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Abstract. Insights into oceanographic environmental con-

ditions such as paleoproductivity, deep-water temperatures,

salinity, ice volumes, and nutrient cycling have all been ob-

tained from geochemical analyses of biomineralized car-

bonate of marine organisms. However, we cannot fully un-

derstand geochemical proxy incorporation and the fidelity

of such in species until we better understand fundamen-

tal aspects of their ecology such as where and when these

(micro)organisms calcify. Here, we present an innovative

method using osmotic pumps and the fluorescent marker cal-

cein to help identify where and when calcareous meiofauna

calcify in situ. Method development initially involved juve-

nile quahogs (Mercenaria mercenaria); subsequent method

refinement involved a neritic benthic foraminiferal commu-

nity. Future applications of this method will allow determin-

ing the in situ growth rate in calcareous organisms and pro-

vide insights about microhabitats where paleoceanographi-

cally relevant benthic foraminifera actually calcify.

1 Introduction

Biomineralized carbonate of marine organisms such as

foraminifera, coccolithophores, and ostracods has provided

an abundance of geochemical data critical to our understand-

ing of modern-day oceanographic conditions and processes

as well as critical to reconstructions of paleoceanographic

conditions and processes. While geochemical proxies of

planktic and benthic foraminiferal tests (shells) have yielded

copious insights to past sea-surface temperatures, salinity,

ice volumes, deep-water temperatures, oceanic circulation

patterns, nutrient cycling and paleoproductivity (Katz et al.,

2010; Allen and Hönisch, 2012), in the vast majority of cases,

initial proxy calibration was developed from core-top sam-

pling and field calibrations. Culturing studies have also con-

tributed greatly to our understanding of the mechanisms con-

trolling these geochemical processes during biomineraliza-

tion. While we have gained much knowledge on these topics

(reviewed by Katz et al., 2010), there remain some signifi-

cant issues regarding fundamental and emerging proxies. In

brief, a variety of factors complicate proxy interpretations;

the most common ones in this context include “microhabitat

preferences”, “vital effects”, and rapid changes in carbon-

ate chemistry occurring in the uppermost sediment column.

Microhabitats refer to the micron- or millimeter-scale dis-

tribution of foraminifera with respect to the sediment–water

interface, some other physical structure (e.g., worm tube),

or chemocline. Vital effects, which can include ontogenetic

differences (Filipsson et al., 2010; McCorkle et al., 2008),

are physiological processes that impact test geochemistry, al-
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though some researchers include environmental processes in

the definition of “vital effects” (de Nooijer et al., 2014).

In particular, changes in environmental parameters occur-

ring in the uppermost part of the sediment might affect proxy

reconstruction and it is crucial to obtain an increased under-

standing of where in the sediment biomineralization occurs.

For example, one of the most often used temperature prox-

ies, foraminiferal Mg /Ca, relies on temperature but is also

influenced by carbonate ion concentration (Elderfield et al.,

2006; Healey et al., 2008; Raitzsch et al., 2008; Rosenthal

et al., 2006) and pH (e.g., Russell et al., 2004), which vary

significantly with sediment depth. Stable isotopes of oxygen

and carbon (δ18O and δ13C) also are impacted by the carbon-

ate ion effect (Spero et al., 1997; McCorkle et al., 2008; Lea

et al., 1999; Bijma et al., 1999). With increasing sediment

depth, pore water becomes increasingly depleted in δ13C due

to a steep gradient in pore-water dissolved inorganic carbon

(DIC) because of organic carbon remineralization. This same

process is simultaneously lowering the carbonate ion concen-

tration. Thus, for benthic foraminifera, determining where

within (or on) the sediments they calcify is very important

for determining the fidelity of their test chemistry and the

resulting proxy relationships, as well for improving the pre-

cision of proxy reconstructions.

