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Abstract. This study evaluates three different metrics of

water content of an herbaceous cover in a Mediterranean

wooded grassland (dehesa) ecosystem. Fuel moisture con-

tent (FMC), equivalent water thickness (EWT) and canopy

water content (CWC) were estimated from proximal sens-

ing and MODIS satellite imagery. Dry matter (Dm) and leaf

area index (LAI) connect the three metrics and were also an-

alyzed. Metrics were derived from field sampling of grass

cover within a 500 m MODIS pixel. Hand-held hyperspectral

measurements and MODIS images were simultaneously ac-

quired and predictive empirical models were parametrized.

Two methods of estimating FMC and CWC using different

field protocols were tested in order to evaluate the consis-

tency of the metrics and the relationships with the predic-

tive empirical models. In addition, radiative transfer models

(RTM) were used to produce estimates of CWC and FMC,

which were compared with the empirical ones.

Results revealed that, for all metrics spatial variabil-

ity was significantly lower than temporal. Thus we con-

cluded that experimental design should prioritize sam-

pling frequency rather than sample size. Dm variability

was high which demonstrates that a constant annual Dm

value should not be used to predict EWT from FMC as

other previous studies did. Relative root mean square er-

ror (RRMSE) evaluated the performance of nine spec-

tral indices to compute each variable. Visible Atmospheri-

cally Resistant Index (VARI) provided the lowest explica-

tive power in all cases. For proximal sensing, Global En-

vironment Monitoring Index (GEMI) showed higher sta-

tistical relationships both for FMC (RRMSE = 34.5 %)

and EWT (RRMSE= 27.43 %) while Normalized Differ-

ence Infrared Index (NDII) and Global Vegetation Mon-

itoring Index (GVMI) for CWC (RRMSE= 30.27 % and

31.58 % respectively). When MODIS data were used, results

showed an increase in R2 and Enhanced Vegetation Index

(EVI) as the best predictor for FMC (RRMSE= 33.81 %)

and CWC (RRMSE= 27.56 %) and GEMI for EWT

(RRMSE= 24.6 %). Differences in the viewing geometry of

the platforms can explain these differences as the portion of

vegetation observed by MODIS is larger than when using

proximal sensing including the spectral response from scat-

tered trees and its shadows. CWC was better predicted than

the other two water content metrics, probably because CWC

depends on LAI, that shows a notable seasonal variation in

this ecosystem. Strong statistical relationship was found be-

tween empirical models using indices sensible to chlorophyll

activity (NDVI or EVI which are not directly related to wa-

ter content) due to the close relationship between LAI, water

content and chlorophyll activity in grassland cover, which is

not true for other types of vegetation such as forest or shrubs.

The empirical methods tested outperformed FMC and CWC

products based on radiative transfer model inversion.
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1 Introduction

Water in leaves is a limiting factor for different physiological

processes of vegetation and its deficit causes malfunctioning

of different cellular processes. Water is involved in the ther-

mal regulation of plant trough transpiration and also becomes

crucial in the uptake of CO2 for photosynthesis (Chaves et

al., 2003). It is also fundamental to maintain turgor pressure,

which controls different functional processes of plants like

cell enlargement or gas exchange (Taiz and Zeiger, 2010).

Different metrics quantify vegetation water content. Fuel

Moisture Content (FMC; Desbois et al., 1997), defined as the

mass of water per unit mass of vegetation,

FMC(%)=
WFresh−WDry

WDry

· 100, (1)

where WFresh is the fresh weight of the sample measured in

the field and WDry is the oven-dried weight. FMC has been

extensively used to estimate fire risk and fire propagation

(García et al., 2008; Yebra et al., 2008b). Equivalent water

thickness (EWT) or leaf water content (LWC), defined as the

mass of water per leaf area, measures the thickness of the

water layer with the same leaf area (Danson et al., 1992)

EWT
(

gcm−2
)
=
WFresh−WDry

AreaLeaf

, (2)

where AreaLeaf is the leaf area.

Several studies showed that EWT can be retrieved from

spectral information at leaf level as it is directly related to

the water absorption depth of leaves (Ceccato et al., 2001;

Datt, 1999). FMC and EWT are related each other since:

EWT
(

gcm−2
)
=

(
FMC ·Dm

100

)
, (3)

where Dm is defined as the ratio of leaf dry weight and leaf

area:

Dm
(

gcm−2
)
=

WDry

AreaLeaf

. (4)

Finally, another metric is the canopy water content (CWC),

the mass of water in the canopy per ground area (Cheng et

al., 2008; Trombetti et al., 2008). CWC represent the prod-

uct of EWT and leaf area index (LAI), offering information

on vegetation water content at canopy level and can be ex-

pressed as:

CWC
(

gcm−2
)
= EWT ·LAI (5)

or

CWC
(

gcm−2
)
=
WFresh−WDry

Area
, (6)

where Area denotes for the area of the spatial unit used to

collect the sample.

