly by the

objective of improving the representation of plant structural

and functional diversity in DGVMs (Woodward and Cramer,

1996; Díaz and Cabido, 1997; Lavorel et al., 2007; Kattge

et al., 2011). In a new strand of DGVM development, mod-

elling quantitative trait values rather than PFT abundances

is the central objective (Kleidon et al., 2009; van Bodegom

et al., 2012, 2014; Scheiter et al., 2013; Fyllas et al., 2014).

Trait-based modelling can take better advantage of the wealth

of georeferenced data now available on plant functional traits

(Kattge et al., 2011) as well as providing a more realistic rep-

resentation of functional diversity and competition in plant

communities (Scheiter et al., 2013). On the other hand, trait-

environment relationships have been shown to differ between

PFTs in some cases (e.g. Barboni et al., 2004; He et al., 2006;

Meng et al., 2009), implying that not all such relationships

are universal; some adaptive trait variation might depend on

the values of other traits, including those conventionally used

to define PFTs. Moreover there are systematic leaf-trait dif-

ferences between PFTs and in some studies these have been

found to account for a substantial fraction of the total climat-

ically related variation in leaf traits (e.g. Reich et al., 2007;

Ordoñez et al., 2009, 2010; He et al., 2010). Thus, obser-

vational studies have reached somewhat varying conclusions

about the utility of PFT distinctions in predicting adaptive

trait variation along environmental gradients.

In this work we address the following questions that are

important for modelling, and not definitively resolved based

on the current literature. (1) To what extent are quantitative

trait-environment relationships universal? Alternatively, (2)

are there systematic differences in the trait-environment re-

lationships shown by different PFTs? (3) To what extent are

variations in traits along environmental gradients accounted

for by variation within PFTs, as opposed to successive re-

placements of one PFT by another? (4) What fractions of

total trait variation are linked to climate, and/or to PFT mem-

bership, as opposed to being unexplained by either climate or

PFTs? We address these questions with an analysis of vari-

ations in leaf traits in plant communities sampled on long

gradients of temperature and moisture availability in China

(Fig. 1). The data set consists of > 11 000 quantitative leaf

trait determinations on all of the species present at 80 sites

(1549 species-site combinations; between 1 and 59 (median

16) species sampled per site), with a wide geographic and

climatic spread as shown in Fig. 1. We consider biophysi-

cal traits (leaf area: LA, specific leaf area: SLA and leaf dry

matter content: LDMC), field-measured chlorophyll fluores-

cence traits (the ratio of variable fluorescence to maximal flu-

orescence: Fv /Fm and the quantum yield of PhotoSystem II:

QY), and chemical traits: carbon content by mass (Cmass),

and nitrogen (N), phosphorus (P) and potassium (K) con-

tents, expressed on both an area and a mass basis. Thus we

consider 12 traits in all. Although area-based nutrient con-

tents are simply derived from mass-based nutrient contents

and SLA, we analyse them separately because their func-

tional significance is different – for example, leaf N com-

prises a photosynthetic component that is expected to be pro-

portional to LA and a structural component inversely propor-
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Figure 1. Left: geographic variation in the mean Cramer-Prentice moisture index (α) and annual growing degree days above 0 ◦C (GDD0)

in China. Right: frequency distribution of 10 km grid cells (grey squares) and location of sampling sites (red circles) in climate space.

tional to SLA (Niinements and Tenhunen 1997). LA, SLA,

LDMC and N were measured at all sites; the other traits were

measured at the 47 sites in eastern China, which cover most

of the climatic range of the full data set, except for the driest

climates in the west. Adopting a conventional PFT classifica-

tion, we analyse variations of each trait with bioclimatic tem-

perature and moisture indices (Harrison et al., 2010) within

and across PFTs.

2 Materials and methods

2.1 Sampling sites

The sites (Fig. 1, Table S1 in the Supplement) represent vari-

ation along the major gradients in temperature and mois-

ture and include a good sampling of the range of vegetation

types present in China. Thirty-three sites in Xinjiang Au-

tonomous Region in western China sample the extreme dry

end of the moisture gradient, with annual rainfall between 12

and 468 mm (160 mm on average). Thirty-three sites on the

Northeast China Transect (NECT: Ni and Wang, 2004) lie

on an aridity gradient from closed forests with annual rain-

fall > 700 mm in the east, through grasslands to desert with

annual rainfall of < 150 mm in the west. Fourteen sites lo-

cated in forest reserves on the North-South Transect of East-

ern China (NSTEC: Gao et al., 2003) have greater annual

rainfall and sample a range from temperate climates in the

north to warm-temperate/subtropical climates in the south.