Although we know much about where many benthic

foraminifera live in sediments (e.g., infaunal vs. epifau-

nal; Jorissen et al., 1995; Corliss, 1985) on the centime-

ter scale, the true depth habitats and calcification microhab-

itats of benthic foraminifera that are used in paleoceano-

graphic reconstructions are not known. Indeed, as discussed

by McCorkle et al. (1990), abundance peaks of rose-bengal-

stained foraminifera are typically several centimeters thick

yet these authors showed species’ δ13C ranges of 1–2 ‰,

which may suggest calcification in a narrower depth hori-

zon. While it is possible that foraminiferal species calcify at

the sediment–water interface or a particular sediment hori-

zon, thereby incorporating only the DIC from bottom wa-

ters or the horizon’s pore waters, subsequent migration into

more oxygen-depleted zones characterized by extremely low

δ13C values hypothetically results in an apparent disequilib-

rium between ambient conditions and foraminiferal calcitic

tests (McCorkle et al., 1990; Stott et al., 2002). Such activ-

ity would explain at least in part the disequilibrium observed

in down-core studies (e.g., McCorkle et al., 1990). In real-

ity, while benthic foraminiferal calcification horizons are in-

ferred from distribution studies (e.g., Stott et al., 2002), the

actual depth of calcification or the related geochemistry is not

known, especially for paleoceanographically relevant species

such as, for example, Cibicides spp., Uvigerina spp., and Ori-

dorsalis umbonatus. Furthermore, distribution patterns may

not be reliable given that the classically employed method

to distinguish live from dead foraminifera, rose bengal stain,

has been shown to undoubtedly also stain foraminiferal car-

casses (i.e., dead foraminifera; Bernhard et al., 2010). The

requirements for monospecific (single species’) analyses as

well analyzing specimens within a well-defined size range

to avoid biases caused by vital effects or microhabitat ef-

fects can minimize geochemical proxy uncertainty (Ravelo

and Hillaire-Marcel, 2007; Katz et al., 2010), but at this time

it is not established that all conspecifics calcify in the same

microhabitats and/ or depth horizons or that vital and onto-

genetic effects are consistent among an entire population of

a given species.

To resolve some of these unknowns, we developed a

method that will assist in documenting the timing and lo-

cation of calcification in sediments for calcareous benthic

meiofauna. The method employs commercially available os-

motic pumps to deliver calcein, which is a fluorescent com-

pound that binds to calcium in biomineralized structures as

it is precipitated (e.g., Medeiros-Bergen and Ebert, 1995;

Monaghan, 1993; Moran, 2000; Collin and Voltzow, 1998;

Hernaman et al., 2000). Using full immersion incubations,

calcein has been used to mark bivalves (e.g., Kaehler and

McQuaid, 1999; Moran and Marko, 2005; van der Geest et

al., 2011) and in laboratory studies regarding foraminiferal

calcification (Bernhard et al., 2004; Denoyelle et al., 2012;

Dissard et al., 2009; Filipsson et al., 2010; Kurtarkar et al.,

2015; Nardelli et al., 2014). In this contribution, we describe

a novel point-source calcein dispensation method and show

proof of concept for quahog (hard clam) bivalves and benthic

foraminifera.

2 Materials and methods

2.1 Osmotic pumps and calcein

The means used to dispense the calcein are ALZET® os-

motic pumps (Fig. 1a; DURECT Corporation, Cupertino,

CA, USA). Osmotic pumps are devices designed to deliver

pharmaceuticals to animals; as originally intended, they are

installed under the skin of an animal. Different osmotic

pump models allow for different delivery rates and dura-

tions. We used model 2ML2 or 2ML4, each with a reser-

voir of 2 mL. The 2ML2 was designed to dispense (in mam-

mals) at a rate of 5 L h−1 for 14 days; the 2ML4 at a rate

of 2.5 L h−1 for 28 days. Dispensation rate depends on the

model, as noted, but also on osmolality and temperature of

the environment. A calculator to determine flow rate un-

der specific relevant conditions conveniently exists on the

ALZET web page: http://www.alzet.com/products/guide_to_

use/pump_selection.html. In our quahog incubations, we ex-

pected each 2ML2 to dispense for about 2 months and in

the foraminifera incubations for about 4 months. Because in-

cubations were performed in seawater, to avoid corrosion,

we replaced the stainless steel tubing that is standard in the

ALZET osmotic pumps with PEEK (polyetheretherketone)

tubing.