FMC, EWT or CWC are usually estimated from vegeta-

tion samples using gravitational methods. Different field and

laboratory protocols are used, despite of the need for stan-

dardization (Yebra et al., 2013). In several studies FMC is

sampled using a bag were 100–200 g of the fresh sample are

introduced and considered as representative (Verbesselt et al.,

2007; Chuvieco et al., 2003). In other studies vegetation is

sampled within a quadrant whose area is used as reference

(Sims and Gamon, 2003). However, uncertainties introduced

by the different protocols and therefore their comparability

are unknown. The three metrics can be used to measure wa-

ter content, but relationships existing among them remains

also unknown. No comparative studies for grasslands have

been reported.

Moreover, field sampling is limited and cannot provide es-

timates at regional or global scales, since it requires interpo-

lation to bridge the gaps in both time and space. Remote sens-

ing is a powerful alternative data source to provide informa-

tion on vegetation water content as it fills such temporal and

spatial gaps. Monitoring vegetation water content with re-

mote sensing benefits agriculture, to control crop production

and prevent stress in plants (Peñuelas et al., 1992; Sepulcre-

Cantó et al., 2006) and forestry and to assess fire danger as-

sociated with vegetation water conditions (Chuvieco et al.,

2003, 2004; García et al., 2008; Yebra et al., 2008b).

To estimate plant water content with remote sensing, veg-

etation spectral reflectance has been primarily related to spe-

cific water absorption bands in the short-wave infrared region

(SWIR, 1300–2500 nm; Ceccato et al., 2001; Zarco-Tejada et

al., 2003). Other studies related vegetation water content to

spectral indices that do not include SWIR bands. In the case

of grass the relationship with bands in the Visible (VIS) and

Near Infrared (NIR) spectral region, has shown a close re-

lationship between vegetation biomass, chlorophyll and wa-

ter content (Chuvieco et al., 2003, 2004; García et al., 2008;

Yebra et al., 2008b) as water stress produces changes in the

chlorophyll activity and biomass of the plant. Least squares

regression models have served to empirically relate observed

measurements of vegetation water content to spectral indices.

These models are site-dependent, requiring long data sets for

calibration (Chuvieco et al., 2009) and showing different re-

sults when the models are extrapolated to other sites using

different data sets, making their applicability difficult (Riaño

et al., 2005; Yebra et al., 2008a).

Radiative transfer models (RTM) simulate vegetation

spectra and are a sound alternative to empirical modeling.

They can be applied to different locations to estimate dif-

ferent vegetation parameters, as long as the RTM is a true

representation of the vegetation canopy. For example, Trom-

betti et al. (2008) predicted CWC for the continental US

using RTM PROSAILH (Jacquemoud et al., 1995) simula-

tions. Their model was calibrated with CWC from Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspec-

tral water absorption bands. Yebra et al. (2008b) used also

PROSAILH to quantify FMC, and more recently, Jurdao et
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al. (2013) inverted the RTM GEOSAIL (Huemmrich, 2001)

combined with PROSAILH to estimate FMC. The estima-

tions were validated with extensive field sampling data in

Spain. RTM estimates are based on a physical principle, and

one of the advantages is that they are not constrained to local

conditions as is the case of empirically derived relationships.

Therefore, in theory they can be extensively applied at dif-

ferent locations with good results (Yebra et al., 2008a, b).

This study compares the performance of the different em-

pirically derived models and RTM-based estimates models.

The former were created establishing empirical relationships

between three different metrics of vegetation water content

measured simultaneously in the field (FMC, EWT, CWC)

and nine spectral indices calculated at two scales, from prox-

imal sensing and MODIS spectral data. In addition Dm and

LAI were also analyzed in order to connect metrics which

estimates water content at leaf and canopy level. Firstly, an

analysis of the temporal and spatial variability of the differ-

ent vegetation samples collected in the field was conducted to

evaluate which biophysical parameter offers more informa-

tion. Secondly, the performance statistics of the fitting equa-

tions were evaluated to select the most accurate empirical

models. Finally, these models were compared to three RTM

based estimates, proposed in the literature to derive two FMC

(Jurdao et al., 2013; Yebra et al., 2008b) and the other for

CWC (Trombetti et al., 2008).