The NSTEC sites are also differentiated in terms of rainfall,

the sites in the east at any given latitude being wetter than

those in the west.

Sampling took place during three summer field cam-

paigns, in 2005 (Xinjiang), 2006 (NECT) and 2007

(NSTEC). All sites were occupied by visually homogeneous

uncultivated vegetation with minimal signs of disturbance.

Species composition and vegetation structure were surveyed

at each site. A checklist of vascular species at each site was

created and field measurements were made on all the species

for which sufficient material could be sampled. Species sam-

pled are listed in Table S2.

2.2 Chlorophyll fluorescence measurements

Fv /Fm and QY were measured using a FluorPen FP100

(Photon Systems Instruments, Czech Republic). Fv /Fm

measures the potential rate of photosynthetic electron trans-

port while QY measures the actual rate. QY is correlated with

photosynthetic rate, although it also includes the diversion of

electrons to non-photosynthetic activities such as the elimi-

nation of reactive oxygen species (Cavender-Bares and Baz-

zaz, 2004).

2.3 Foliage sampling and analysis

At least 10 g of leaves were collected for each species, ex-

cept for a few species with very small leaves at the driest

sites, where at least 2 g of leaves were collected. Sunlit leaves

of tree species were obtained with long-handled twig shears.

The samples were subdivided for the measurement of spe-

cific leaf area (SLA), leaf dry matter content (LDMC) and C,

N, P and K contents. The measurements used are averages

of three replicates. Leaf area (LA) was determined by scan-

ning three replicate sets of five leaves (or more in the case of

small leaves, to make up a total area ≥ 20 cm2 per replicate)

with a laser scanner. Areas were measured using Photoshop

on the scanned images. Leaf fresh weight was measured in

the field. Dry weight was obtained after air-drying for sev-
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eral days and then oven-drying at 75 ◦C for 48 h. Leaf C was

measured by the potassium dichromate volumetric method

(e.g. Slepetiene et al., 2008) and leaf N by the microkjeldahl

method (e.g. Bremner, 1960). Leaf P was analysed colori-

metrically (Shimadzu UV-2550). Leaf K was measured by

Flame Atomic Emission Spectrophotometry (PE 5100 PC).

2.4 Climate data and analysis

Mean monthly values of temperature, precipitation and frac-

tional sunshine hours were obtained from 1814 meteorolog-

ical stations (China Meteorological Administration, unpub-

lished) and interpolated to a 10 km grid using ANUSPLIN

4.36 (Hutchinson and Hancock, 2006) with the help of a dig-

ital elevation model (Farr et al., 2007). Mean annual temper-

ature (MAT) and precipitation (MAP), mean winter (PDJF)

and summer (PJJA) precipitation, and precipitation seasonal-

ity (seasonal concentration, which is inversely related to wet

season length) and timing (the time of year around which pre-

cipitation is concentrated) were calculated for each site, as in

Prentice et al. (2011). The seasonality and timing metrics are

obtained by representing each month’s mean precipitation

as a vector with length proportional to precipitation amount,

and orientation determined by the month. Seasonality is the

length of the resultant of all 12 vectors, and timing is its di-

rection: see Harrison et al. (2003). Bioclimatic variables were

derived as in Gallego-Sala et al. (2010): mean temperature of

the coldest month (MTCO) and warmest month (MTWA),

growing degree days above 0 ◦C (GDD0), photosynthetically

active radiation during the season when mean daily temper-

ature is above 0 ◦C (PAR0), annual equilibrium evapotran-

spiration (EET), Moisture Index (MI=MAP/EET), annual

actual evapotranspiration (AET) and the Cramer-Prentice

α index of plant-available soil moisture (α =AET/EET)

(Cramer and Prentice, 1988). Available water holding capac-

ity (AWHC) values for the calculation of α were assigned

following Prentice et al. (2011), using sand, silt and clay frac-

tions digitised from Shi et al. (2004).

Principal components analysis was performed on stan-

dardised climate variables in SPSS. We analysed climate gra-

dients for China as a whole, based on data from 89 623 10 km

grid cells, and separately using just the 80 grid cells that in-

cluded the sampling sites.