The osmotic pumps were filled with a concentrated solu-

tion of calcein (100 mg L−1; Fig. 1a). A thin wooden rod was
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Figure 1. (a) ALZET® 2ML4 osmotic pump filled with concentrated calcein. The visible calcein at the top is emanating from the pump’s

port. (b) Schematic of sediment core and overlying water with osmotic pump in place (left) and of two sediment collection approaches: one

for the top 1 cm layer, using 3 mL syringe cores (right, top); the other for underlying layers, using concentric rings (right, bottom). Yellow

ovoid is the theoretical dispensation of calcein from the osmotic pump emplaced port up in core. (c) Image showing concentric rings in place

prior to section slicing. Core is 10 cm in diameter.

secured to each osmotic pump via elastic bands to allow em-

placement of the pump into the sediments as desired. The

dispensation hole, heretofore referred to as the “port”, could

be placed facing downward or upward, depending on the re-

search objective. To avoid clogging of the port, for down-

ward pointing osmotic pumps, a thin plastic film (conven-

tional kitchen plastic wrap) was loosely wrapped over the

dispensation end during pump emplacement into sediments.

After the pump was located within sediments as desired, the

thin film was removed by gently pulling one edge vertically

so as to minimize disturbance to the sediments. Upward fac-

ing osmotic pumps did not require such protection during

emplacement.

Visual inspection of an osmopump does not allow for con-

fident assessment of contents. To check if an osmopump con-

tinues to dispense calcein, it can be placed overnight, for ex-

ample, in a clean beaker of seawater. The next day, an aliquot

of the seawater can be analyzed with a spectrophotometer.

We did such tests early in our investigations to establish ac-

curacy of our calculated estimated dispensation times; results

indicated our calculations were adequate (i.e., at our temper-

ature and salinity, the pumps lasted as expected).

2.2 Bivalve incubations

Our initial incubations employed juvenile bivalves (quahogs

and surf clams; initially ∼ 5 mm and 1 cm in length, respec-

tively), starting in December 2012. Intertidal sediments that

were collected from a local salt pond were divided into four

containers so that each had a sediment layer of ∼ 10 cm of

sediment. Bivalves were seeded into the sediments at a den-

sity of about 1 bivalve per square centimeter. Both species

(Mercenaria mercenaria, Spisula solidissima similis) are sur-

face dwelling or shallow-infaunal taxa. One calcein-filled os-

motic pump was placed into each container so that the port

was located in the container center, just below the sediment–

water interface so that the calcein would emanate near the

sediment–water interface.

These containers were initially maintained at 7 ◦C. Dur-

ing that time, containers were installed in a recirculating sea-

water system containing ∼ 10 L. Two containers were in-

stalled in each circuit. Salinity was monitored weekly with

a refractometer and adjusted to 35 as needed. After the first

∼ 3 weeks, in order to increase bivalve calcification rate, the

containers were thereafter maintained at room temperature

(21 ◦C). Due to logistic reasons, circulating the containers at

21 ◦C was not possible so each container was aerated with an

aquarium bubbler. During this time, salinity was monitored

and new seawater was added approximately every 2 weeks.

Throughout the incubations, living algal food (Dunaliella

tertiolecta, Isochrysis galbana) was provided to each con-

tainer every week (Hintz et al., 2004). The algae were con-

centrated via gentle centrifugation and ∼ 40–50 mL was

introduced into each container, so as not to disturb the

sediment–water interface, each week.