2 Methods

2.1 Site description

The study site is located at Las Majadas del Tiétar (Spain)

FLUXNET site (http://fluxnet.ornl.gov/site/440; Fig. 1). The

area is a dehesa, a typical Mediterranean wooded grassland,

ecosystem that occupies about 4 % (2.5 Mha) of the Iberian

Peninsula (Castro, 1997). Common tree species are differ-

ent varieties of oaks, here mostly Quercus ilex subsp. bal-

lota (L.), whose acorns and leaves are mainly used as for-

age for pigs and cows, respectively. The scattered oak trees

have a 9 m mean height and 6 m mean crown diameter. Due

to its deep and wide root system, this species is resistant to

long drought periods (Camarero et al., 2012). Short grass-

land covers 86 % of the area that is managed for cow shep-

herding. It is mainly composed by Rumex acetosella, L.,

Plantago carinata Schrad, Trifolium subterraneum L., Cyn-

odon dactylon (L.) Pers., Taraxacum dens -leonis Desf. and

Vulpia myuros (L.) C. C. Gmel. During the summer, grass

dries out rapidly and turns into dead matter. Summers are

hot and dry, with 30 ◦C daily average temperature and only

67 mm total precipitation, which are not representative of

mean annual 16.7 ◦C and 572 mm. The average altitude is

256 m above mean sea level. Soils are lixisols with an av-

erage thickness of 80 cm. Due to the presence of a clay

layer in some of the areas, small water pools may appear

Figure 1. Plots sampled near the FLUXNET tower within the 500 m

MODIS pixel at Las Majadas del Tiétar (Spain) study site.

in winter after rainy periods. The occurrence of this type

of ecosystem in Mediterranean areas worldwide, the need

to track the responses to water stress conditions, together

with the presence of a FLUXNET eddy covariance flux tower

(http://fluxnet.ornl.gov/site/440) justifies the selection of this

site.

2.2 Field data

2.2.1 Vegetation sampling

Grass water status was estimated through destructively sam-

pling every 2 weeks from April 2009 to April 2011. Sampling

was performed assuring no rain occurred in the two previous

days to avoid sampling superficial water on the leaves. Dur-

ing the 2009 summer, when grass became completely dry,

samples were not collected. However, to ensure the time se-

ries continuity of at least one phenological cycle, sampling

was restated throughout the summer of 2010. This sampling

strategy led to a total of 21 valid sampling days for the whole

study period.

www.biogeosciences.net/12/5523/2015/ Biogeosciences, 12, 5523–5535, 2015
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Figure 2. Scheme showing the different samples collected in the

field and how they are processed in the laboratory. Metrics obtained

as results are also indicated in the last column.

Six 25× 25 m plots were randomly located within the

500 m MODIS pixel that contained the eddy covariance flux

tower that was established as the center of the study site

(Fig. 1). Three grass samples were collected from 25× 25

cm quadrants randomly positioned within each plot. All

rooted grasses were collected inside the quadrant using clip-

pers (IQSample hereafter). Additionally, a different sampling

strategy was tested and a smaller sample was collected out-

side of the quadrant but nearby, containing a representa-

tive proportion of surrounding species (OQSample hereafter)

(Fig. 2). All samples were placed in sealed plastic bags,

weighed on a scale with 0.01 g precision and then trans-

ported in a cooler to the laboratory. Every OQSample and a

sub-sample from each IQSample were scanned at 150 pixels

per inch (ppi) in an Epson Perfection V30 color scanner (Ep-

son American Inc., Long Beach, CA, USA). Leaf area was

calculated automatically from the scanned images using the

unsupervised classification algorithm ISOCLUS with 16 it-

erations in PCI Geomatica (PCI Geomatics, Richmond Hill,

Ontario, Canada). All samples were then placed in an oven

for 48 h at a constant temperature of 60 ◦C to obtain their dry

weight. Five biophysical variables were obtained from the

collected vegetation samples: FMC, EWT, Dm, CWC and

LAI.

FMC was determined from the fresh and dry weights of

both the IQSample (FMCIQ) and the OQSample (FMCOQ) ac-

cording to Eq. (1). The OQsample permitted to calculate both,

EWT and Dm using Eqs. (2) and Eq. (4) respectively, since

fresh/dry weight and leaf area were measured. The IQsample

was not used in this case as it was unfeasible to obtain the

area of the total sample collected inside the quadrant and nei-

ther was the fresh weight of a sub-sample.

CWC was calculated from two different approaches. In

the first one, information corresponding to the IQsample and

OQsample were combined using Eq. (5).

The grass height was very short due to cow shepherding

during some periods, so the only feasible technique to esti-

mate LAI was using gravitational methods (He et al., 2007).