2.5 Plant functional types (PFTs)

Plant species were classified as follows: trees (single-

stemmed, maximum height > 2 m, subdivided as evergreen

broad-leaved, evergreen needle-leaved and deciduous broad-

leaved), shrubs (multi-stemmed with maximum height be-

tween 50 cm and 2 m, subdivided as evergreen and decid-

uous), erect dwarf shrubs (multi-stemmed with maximum

height < 50 cm), lianas (woody climbing plants with peren-

nial above-ground biomass), climbers (non-woody climbing

plants with annual above-ground biomass), forbs, grasses,

Figure 2. Optima and tolerances of PFTs in climate space of α and

GDD0 (Harrison et al. 2010), based on data from the sampling sites

(see Sect. 2.5 for the calculation methods of the optima and tol-

erances). The grey dots represent the climates of all grid cells in

China.

geophytes and ferns. Climbers and ferns were not included

in the statistical analyses, however, as there were too few

species of each. The optimum and tolerance of each PFT

in terms of α and GDD0, recommended by Harrison et

al. (2010) as useful and globally applicable indices of effec-

tive moisture availability and warmth for plants, were cal-

culated non-parametrically as follows (Fig. 2): the range of

each variable was divided into bins, and average abundance

values were calculated for the sites within each bin. The

widths of the bins were selected to yield visually smooth

frequency distributions of abundance for each PFT and cli-

mate variable. The optimum was calculated as the mean of

the climate variable in the bins where the PFT was present,

weighted by its average abundance in the bins. The tolerance

range was calculated similarly, as the standard deviation of

the climate variable weighted by average abundance.

2.6 Generalized linear models

Generalized linear models (GLMs: Nelder and Wedderburn,

1972; Nelder and Baker, 2006) were used to quantify the re-

lationships of trait values to climate variables (α and GDD0),

to avoid spurious bivariate relationships that can arise when

(as here) the predictor variables are not perfectly indepen-

dent and to allow the inclusion of qualitative variables (PFTs)

as predictors in some analyses. The unit of analysis was the

species-site combination, i.e. a species sampled at a site. All

trait measurements were transformed to natural logarithms

(ln) to reduce skewness and linearise their relationships to the

climate variables. This transformation has the property that

regression coefficients represent fractional changes, which

can be compared among traits measured in different units.

The coefficients are expressed per unit of α (in other words,
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the change in ln trait value across the global range of α from

0 to 1) and per 104 GDD0 (equivalent to the change in ln trait

value across the global range from 0 to around 104 GDD0),

so that their values are broadly comparable in magnitude be-

tween climate variables as well as between traits.

We carried out three GLM analyses for each trait: (1) With

climate variables (α and GDD0) only as predictors, equiv-

alent to ordinary least-squares multiple regression; (2) with

climate variables and PFTs as predictors; (3) with PFTs and

PFT-climate interactions as predictors. Analysis (1) measures

the partial effect of each climate variable on the observed

trait values. Analysis (2) measures the average partial effect

of each climate variable on trait values within PFTs, allow-

ing that the PFTs might have consistently lower or higher

trait values. Analysis (3) estimates the partial effect of each

climate variable on trait values within each PFT (the PFT-

climate interaction). These three analyses are needed to an-

swer the following questions in sequence: (1) What is the

overall (community-level) response of trait values to climate?

(2) To what extent is this response caused by similar trait

variations within each PFT, vs. shifts in the occurrence and

abundance of PFTs with innately different trait values? (3)

Do trait values of some PFTs respond to climate differently

from others?

A significance criterion of P < 0.01 was adopted for all

regression coefficients in all three analyses. This is strin-

gent enough to minimise the chance of “false positives” in

analyses (2) and (3). In the description of Results, “signif-

icant” always implies P < 0.01 or better. Significant differ-

ences between trait values for different PFTs (assessed at a

common environmental value) were inferred from significant

coefficients for the relevant factors (PFTs) in analysis (2),

while significant differences between the trait-environment

slopes for different PFTs were inferred from significant PFT-

environment interactions in analysis (3). All GLM results are

presented as partial residual plots, using the visreg package in

R. Partial residual plots are the multiple-regression analogue

of simple x-y plots in ordinary regression. In plots showing

the relationship of each trait to α, the y axis values of the data

points are adjusted so as to remove the fitted effect of GDD0.

Similarly, in plots showing the relationship of each trait to

GDD0, the y axis values of the data points are adjusted so as

to remove the fitted effect of α.

2.7 Multivariate analysis and variance partitioning

As a complement to single-trait analyses, we performed re-

dundancy analysis (the constrained equivalent of PCA: ter

Braak and Prentice 1988) with variance partitioning (Legen-

dre, 2008), to quantify the unique and combined contribu-

tions of climate and PFT identity to the total variation in all

traits. This analysis was performed with the CANOCO pack-

age (Leps and Smilauer, 2003), based on the sites for which

all traits were measured.