Every 2–3 weeks whole specimens (live) were removed

from containers noting their location with respect to the os-

motic pump. Specimens were typically burrowed into the top

centimeter. Each bivalve was examined with epifluorescence

microscopy (see below) to determine if they had incorporated

the fluorescent marker calcein. After examination, each in-

dividual was placed back in the sediment near its original

location. After ∼ 2 months (i.e., the approximate end of cal-

cein dispensation), the osmotic pumps were removed from

the sediments and the quahogs were allowed to grow for an-

other ∼ 2 weeks. Then, the quahogs were removed from the

sediments and preserved in 70 % ethanol.
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2.3 Foraminiferan incubations

Sediment cores containing benthic foraminifera were col-

lected in May 2013 on a 3-day RV Endeavor cruise. Ma-

terial was collected from a site south of Martha’s Vine-

yard. This site, the Mud Patch, is on the broad continen-

tal shelf (40◦30′ N, 70◦45′W), at a depth of approximately

75 m (Bothner et al., 1981). The site is well known as be-

ing a sediment-focus area, causing sediments to be muddy.

Sediments were collected with an Ocean Instruments MC800

multicorer. The top 14–18 cm of designated multicores was

extruded into 40 cm long core liners of identical internal

diameter (i.e., 10 cm). Bottom waters from the collection

site, which were collected in Niskin bottles attached to

a CTD (conductivity, temperature, depth)-rosette sampler,

were carefully introduced into each core liner to produce

a seawater header of ∼ 20 cm. These introductions did not

visibly disturb the sediment–water interface of any core.

Cores were maintained near in situ temperature (8–10 ◦C)

and brought back to our shore-based cold room (7 ◦C).

As with the bivalve incubations, one calcein-filled osmotic

pump was placed into each core so that the dispensation

port was located in the core center. In most cases, the port

was placed just below the sediment–water interface. In other

cases, the port was placed deep (4 cm) below the sediment–

water interface. The cores were maintained at 7 ◦C. Due to

logistic reasons, circulating the cores with seawater was not

possible so each core was aerated with an aquarium bubbler.

Salinity was monitored with a refractometer weekly and ad-

justed to 35 as required. Throughout the foraminiferan incu-

bations, living algal food (Dunaliella tertiolecta, Isochrysis

galbana) was provided to each core every week, as noted

above for bivalves.

After∼ 4 months, each osmotic pump was gently removed

and each core was subsampled as follows. All overlying wa-

ter was carefully removed. A plastic ring identical in diame-

ter to the core barrel was placed atop the barrel and the core

barrel was gently lowered 1 cm so that 1 cm of the core ex-

tended into the ring. A thin stainless steel plate was then

passed between the core barrel and ring to isolate the sur-

face centimeter. Our goal was to obtain samples at horizon-

tally and vertically discreet distances from the osmotic pump

port. Because surface sediments had high water content, the

first core sectioned was subsampled by taking 8 mm diam-

eter syringe cores along four radii in the surface centime-

ter (Fig. 1b). The remaining 0–1 cm sediments were retained

separately.

All subsequent subsampling of 1 cm intervals was config-

ured in concentric rings (Fig. 1b, c). Thus, the next 1 cm in-

terval was extruded into the large diameter ring, three thin-

walled plastic rings were concentrically placed into the core

∼ 1 cm, the thin stainless steel plate was used to slice the

core horizontally while the concentric rings were held in

place, and the sediments delimited between concentric rings

were placed into plastic bottles and properly labeled (as cen-

ter, inner, outer or rim) along with depth interval below the

sediment–water interface. The 1–2, 2–3, 3–4, and 4–5-cm

intervals of each core were subsampled using this concen-

tric ring approach. All sediment samples were preserved in

70 % ethanol. Each sediment sample was sieved with artifi-

cial seawater over a 63 µm screen and the > 63 µm fraction

microscopically examined.

2.4 Microscopy

Epifluorescence microscopy (480 nm excitation; long pass

518 nm emission) was used to assess calcein incorporation.

Preserved materials were examined with a Leica FLIII stere-

omicroscope equipped with epifluorescence capabilities and

an Olympus DMP70 digital camera. Whole quahogs and

whole foraminifera, obtained from the > 63 µm fraction of

sieved sediment aliquots, were examined.