The biomass to leaf area ratio of a sub-sample inside the

IQSample to the total quadrant’s biomass provided LAI using

the following expression (Eq. 7):

LAI
(

cm2 cm−2
)
=

WDry

WSub
Dry

AreaSub
Leaf

Area
, (7)

whereWDry is the total dry weight of the whole sample inside

the IQSample,WSub
Dry is the dry weight of a sub-sample ofWDry,

AreaSub
Leaf is the sub-sample leaf area and Area is the total

area of the quadrant. The second approach measured CWC

from the fresh and dry weight difference of the IQSample as in

(Eq. 6).

2.2.2 Proximal sensing

Simultaneously to vegetation sampling, proximal sensing

data were acquired using an ASD FieldSpec® 3 spectrora-

diometer (http://www.asdi.com/) along NE-SW and NW-SE

transects in each 25× 25 m plot. This instrument measures

Hemispherical-Conical Reflectance Factor (HCRF) from 350

to 2500 nm. Before measuring along each transect, dark cur-

rent was recorded, instrument settings were optimized and

reference spectra were acquired using a Spectralon® 99 % re-

flective reference panel (Labsphere Inc., North Sutton, NH,

USA). All measurements were taken under clear sky within

about±2 h from local solar noon, to guarantee homogeneous

illumination and maximum solar irradiance. Sky conditions

were recorded in the field logs, and a quality control check

removed the spectra where illumination changes may have

occurred after calibration. The ASD was handled using bare

fiber. Spectra were acquired at approximately 1.2 m height,

rendering a sensor footprint diameter of about 53 cm, since

nominal FOV is 25◦.

An average of approximately 10 spectral measurements

was calculated for each transect and this information was

spectrally resampled to MODIS bands using ITT ENVI 4.7.

(EXELIS, Boulder CO, USA).

2.2.3 MODIS data images

MODIS Terra daily surface reflectance (MOD09GA) data

from 1 April 2009 to 15 April 2011 were downloaded from

NASA Land Processes Distributed Active Archive Center

(LP DAAC) at the USGS/Earth Resources Observation and

Science (EROS) Center, Sioux Falls, South Dakota, USA.

This product includes the reflectance of bands 1 to 7, from

469 to 2130 nm at 500 m spatial resolution, as well as sen-

sor and solar observation angles and quality flags at 1 km.

A script programmed in Matlab (Mathworks, Batick, Mas-

sachusetts, USA) extracted the MODIS pixel value of our

study site from all the images to build the time series. The im-

pact of angular effects on reflectance was reduced by remov-

ing images with sensor zenith angles wider than 20◦, which

also assures the accuracy of the geometrical location of the

Biogeosciences, 12, 5523–5535, 2015 www.biogeosciences.net/12/5523/2015/
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Table 1. Spectral indices calculated using field HCRF measurements and MODIS data. Bx designates the band number corresponding to the

MOD09GA product surface reflectance product.

Index Formula Reference

Normalized difference vegetation NDVI=
B2−B1
B2+B1

Rouse et al. (1973)

index (NDVI)

Enhanced Vegetation EVI= 2.5 ·
(

B2−B1
B2+6·B1−7.5·B3

)
Huete et al. (2002)

Index (EVI)

Normalized Difference NDWI=
B2−B5
B2+B5

Gao (1996)

Water Index (NDWI)

Normalized Difference NDII=
B2−B6
B2+B6

Hardisky et al. (1983)

Infrared Index (NDII)

Simple Ratio Water SRWI=
B2
B5

Zarco-Tejada et al. (2003)

Index (SRWI)

Soil Adjusted Vegetation SAVI=
(

B2−B1
B2+B1+L

)
· (1+L) Huete (1988)

Index (SAVI) where L= 0.5

Global Environment Monitoring GEMI= η · (1− 0.25η)−
B1−0.125

1−B1
Pinty and Verstraete (1992)

Index (GEMI) where η =
2·
(
B2

2−B
2
1

)
+1.5·B2+0.5·B2

B2+B1+0.5

Visible Atmospherically VARI=
B4−B1

B4+B1−B3
. Gitelson et al. (2002a)

Resistant Index (VARI)

Global Vegetation Monitoring GVMI=

(
NIR∗REC+0.1

)
−(SWIR−0.02)(

NIR∗REC+0.1
)
+(SWIR−0.02)

Ceccato et al. (2002)

Index (GVMI)

Central band wavelength B1= 645.5 nm, B2= 856.5 nm, B3= 465.6 nm,

B4= 553.6 nm, B5= 1241.6 nm, B6= 1629.1 nm, B7= 2114.1 nm

NIRREC stands for the information in the Near Infra Red rectified as the index was designed for SPOT-VEGETATION (Ceccato et al., 2002). In this study the index was

calculated using the spectral bands from MODIS corresponding to that B2 for the NIR and B5 for the SWIR regions.

pixel (Wolfe et al., 2002). In addition, the quality flag layer

eliminated images under clouds, cloud shadows and/or with

high atmospheric aerosol content. The algorithm selected the

closest valid MODIS image to the field sampling day within

±5 days window, or the MODIS image acquired before the

sampling day in case they were equal. Minimal time lag be-

tween sensor and field data reduces the chances of discrep-

ancy, as grassland grazing could affect LAI in a short period

of time. This led to a total of 14 days of MODIS data with

coincident proximal sensing measurements and field data.