3 Results

3.1 Climate gradients

More than 80 % of the geographic variation in the climate of

our sampling sites can be summarised by variation on two

principal axes (Table 1). Each principal axis is defined as a

linear combination of variables, and each variable is assigned

a “loading” which represents the contribution of that variable

to the combination. The first principal axis explains 60 % of

total variation and is primarily related to temperature. MAT,

GDD0, MTCO, MAP, MI, PDJF and PJJA have the largest pos-

itive loadings. The positive loadings for precipitation vari-

ables reflects the general tendency for absolute amounts of

precipitation to increase with temperature. The second axis

explains a further 25 % of total variation and is related to

moisture vs. aridity. MI, α, and PJJA have large positive load-

ings while PAR0 and MTWA have large negative loadings.

The similar behaviour of PAR0 and MTWA reflects an in-

creasing period without clouds, and thus also higher temper-

atures in summer, as moisture availability decreases. A third

axis relating to the seasonality of precipitation accounts for

only 9 % of total variation. A closely similar pattern emerged

from the analysis of climate data for the whole country (Ta-

ble S3). This similarity confirms that the pattern of varia-

tion in climate across the sites reflects the general pattern of

climate gradients across China, and that these gradients can

be summarised using two variables, representing temperature

and plant moisture availability respectively.

For all further analysis we used the variables GDD0 and

α. GDD0 was preferred to MAT as MAT values in climates

with a long, cold winter, as in northern China, show the in-

fluence of conditions unrelated to those prevailing at the time

of growth. The pattern of variation of GDD0 and α across

China is shown, with the site locations, in Fig. 1. Figure 1

also shows the frequency of different GDD0-α combinations

among grid cells in the whole country (grey scale), and the

site positions in this climate space. Significant regions of cli-

mate space not sampled correspond to low GDD0 at high α

(far northeast China) and low α (Tibetan plateau), and high

GDD0 at intermediate α (tropical climates in the extreme

south of China).

3.2 Distribution of PFTs in climate space

The PFTs in our data set show distinct patterns of distri-

bution in climate space (Fig. 2), falling broadly into four

groups. (1) Evergreen trees, evergreen shrubs and lianas

favour the warmest and wettest climates, corresponding to

the warm-temperate broad-leaved evergreen forests of south-

eastern China, with evergreen needle-leaved trees extending

into cooler climates in the north. (2) Deciduous trees and

deciduous shrubs favour cooler and drier climates, with op-

tima corresponding to the deciduous forests of central east-

ern China; although these PFTs have a wide tolerance and
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5344 T.-T. Meng et al.: Responses of leaf traits to climatic gradients

Table 1. Principal components of climate data based on the 80 sam-

pling sites. Each component (axis) represents a linear combination

of variables. Loadings for variables represent the contribution of

each variable to the axis. Values are shown in bold when their mag-

nitude > 0.5.

PC 1 PC 2 PC 3

MAT 0.870 −0.462 0.127

GDD0 0.865 −0.474 0.092

MTCO 0.946 −0.219 0.030

MTWA 0.572 −0.727 0.223

PAR0 0.642 −0.701 0.106

MAP 0.899 0.427 −0.014

α 0.603 0.753 0.106

MI 0.824 0.560 0.000

PDJF 0.917 0.200 −0.263

PJJA 0.747 0.599 0.238

Timing −0.833 −0.021 0.143

Seasonality −0.314 0.204 0.900

Variance explained 59.8 % 25.1 % 8.8 %

broadly overlap with groups (1) and (3). (3) Dwarf shrubs,

grasses, forbs and geophytes still favour cooler and drier cli-

mates, corresponding to the grasslands, steppes and desert

steppes of northern and northwestern China. (4) Ferns and

climbers are prominent only in cooler and wetter regions of

climate space; they occur more widely but not in any abun-

dance, and they were not sampled elsewhere.

3.3 Trait-climate relationships: moisture effects

Significant (P < 0.01) community-level responses to

growing-season moisture availability (α) were found for

most traits (Fig. 3, Table 2). Dry climates generally favour

small, thick, dense leaves (low LA, low SLA, high LDMC).

Dry climates are also associated with slightly, or sometimes

greatly, reduced potential and actual quantum yield. The

steepest overall relationships to α are for LA (5.8), SLA

(1.6), and Narea and Karea (−1.1) and Pmass (0.7; Table 2:

values in parentheses are slopes of ln trait-values vs. α).

The response of Nmass to α is slight (0.25) compared to the

response of Narea.