Once imaged at low magnification, select quahog shells

were cut with an Isomet slow-speed rock saw (0.4 mm thick

blade) to obtain valve cross sections. These valve cross sec-

tions had to be polished with fine grit wet/dry sandpaper to

obtain a smooth surface. To remove organics, shells were

exposed to 3 % sodium hypochlorite for 20 min. After rins-

ing and drying, these were examined and imaged with the

epifluorescence-equipped Leica FLIII stereo-dissecting mi-

croscope and DMP digital camera and/or with an Olympus

Fluoview confocal laser scanning microscope (CLSM).

3 Results and discussion

3.1 Proof of concept

The surf clams only survived 1–3 weeks in the cores, but

the quahogs remained active and grew, evidenced by the ob-

servations that many (∼ 25 %) of the quahogs had portions of

their shell that were fluorescent (Fig. 2). The observation that

the umbo and other oldest parts of each quahog valve were

not fluorescent is consistent with the fact that we seeded the

cores with juveniles that were ∼ 0.5 cm in length. Keeping

in mind that bivalves add material to their valves in increas-

ingly larger concentric annuli, somewhat akin to tree rings,

it was noted that the fluorescence appeared as bands, where

some portions fluoresced and others did not. Incorporation of

calcein into newly precipitated carbonate was confirmed by

CLSM of bleached valves (Fig. 2g).

Because the system used during bivalve incubations was

recirculating or lacking flow, it is important to consider the

maximum concentration of calcein possible if all contents

of the osmotic pump were dispensed into the seawater. We

calculate that, at most, the recirculating seawater would have

had 0.02 mg L−1 calcein. For mollusc studies, typically a cal-

cein concentration equaling or exceeding 80 mg L−1 is used

to label calcite (e.g., Kaehler and McQuaid, 1999; Klun-

zinger et al., 2014). Thus, the maximum possible calcein con-

centration in recirculating seawater during the first 3 weeks

Biogeosciences, 12, 5515–5522, 2015 www.biogeosciences.net/12/5515/2015/



J. M. Bernhard et al.: Technical note: Towards resolving in situ, centimeter-scale calcification 5519

Figure 2. Paired micrographs of quahogs after calcein osmotic

pump incubations. Reflected (a, c, e) and epifluorescence (b, d, f)

images of quahogs after short bleach and air drying (e was not com-

pletely dry). Note calcein banding in valves. In (f) calcein extends to

the edge of the valve because this specimen died during the experi-

ment. (g) CLSM micrograph showing cross section of specimen e, f

valve after thorough bleaching. Scales: a, c, e= 2 mm; g= 200 µm.

of bivalve incubations was far below the level required to

fluorescently label calcite. Of course if the bivalves were

near the concentrated source of calcein (i.e., pump port,

100 mg L−1 calcein), then we predict the new calcite would

be fluorescent, as observed.

In the static (but aerated) setup, the maximum concen-

tration of calcein possible if all contents of the osmotic

pump were dispensed into the seawater was 0.2 mg L−1,

which again is far below the minimum mollusc threshold of

80 mg L−1. There are two more lines of evidence that further

support the inference that the lack of constant water replace-

ment did not cause artifactual calcein labeling in the bivalves.

(1) The seawater overlying the cores did not have strong flu-

orescence when viewed with the appropriate optics using the

stereo dissecting microscope (i.e., there was no significant

background signal). (2) Not all bivalves were labeled with

calcein. Some quahogs did not fluoresce in any part of their

valves, indicating they were sufficiently removed from the

point source throughout the incubation.