2.3 Vegetation indices

For the study nine spectral indices were calculated from

proximal and MODIS reflectance data according to the equa-

tions in Table 1. The indices selected to estimate the biophys-

ical variables included bands in the water absorption SWIR

region (Faurtyot and Baret, 1997) and bands sensitive to veg-

etation greenness and structure in the NIR region (Paltridge

and Barber, 1988; Yebra et al., 2008b).

2.4 RTM-based water metrics estimates

In order to compare performance with the empirical de-

rived models, three RTM-based models were used to estimate

CWC (Trombetti et al., 2008) and FMC (Yebra et al., 2008b;

Jurdao et al., 2013). As for the empirical models, the spec-

tral information used to run the RTMs was the one obtained

using proximal sensing and MODIS data.

2.4.1 CWC

CWC was estimated in the study site following Trombetti

et al. (2008). This method uses PROSAILH RTM (Jacque-

moud and Baret, 1990; Jacquemoud et al., 1995) and Arti-

ficial Neural Networks (ANN) to estimate CWC. Trombetti

et al. (2008) trained their model by using MODIS synthetic

spectra based on a set of empirical relationships. Different

MODIS spectra combinations and vegetation indices were

later used as input variables to train a neural network and ob-

taining as outputs CWC, leaf water content, and LAI. The

www.biogeosciences.net/12/5523/2015/ Biogeosciences, 12, 5523–5535, 2015
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Figure 3. Box plot showing the temporal evolution of field biophysical variables measured. Filled points represent the median of the daily

measurements, the boxes indicate the position of the 1st and 3rd quartile, lines delimit the maximum and minimum values. Line inside the

boxes showed the median value of the day and the point the mean value. Precipitation is represented using bars and temperature is represented

with a solid line.

outputs were validated against AVIRIS CWC and MODIS

MOD15A2 LAI product. Multiple linear regression approach

is later used to establish the equations for each landcover

type. In our case we used the original calibration from Trom-

betti et al. (2008) for grassland.

Further details on this method can be found in Trombetti

et al. (2008).

2.4.2 FMC

The FMC estimates are based on the look-up table (LUT)

inversion technique. This technique compares each observed

spectra against previously generated spectra stored in a LUT.

In this study two LUTs were tested. One specifically desig-

nated for grassland based on the study of Yebra et al. (2008b)

and that was generated using PROSAILH (Jacquemoud

and Baret, 1990). The second LUT was generated using

a link between PROSAILH (Jacquemoud and Baret, 1990;

Jacquemoud et al., 1995) at leaf level and GEOSAIL RTM

(Huemmrich, 2001) at canopy level and originally proposed

to estimate FMC in a mixed-oak-tree-grassland cover (Jurdao

et al., 2013). This model includes some additional parameters

that allow to account for shadows, especially important in ar-

eas with disperse tree coverage as is the case in our study

site.

Further details on these methods can be found in Yebra et

al. (2008b) and Jurdao et al. (2013).

Biogeosciences, 12, 5523–5535, 2015 www.biogeosciences.net/12/5523/2015/
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Figure 4. Intra-group, inter-group and overall R2 values between

proximal sensing spectral indexes and biophysical variables mea-

sured in the field.

2.5 Empirical models fitting

Intra-group, inter-group and overall R2 values between

FMCIQ, FMCOQ, EWT, CWCIQ, CWCOQ or LAI, and each

of the proximal sensing spectral indices were calculated to

investigate their variability within the 500 m MODIS pixel.

More specifically, the intra-group R2 offers information

about the spatial variability, due to the collection of samples

from different plots within the MODIS pixel. A linear regres-

sion model was created for each sampling day where the bio-

physical variable and the spectral index were the dependent

and the independent variable, respectively. The average R2

of all the regression models for each day provided the intra-

group R2. Instead, the inter-group R2 explains the temporal

variability due to the collection of the samples on different

days. In this case, the biophysical variable and the spectral

index for all plots were averaged for each sampling day. The

linear regression model of these averaged values determined

the inter-group R2. To explain temporal and spatial variabil-

ity together, the overall R2 fitted in a single regression model

including all plots and sampling days for each spectral index

and biophysical variable.