Inclusion of PFTs as predictors (Fig. S1) shows that there

are some significant (P < 0.01) differences among PFTs in

the typical trait values found at any given α. This is most ob-

vious for biophysical traits – LA, SLA and LDMC – and

area-based nutrients. Needle-leaved evergreen trees stand

out, having small, thick leaves, and high area-based nutri-

ent contents, relative to other PFTs. The magnitudes of the

regression coefficients against α for the different traits in this

analysis are similar to those in Fig. 3, but now Parea (in com-

mon with the other area-based nutrients) shows a significant

(P < 0.01) negative effect of α. This relationship within PFTs

is obscured in Fig. 3 by the abundance of needle-leaved ever-

green trees, with their very low SLA and therefore high Parea

values, towards the wet end of the gradient.

Where significant (P < 0.01) trait-PFT interactions in the

response to α are found (Fig. S2), the responses are qual-

itatively (and usually, quantitatively) similar from one PFT

to another. Regression coefficients for LA versus α range

from 3.8 to 6.1, with deciduous shrubs and forbs showing

significantly steeper responses than the rest. Regression co-

efficients for SLA range from 1.3 to 2.5 with forbs show-

ing the steepest increases. Regression coefficients for LDMC

range from −0.35 to −1.5 with forbs showing the steepest

decreases. Different PFTs have significantly (P < 0.01) dif-

ferent responses of QY to moisture, with geophytes respond-

ing most and forbs least. Neither area- nor mass-based nutri-

ents show any significant differences in slopes among PFTs.

3.4 Trait-climate relationships: temperature effects

Significant (P < 0.01) overall responses to growing-season

warmth (GDD0) were also found for most traits (Fig. 4, Ta-

ble 2). Warm climates favour thick and dense leaves (low

SLA and high LDMC). Warmer climates also show some-

what reduced potential and actual quantum yield. The steep-

est overall relationship of any trait to GDD0 is for SLA

(−1.5; Table 2: numbers in parentheses are slopes of ln trait

values against GDD/104). Relatively steep slopes are also

shown for Nmass (−1.1), Parea (1.4) and Kmass (−1.1).

Including PFTs as predictors shows some significant

(P < 0.01) differences among PFTs at any GDD0 value, sim-

ilar to those shown for α (Fig. S3). But the effects on the

regression coefficients for GDD0 are more profound. Most

importantly, the within-PFT responses of the three biophys-

ical traits – LA, SLA and LDMC – to temperature are non-

significant. Thus, the overall responses of SLA and LDMC

to GDD0 shown in Fig. 4 are brought about by PFT replace-

ment, including the dominance of broad-leaved evergreen

trees with low SLA and high LDMC at the warm end of

the gradient. Within PFTs, Narea and Karea both decline with

temperature, while Parea increases. The lack of a significant

relationship at the community level between Narea and Karea

and temperature is due to PFT replacement along the gradi-

ent – again, most obviously, the prevalence of broad-leaved

evergreen trees with high Narea and Karea at the warm end

of the gradient. Similarly, the steep overall declines in Nmass

and Kmass with GDD0 are mainly due to PFT replacement.

Relationships to GDD0 fitted separately within PFTs

(Fig. S4) showed fewer significant slopes, and less consis-

tency among PFTs, than the corresponding relationships to

α. Individually significant (P < 0.01) PFT responses of SLA

to GDD0 could be increasing or decreasing (–0.57 to +1.3).

Slopes of LDMC are negative (−1.6 to −3.0), with forbs

and grasses showing the steepest declines. Area- and mass-

based nutrients show few significant differences among PFTs

in their responses to either GDD0; however forbs show an

increase in Nmass and more steeply increasing Pmass with
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Figure 3. Partial residual plots for the relationships between leaf traits and the Cramer-Prentice moisture index (α), from the GLM analysis

summarised in Table 2. Each point denotes a species-site combination; PFTs are indicated by colours. Only significant regression slopes

(P < 0.01) are shown.

GDD0 compared to other PFTs, and evergreen needleleaf

trees show a steeper increase in Parea.

3.5 Climate, PFT and residual contributions to total

trait variance

Variance partitioning based on RDA (Table 3) quantifies the

total “predictable” fraction of variation for each trait (based

on climate and PFT identity), and the fractions uniquely at-

tributable to PFT identity or climate. The difference between

the sum of the unique fractions and the total predictable frac-

tion is the “common” fraction, which can be positive or neg-

ative and arises because of covariance between the two sets

of predictors (Legendre, 2008). The difference between the

predictable fraction and 100 % is the residual (unexplained)

fraction. Apart from Cmass (with low predictability) the pre-

dictable fractions of variation for the different traits ranged

between 15 % (SLA) and 49 % (LA). Both climate and PFT

identity had highly significant (P < 0.005, based on a permu-

tation test) unique effects on the ensemble of traits. Variation

in LDMC was overwhelmingly dominated by PFT effects

and for Kmass and Parea similar fractions of variation were at-

tributed to PFT and climate effects. For all other traits except

Cmass the contribution of climate was greater (and in several

cases, much greater) than the contribution of PFT identity.