Some of the calcareous benthic foraminifera in the cores

exhibited bright fluorescence while others did not (Fig. 3a,

b). As established for the calcein labeling method, the non-

fluorescent calcareous specimens either did not calcify dur-

ing the incubation (Bernhard et al., 2004) or were too far

from the osmotic pump port to incorporate calcein. Some of

the calcareous foraminiferal tests fully fluoresced (Fig. 3a–

d), while others had only one or two brightly fluorescent

chambers (Fig. 3e, f). It is possible that the fully fluores-

cent specimens were the result of reproduction during the

experiment (Filipsson et al., 2010; Hintz et al., 2004). In con-

trast to brightly fluorescent rotalids, entire tests of miliolid

(porcelaneous) calcareous foraminifera fluoresced dimly; no

agglutinated foraminifera fluoresced (not shown). It is known

that at least some miliolids fluoresce after incubation in cal-

cein, even without calcification (Bernhard et al., 2004). It

is also established that when rotalid (hyaline) calcareous

foraminifera add new chambers, a thin veneer of calcite is

precipitated over existing chambers (Erez, 2003; Nehrke et

al., 2013). Such a growth habit explains the differential flu-

orescence patterns in some foraminiferal specimens, where

1–2 chambers are brightly fluorescent and the remainder of

the test has less intense fluorescence (Fig. 3f).

As noted for the non-recirculating bivalve incubations,

we do not believe the calcein concentration of the overly-

ing seawater would exceed the minimum labeling threshold

in the foraminiferal incubations even if the entire osmotic

pump contents were released. For foraminiferal calcite la-

beling, a calcein concentration of 10 mg L−1 has been typ-

ically used previously (Bernhard et al., 2004; Denoyelle et

al., 2012; Nardelli et al., 2014; Filipsson et al., 2010) al-

though concentrations as low as 5 mg L−1 reportedly also la-

beled foraminiferal calcite (Dissard et al., 2009; Kurtarkar

et al., 2015). The maximum possible calcein concentration

in overlying waters of our foraminiferal incubations was

less than 1 mg L−1. As for bivalves, if growing calcareous

foraminifera were near the concentrated source of calcein

(i.e., pump port, 100 mg L−1 calcein), then we predict new

calcite would be fluorescent, as observed.

Unfortunately, the calcein-labeled foraminiferal densities

were insufficient to determine the vertical and horizontal ex-

tent of calcein diffusion into our muddy sediments. Specif-

ically, calcein-labeled foraminifera were absent from all

small-volume radial subsamples of the 0–1 cm interval of

one core. Calcein-labeled foraminifera were found, however,

in the remaining bulk 0–1 cm interval of the first multicore.

Time and resource limitations prohibited full processing of

additional multicores; spot checks in those samples did not

yield convincing fluorescent foraminiferal calcite. A recently

finished master’s thesis project confirms the practical use of

the osmotic pumps using foraminiferal-laden fjord sediments

(Landgren, 2015).

www.biogeosciences.net/12/5515/2015/ Biogeosciences, 12, 5515–5522, 2015
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Figure 3. Paired micrographs of foraminifera after calcein osmotic

pump incubations. Reflected (a) and epifluorescence (b) images of

two Cribroelphidium sp. Note the specimen on the right fluo-

resces strongly in (b) (vs. left specimen showing no fluorescence).

Thus, the specimen on the right grew during calcein incubation and

the other did not grow or was too far removed from the osmotic

pump. Reflected (c) and epifluorescence (d) images of fully fluores-

cent small calcareous foraminifera, too small to speciate. Reflected

(e) and epifluorescence (f) images of fully fluorescent Cassidulina

sp. Note that the penultimate chamber fluoresces brightest, indicat-

ing its calcification during calcein incubation. The youngest cham-

ber was likely being precipitated at the time of sampling. Scales: b,

f= 100 µm; d= 50 µm.

3.2 Notes and caveats

In the course of our method development, a number of

lessons were learned. To assist future users of the method,

these topics are discussed. Orienting the osmotic pump port

downwards is problematic in fine-grained and/or low water-

content sediments because conditions likely impede calcein

dispensation or the diffusion is too localized to expose many

specimens to calcein. It is expected that sediments with high

water content (e.g., sediments with “fluff” layers) would not

impede dispensation as much as more compacted or consol-

idated sediments. Attempts to test the osmotic pump port at

4 cm depth did not result in any fluorescent specimens, but

we do not know if that was due to lack of calcification or

spatially limited calcein diffusion.