Later, using the mean values of each biophysical variable

and the proximal sensing spectral indices, a univariate linear

regression model was applied. The same procedure was re-

peated for MODIS data. Bootstrapping techniques evaluated

the empirical model robustness, which is a valid alternative

to traditional leave-one-out methods to validate regression

models predictability according to Richter et al. (2012) and

following Steyerberg et al. (2001) that recommends two hun-

dred simulations. Later the median value of each statistics

was used as indicative of its performance. Root Mean Square

Error (RMSE), Relative Root Mean Square Error (RRMSE),

Figure 5. Determination coefficient for proximal (green circles) and

MODIS (red squares) empirical models after bootstrap. Upper and

lower limits of the confidence intervals for MODIS and proximal

sensing are presented.

determination coefficient (R2) and Taylor’s diagrams eval-

uated the models’ performance. The RMSE measured the

error in the estimation of the biophysical variable by each

model:

RMSE=

√√√√1

n

n∑
i=1

(
V iest−V

i
obs

)
, (8)

where V iest is the estimated variable and V iobs, V
i
obs is its ob-

served field measurement. RMSE cannot compare the error

of different variables with different units. To address this lim-

itation in order to compare the model performances between

different variables, RRMSE divides RMSE by the average of

the observed values (V̄obs; Richter et al., 2012):

RRMSE= 100
RMSE

V obs

. (9)

The R2 measures the proportion of variance explained by the

model and is calculated as:

R2=1−
σ 2

r

σ 2
, (10)

where σ 2
r represents the residual variance and σ 2 is the vari-

ance of the dependent variable.

2.6 Comparing performance between empirical and

RTM-based estimates

Taylor diagrams (Taylor, 2001) allowed the comparison be-

tween the FMC and CWC predicted by empirical models fit

and the RTM inversion estimates. In these plots the observed

variable and its standard deviation (SD) are plotted in the

www.biogeosciences.net/12/5523/2015/ Biogeosciences, 12, 5523–5535, 2015
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x axes. RMSE is represented as semicircles centered at the

observed data. The correlation coefficient (r) is displayed in

the azimuthal position. Best models are closer in the plot to

the observed measurement; therefore they will have a high r ,

a low RMSE and an SD similar to the observed values.

3 Results

3.1 Empirical models fitting

All variables showed similar temporal evolution, a strong

variability controlled by the meteorological conditions with

a peak in spring and second minor peak in the win-

ter except Dm (Fig. 3). Dm fluctuated throughout the

year and exhibited its highest values in the summer. The

47 % Coefficient of Variation (CV) for Dm was less than

for CWCIQ (CV= 95 %), CWCOQ (CV= 0.95 %), FMCIQ

(CV= 60 %) and FMCOQ (CV= 56 %), but higher than for

EWT (CV= 38 %). A higher precipitation in the spring of

2010 compared to previous years translated into higher FMC,

CWC and LAI values. FMCOQ and CWCOQ, calculated from

the OQSample, presented similar trends but in some cases

higher values than FMCIQ and CWCIQ, calculated from the

IQSample.

A low intra-group R2 for all the variables indicates a low

spatial variability between plots (Fig. 4). Contrary, the high

inter-group R2 also for all variables points to the high tempo-

ral variability between sampling dates. The main differences

between variables occurred for overall R2. Similar overall

and inter-group R2 values for CWCOQ and FMCOQ indi-

cated that the combination of the temporal and spatial fac-

tors matched in importance each factor on its own. Instead,

overall R2 for CWCIQ and FMCIQ laid in between the inter-

group and the intra-group R2 underling the temporal factor

as the main source of variation. GEMI offers the best R2 for

all variables while VARI had the weakest R2.

The explicative model with the highest R2 to retrieve

each variable differed between proximal sensing and MODIS

(Fig. 5). FMCOQ and FMCIQ showed the best correlations

with GEMI from proximal sensing data but EVI was the in-

dex that presented the highest R2 when using MODIS im-

ages. EWT offered the poorest adjustments among all vari-

ables analyzed both for proximal sensing and MODIS data.

In this case GEMI was the best predictor. NDII and GVMI

were the most accurate predictors for LAI, CWCOQ and

CWCIQ with proximal sensing. When using MODIS, the

most accurate results for LAI were achieved with NDII and

GVMI, but EVI did so for CWCOQ and CWCIQ. When the

IQsample was used instead of the OQsample, both FMC and

CWC showed higher R2 results (Fig. 5) with lower RRMSE,

although the RRMSE results obtained presented small differ-

ences (Fig. 6).