4 Discussion

4.1 Adaptive significance of trait responses to moisture

availability

The observed continuous biophysical trait variations with

moisture availability are consistent with previous studies

(e.g. Reich et al., 1999; Fonseca et al., 2000; Niinemets,

2001; Wright and Westoby, 2002; Wright et al., 2003, 2005a,

b; Prentice et al., 2011) and, qualitatively, reasonably well

understood. The decrease in LA towards arid climates al-

lows leaves to avoid overheating in environments where soil

moisture supplies are inadequate for transpirational cooling

to be effective (Campbell and Norman, 1998). High photo-

synthetic capacity coupled with high CO2 drawdown, result-

ing in a low ratio of internal to ambient CO2 concentration

(ci : ca), is also adaptive in dry environments (Wright et al.,

2003; Prentice et al., 2014) because of the high transpira-

tional cost of keeping stomata open under conditions of high

atmospheric aridity (vapour pressure deficit). Increased pho-
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Figure 4. Partial residual plots for the relationships between leaf traits and growing degree days (GDD0), from the GLM analysis summarized

in Table 2. Each point denotes a species-site combination; PFTs are indicated by colours. Only significant regression slopes (P < 0.01) are

shown.

Table 2. Regression coefficients for the GLM with only α and GDD0 as predictors. Values in bold are significant at P < 0.01.

intercept α GDD0

slope ±sd error slope ±sd error slope ±sd error

ln LA 1.8167 0.1433 5.8373 0.2025 −0.3682 0.3413

ln SLA 2.3234 0.0434 1.5550 0.0588 −1.5061 0.0979

ln LDMC 5.7544 0.0347 −0.3542 0.0468 0.6490 0.0779

ln Fv /Fm −0.2400 0.0136 0.1168 0.0196 −0.4191 0.0250

ln QY −0.7823 0.0213 0.5820 0.0306 −0.1321 0.0391

ln Cmass 6.1961 0.0276 −0.0792 0.0424 −0.0831 0.0547

ln Nmass 3.1357 0.0419 0.2511 0.0605 −1.0920 0.1033

ln Pmass 0.1243 0.0476 0.6884 0.0733 0.4798 0.0944

ln Kmass 3.2124 0.0696 −0.1766 0.1072 −1.0956 0.1381

ln Narea 0.8419 0.0462 −1.1027 0.0670 0.0638 0.1142

ln Parea −2.4890 0.0676 −0.2141 0.1043 1.4426 0.1347

ln Karea 0.5975 0.0767 −1.0796 0.1185 −0.1282 0.1530

tosynthetic capacity requires an increase in Narea and a re-

duction in SLA. Low SLA of plants in arid environments

may also allow leaves to avoid transient overheating when

wind speeds fall (Leigh et al., 2012). The increase in LDMC

with aridity is a key adaptation that allows leaves to maintain

hydration even at low water potentials that may arise under

drought conditions (Bartlett et al., 2012).

The reduction in QY with aridity points to drought-

induced photoinhibition at the arid end of the gradient. Dry

climates are characterized by high Narea, consistent with a

high photosynthetic capacity (compensating for low ci : ca)

as mentioned above. High Karea in dry climates is consistent

with the role of K in maintaining leaf function under water-

limited conditions (Sardans and Peñuelas, 2015; Lloyd et al.,
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Table 3. Variation (%) in traits accounted for by climate (α and

GDD0) and PFTs together, and the unique contributions (%) of cli-

mate and PFTs, based on the first two axes of a redundancy analysis

for the sites with data for all traits.

climate climate PFTs

and PFTs

ln LA 48.7 23.1 6.4

ln SLA 15.0 12.7 5.8

ln LDMC 25.9 3.9 24.8

ln Fv /Fm 27.7 20.8 1.4

ln QY 36.6 12.4 5.0

ln Cmass 3.5 0.6 0.8

ln Nmass 29.8 16.4 3.8

ln Pmass 29.8 7.3 2.9

ln Kmass 20.7 5.3 5.4

ln Narea 36.3 27.0 8.9

ln Parea 23.2 6.7 8.1

ln Karea 18.6 8.1 3.4

All 40.1 33.6 21.1

2015). The regulation of leaf P is less well understood, but

the trend towards higher Parea in dry climates is consistent

with a relatively conservative N : P ratio within PFTs. Re-

duced mass-based N and P in arid climates are consistent

with the increased allocation of carbon to leaf structural com-

ponents in leaves with low SLA.