To document specifics regarding infaunal calcification

horizons, it will be critical to determine the extent of calcein

diffusion into sediments. The radius of calcein dispersion and

diffusion will vary with sediment grain size, sorting, water

content, compaction, hydrodynamics, and community com-

position (e.g., presence or absence and activity of bioturba-

tors). Diffusion coefficients can be measured directly in sedi-

ments (e.g., Krom and Berner, 1980) or they can be estimated

from the sediment’s formation resistivity factor, which can

be estimated from sediment porosity and other sedimentary

characteristics (e.g., Ullman and Aller, 1982). Initial verifi-

cation tests should be considered prior to initiating a lengthy

or complicated experiment.

Calculations based on expected dispensation rate, temper-

ature, and salinity can provide estimated duration of calcein

efflux. Osmotic pumps are single use; they will not dispense

if refilled. Per manufacturer’s instructions, osmotic pumps

will not perform well if handled without clean gloves.

The cytoplasm of at least one benthic foraminiferal

species autofluoresces using excitation and emission wave-

lengths similar to those for calcein (Apotheloz-Perret-Gentil

et al., 2013). The foraminiferal species known to autoflu-

oresce lacks a carbonate test, so it cannot be confused

with our calcein-labeling approach. If there are calcareous

foraminifera with similarly autofluorescent cytoplasm, dis-

tinguishing between cytoplasmic fluorescence (from viabil-

ity indicators reliant on similar excitation and emission wave-

lengths) and carbonate fluorescence is not difficult if one con-

siders the patterns and shapes of the signal (Nardelli et al.,

2014).

3.3 Potential applications

The calcein–osmotic pump method can be used without mod-

ification to assess growth rates and calcification locations

of juvenile and meiofaunal metazoans with calcareous hard

parts (e.g., gastropods, echinoids, ostracods). These units can

be deployed in shallow marine waters near shellfish fisheries

and in reef areas with sediment pockets. Determining rates

of calcification and locations where individuals grow are im-

portant to benthic ecology and ocean acidification studies.

As noted, our method will help to better understand

foraminiferal microhabitats. Such knowledge will help to

minimize uncertainty and increase precision in records of

paleoceanographic proxies preserved in foraminiferal tests.

For instance, recently the difference in the δ13C for epifaunal

Cibicides wuellerstorfi and for deep infaunal Globobulimina

spp. was used to reconstruct bottom-water oxygen concen-

tration (Hoogakker et al., 2015), an approach that could be

further improved by this method. Foraminiferal-based ecol-

ogy studies under shifting environmental conditions, such as
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varying water oxygen concentration (Nardelli et al., 2014) or

pH conditions would also benefit from our calcein–osmotic

pump method. Of course, our method should be considered

a first step given that most paleoceanographically relevant

foraminifera presumably are able to migrate within the sedi-

ment column. It is unknown, however, if benthic foraminifera

actually migrate vertically in situ and, if they do, where they

calcify. Regardless, additional refinements to the approach

will be required to prevent or minimize foraminiferal migra-

tion during and/or after calcification.

Our osmotic pump method can be further modified to de-

ploy these units in deep-sea sediments using a remotely oper-

ated vehicle (e.g., Jason) or a human occupied vehicle (e.g.,

Alvin). Further, calcein-filled osmotic pumps can be installed

in habitats that are spatially restricted, such as hydrocarbon

seeps or brine pools, where we have little growth data for any

sediment-dwelling species.

4 Conclusions

While calcein has been used in growth studies for a variety

of organisms, to our knowledge, calcein has not been used

as a point source to determine calcification in the environ-

ment. Most studies using calcein to determine growth rates

immerse entire specimens in the laboratory and then release

them into nature for later recapture. Our new calcein–osmotic

pump approach can help pinpoint where and when meiofau-

nal organisms calcify in nature. This information is important

because, for example, in situ rates of shell growth are not well

known.
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