Figure 6. Relative root mean square error for proximal (green cir-

cles) and MODIS (red squares) empirical models after bootstrap.

Upper and lower limits of the confidence intervals for MODIS and

Proximal sensing are presented.

Smaller confidence intervals of R2 were observed when

proximal sensing reflectance was used with the exception of

EWT in which MODIS presented smaller intervals.

3.2 Comparing performance between empirical-based

and RTM estimates

Taylor diagrams in Figs. 7 and 8 compare FMC and CWC

estimates using spectral indices and RTM. In the case of

FMCIQ from proximal sensing (Fig. 7 left), RTMs are distant

from empirical index-based models. They presented higher

RMSE and lower r than the spectral indices whereas RTM

SD was more similar to the observed values. In the case

of FMCIQ estimated from MODIS (Fig. 7 right), RTMs

were closer to the empirical models in the Taylor diagram

and therefore perform more similar to those. For CWCIQ

(Fig. 8), the differences between the empirical and RTMs are

larger. Using proximal sensing data (Fig. 8 left), RTM over-

estimated the SD of the observed CWCIQ. Using MODIS

(Fig. 8 right), RTM showed a very high overestimation of

the CWCIQ.

Temporal evolution of the biophysical variables estimated

using the most explicative model for proximal sensing and

MODIS in Figs. 5 and 6 are shown in Fig. 9. Fitting equations

for the different variables are shown in Table 2. Both sen-

sors predicted well EWT, FMCIQ and FMCOQ but showed

an overestimation, especially during the dry season. On the

contrary, the models for LAI, CWCOQ and CWCIQ adjusted

well even during the dry season.

Biogeosciences, 12, 5523–5535, 2015 www.biogeosciences.net/12/5523/2015/



G. Mendiguren et al.: Seasonal variation in grass water content 5531

Table 2. Empirical fitting equations obtained after bootstrap.

Fitting equation Fitting equation

Proximal Sensing MODIS

FMCOQ = (1184.400×GEMI) −734.405 FMCOQ = (1727.326×EVI) −216.433

FMCIQ = (999.707×GEMI) −626.932 FMCIQ = (1398.385×EVI) −173.518

EWT= (0.029×EVI) + 0.011 EWT= (0.059×EVI) + 0.003

LAI= (2.621×NDII) + 1.268 LAI= (3.524×NDII) + 1.189

CWCOQ = (0.075×NDII) +0.029 CWCOQ = (0.195×EVI) −0.032

CWCIQ = (0.063×NDII) +0.023 CWCIQ = (0.157×EVI) −0.026

Figure 7. Comparison of empirical vs RTM models to estimate FMC with proximal sensing (left) and MODIS (right). RTM FMC (Grassland)

obtained from the LUT proposed by (Yebra et al., 2008b). RTM FMC (Grassland & Holm Oak) obtained from the LUT proposed by Jurdao

et al. (2013).

4 Discussion

Results revealed that Dm varies significantly throughout the

year (CV= 47 %) with high values in the summer. These

changes could be related to the temporal variation in plant

community structure, species composition and diversity in

this ecosystem (Casado et al., 1986). Summer should be the

best time of the year to invert RTM and predict Dm, since

leaves are drier and therefore EWT does mask the Dm spec-

tral absorption signal (Riaño et al., 2005). Casas et al. (2014)

applied a constant annual Dm value from the literature to

successfully predict seasonal variations in EWT and CWC.

However, our study suggests that, due to the high seasonal

variation in Dm, a constant annual value would not be rec-

ommended in grassland ecosystems as the one analyzed in

this work.

The high inter-group and low intra-group R2 implies that

the temporal trend is much more critical than the spatial vari-

ation within the MODIS pixel (Fig. 4). Therefore, the strat-

egy to better capture the variability of grass water content

in this ecosystem should consist in increasing the number of

samples in time but sampling a lower number of plots per

day. In addition, CWCIQ and FMCIQ, generated from larger

sample sizes than CWCOQ and FMCOQ, presented higher

inter-group R2 values, which indicate a better characteriza-

tion of the temporal variability. Even though similar conclu-

sion were obtained using the two strategies the results in this

study showed that the higher R2 are found in the case of the

IQSample. Using the quadrant also presented some advantages

as it allows not just the retrieval of FMC but also CWC (as in

Eq. 6) without going through the time-consuming leaf scan-

ning process to retrieve leaf area needed to estimate EWT.