4.2 Adaptive significance of trait responses to

growing-season warmth

The observed tendency towards lower community-level SLA

with increasing temperature may be linked to the well-known

relationship between SLA and leaf longevity (Wright et al.,

2004; Poorter et al., 2009). However, temperature-related

trends in SLA within PFTs are mostly non-significant. The

overall trend to lower SLA with increasing temperature is

mainly driven by the shift from deciduous to evergreen

PFTs, which is to be expected given the clear advantage

for evergreens in a subtropical climate that favours year-

round photosynthesis and growth. Leaves also become more

dense (higher LDMC) towards the warm end of the gradi-

ent, but within PFTs, the only significant responses are for

leaves to become less dense with increasing temperature. The

community-level response of LDMC is thus driven by PFT

replacement, with evergreen broad leaves characterized by

high LDMC.

Both potential and actual rates of electron transport in

woody plants are reduced at the warm end of the temperature

gradient. The effect is seen in both deciduous and evergreen

woody plants and is likely caused by heat stress resulting in

a reduced efficiency of Photosystem II. The decrease in the

potential rate implies that electrons are being diverted to pro-

tective mechanisms. The decrease in Fv /Fm is steeper than

the decrease in QY.

The decline of both Narea and Nmass with temperature

(after PFT differences have been considered) is consistent

with the declining N requirement to achieve a given catalytic

activity of photosynthetic proteins as temperature increases

(Reich and Oleksyn, 2004). The reasons for declining Karea

and Kmass with temperature are unclear; possibly low tem-

peratures in winter, towards the cold end of the gradient, cre-

ate a K requirement similar to that caused by drought. The

observed increases in both Parea and Pmass with temperature

are opposite to the general tendency of leaf N to increase

allometrically with leaf P (e.g. Reich et al., 2010). These

trends might reflect an increase in non-photosynthetic elec-

tron transport processes that require a large supply of inor-

ganic phosphate.

4.3 Trait variation within and between PFTs

Our results add to the growing evidence for extensive trait

variability that is not accounted for by PFT differences. Us-

ing the global TRY data base, Kattge et al. (2011) found

that the largest part of the total variance (as much as 75 %)

for several traits (including Narea and SLA) was found

within rather than between PFTs. Similar observations have

been made by van Bodegom et al. (2012) and Wullschleger

et al. (2014), while Groenendijk (2011) found that PFTs

were not useful predictors of community-level photosyn-

thetic traits. Kattge et al. (2011) also showed (in agreement

with our results) that this partitioning varies considerably

among traits – with some traits predicted well by PFT iden-

tity. Our results extend these previous studies in that they

analyse climatically related trait variation. We show contrasts

in the responses of different traits to climate, and in their re-

sponses to different aspects of climate. In most cases, nutri-

ent traits showed similar responses to climate within PFTs

to those shown at the community level; no significant dif-

ferences were found between the responses within different

PFTs, consistent with Zhang et al.’s (2012) findings for mul-

tiple element concentrations at the species level.

Variations of biophysical traits with respect to moisture

availability are also similar within PFTs and at the com-

munity level. However, these same traits show patterns of

response to temperature that are dominated by differences

among PFTs. The differential responses of leaf N and P con-

tents to moisture availability and temperature require further

investigation. Note also that we have not examined trait re-

lationships to soil conditions, especially measures of fertility

status, which have been shown to be important in determin-

ing photosynthetic and other leaf traits (Ordoñez et al., 2009;

Maire et al., 2015). It would be particularly interesting to as-

sess the degree to which leaf chemistry is influenced by nutri-

ent supplies, as opposed to internal stoichiometric regulation.

Results presented here suggest that the latter process does at

least play an important role, for all three nutrients measured.
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Figure 5. Illustrative plots showing means and standard deviations of trait values within PFTs for ln Narea combined with lnLDMC, ln Parea

and lnSLA.

4.4 Implications for modelling

It is reasonable to expect that the performance of vegetation

models would be improved by representing the values of phe-

notypically or genotypically plastic traits as state variables,

rather than parameters (Prentice et al., 2007). This “adaptive”

approach has been adopted explicitly in some recently devel-

oped models, e.g. Schymanski et al. (2009) and Scheiter et

al. (2013). In the LPJ family of models descended from Sitch

et al. (2003), leaf-level photosynthetic capacity (Vcmax) is al-

lowed to vary adaptively within PFTs, based on an optimality

hypothesis that predicts realistic responses of Narea to light,

temperature and CO2 (Dewar, 1996; Haxeltine and Prentice,

1996). Most of the LPJ-family models have treated SLA as a

PFT-specific parameter and thus do not allow for covariation

of SLA with Narea, as has been demonstrated to occur, here

and in other contexts (e.g. Lloyd et al., 2010; Prentice et al.,

2011). This deficiency has recently been corrected in an LPJ

version by Sakschewski et al. (2015). But the adaptive ap-

proach embedded in LPJ is unusual among “first-generation”

DGVMs, which generally treat leaf traits as fixed PFT prop-

erties.

Our findings also indicate that not all trait-environment re-

lationships are “universal”. The distinctions between woody

and herbaceous, deciduous and evergreen, and angiosperm

and gymnosperm plants systematically influence the values

of key biophysical traits in ways that would not be pre-

dictable from assumed universal relationships. Moreover cer-

tain observed overall responses of trait values to climate, in-

cluding the decline in SLA and increase of LDMC with in-

creasing temperature in our study, appear to be driven prin-

cipally by PFT replacement rather than by adaptive varia-

tion within PFTs. Nonetheless, the prevalence of continu-

ous, consistent trait variation within and between PFTs for

many traits and trait-environment relationships supports the

conclusion that models should avoid prescribing fixed, PFT-

specific values for most quantitative traits (e.g. Wright et al.,

2005a). This conclusion is reinforced by examining distribu-

tions of PFTs in spaces defined by pairs of traits (Fig. 5).

PFTs show considerable overlap in “trait space”, even for

traits such as LDMC where climate has little direct influence.

An additional argument against the imposition of fixed trait

values for PFTs is that PFT identity itself can be environ-

mentally plastic; for example, there are species capable of

behaving as trees or shrubs depending on growth conditions.

Fixed, PFT-specific values in models could be replaced by

adaptive functions of environmental variables: thus reduc-

ing the multiplicity of uncertain parameters, while simulta-

neously increasing the realism of next-generation DGVMs

(Prentice et al., 2015). To do so, however, requires that

these functions be well specified and robust. Although

some progress has been made in developing trait-based

models based on statistical trait-environment relationships,

process-based model development requires these responses

to be quantitatively predictable, based on explicit hypotheses

about the adaptive significance of traits.

Practical considerations, including the problem of access

with equipment at some of the forest reserve sites, pre-

vented us from including measurements of photosynthetic

rates in this trait data set. Chlorophyll fluorescence mea-

surements give different information from CO2 fixation mea-

surements. Although Narea has often been found to be corre-

lated with carboxylation capacity (Vcmax), a key quantity for

DGVMs, the correlation is far from perfect because of the

large and variable structural component of leaf N (Niinemets

and Tenhunen, 1997) and other significant components unre-

lated to photosynthesis, including nucleic acids and defence

compounds. However, there are encouraging indications that

Vcmax too may be broadly predictable as a function of envi-

ronmental variables (Ali et al., 2015; Fisher et al., 2015). The

theory behind the adaptive representation of photosynthetic

capacity in the LPJ family of models (Haxeltine and Pren-

tice, 1996) makes predictions about the relationship between
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Vcmax and environment, which could be tested given a suf-

ficiently wide-ranging set of measurements. Quantifying the

predictability of key photosynthetic parameters will thus also

be important for developing next-generation DGVMs, and is

a high priority for our future research.

Finally we note that within-site variation in traits is large,

indeed it is generally as large or larger than the component

that can be predicted from site characteristics; consistent with

our finding that at least half of the total measured variation

in each trait is related neither to PFT identity nor to climate

(Table 3). This is an important caveat for modelling because

it implies that unless such variation is allowed for, models

will underestimate the ability of locally available species,

by shifting abundance, to facilitate community-level adap-

tation to environmental change. In effect, current DGVMs

largely ignore the potential stabilising effects of biodiver-

sity on ecosystem function. Taking account of biodiversity

in a more realistic way should be possible within a quantita-

tive trait framework by analysing the extent of trait plasticity

within species (e.g. Ackerly and Cornwell, 2007). We sug-

gest this as an important research topic, which could capi-

talise on the growing body of quantitative plant trait data sets

based on comprehensive floristic sampling in different envi-

ronments.

The Supplement related to this article is available online

at doi:10.5194/bg-12-5339-2015-supplement.
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