This suggests the need to standardize sampling protocols for

the estimation of vegetation biophysical parameters to en-

sure data quality, repeatability and to facilitate accurate cross

comparison from different studies. Some initiatives already

exist to facilitate this standardization, as the Global Terres-

trial Carbon System (GTOS) guidelines in support of carbon

cycle science (Law et al., 2008). However, currently there is

no international backbone that ensures this and an agreement

in the protocols is needed in order to validate remote-sensing

products.

CWC was better predicted than the other two water con-

tent metrics, FMC and EWT (Fig. 4). CWC depends on LAI

which is showing higher correlation values to the empirical

models than other metrics such as FMC or EWT. Some stud-

ies have shown that LAI contributions to total reflectance

variability is much higher than water (Bowyer and Danson,

2004) for this reason also, CWC should provide more accu-

rate retrievals than FMC or EWT. It is possible to have the

same FMC and EWT for different LAI and hence different

CWC and amount of soil background, which will change its
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Figure 8. Comparison of empirical vs RTM models to estimate CWC with proximal sensing (left) and MODIS (right). RTM CWC is based

on Trombetti et al. (2008).

reflectance. Yebra et al. (2013) demonstrated through PRO-

SAILH simulations how a very different CWC for the same

EWT based on changes of LAI translates into a large range

of NDII values. Our results confirm this theoretical assump-

tion described in Yebra et al. (2013). This issue is especially

critical over areas like the one analyzed in this work with an

herbaceous cover exhibiting large dynamic annual growth.

Very low R2 values were obtained in this study regarding the

EWT. More research needs to be done in this line as EWT is

a key input parameter in many RTM.

The empirical methods estimated FMC and CWC with

slightly different results for proximal sensing and MODIS

(Figs. 5 and 6). While GEMI and NDII were the most accu-

rate for FMC and CWC respectively from proximal sensing

in our study; EVI was the most explicative estimator of both

variables from MODIS. The relationship between these in-

dices and water metric is indirect, since none of them include

spectral bands in the SWIR region where water absorption is

strong. However, there is a strong link between grass wa-

ter content, chlorophyll activity and LAI in this ecosystem.

During wet periods the grass grows very rapidly, increas-

ing the LAI, biomass and chlorophyll content, but as soon as

the dry season starts with high temperatures and low rainfall

the grass becomes cured rapidly losing all chlorophyll and

quickly decreasing the LAI and biomass. This explains the

empirical relationships with high R2 between water metrics

and indices sensible to chlorophyll activity, or those more

sensible to water in the SWIR region. In addition, it is re-

markable that MODIS estimations presented higher R2 than

proximal sensing. Bootstrap confidence intervals indicated

that R2 and RRMSE presented large intervals, larger when

using MODIS images. Roberts et al. (2006) also observed

different correlations between indices and platforms and the

discrepancies here need further investigation. The difference

in the confidence interval amplitude between proximal sens-

ing and MODIS can be explained because the pixel included

Figure 9. Temporal evolution of the observed (red circles) and esti-

mated FMCOQ, FMCIQ, EWT, LAI, CWCOQ and CWCIQ obtained

for proximal sensing (green asterisks) and MODIS (blue crosses).

Fitting equations are presented in Table 2.

not only grass but also trees, their shades, and other marginal

covers like bare soil and a water pond (Fig. 1), and its view

angle could be up to 20◦ whilst proximal sensing measures

only two transects within each of the six plots and provides
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only nadiral measurements of herbaceous cover which could

be more affected by the soil signal.

Similar to this study, Casas et al. (2014) reliably predicted

water content variables in California (USA) from GEMI,

NDII and EVI using simulated MODIS spectral response

from airborne hyperspectral AVIRIS instrument. In their

case, VARI was actually the most accurate for grasslands

(FMC and CWC), chaparral (EWT, FMC and CWC) and

a Mediterranean oak forest (EWT). On the contrary, VARI

showed very poor accuracies in our case to estimate FMC,

EWT and CWC, but was still capable of capturing the vari-

ability in LAI (Fig. 4). This fact also contradicts other studies

that predicted FMC from VARI on chaparral (Peterson et al.,

2008; Roberts et al., 2006; Stow et al., 2005, 2006). VARI

was developed to detect vegetation fraction in homogenous

wheat crops (Gitelson et al., 2002b), but neither Gitelson et

al. (2002a) nor the above studies have tested this spectral in-

dex to detect vegetation water content on sites like ours, with

strong seasonal changes in species composition and LAI.

The empirical methods calibrated for this specific site

outperformed the physical RTM estimates for CWC and

FMC (Figs. 7 and 8). This confirms the results in Casas et

al. (2014) where the CWC algorithm based on RTM inver-

sion developed by Trombetti et al. (2008) also failed to im-

prove results from empirical estimates. Regarding the RTM-

based FMC estimates, considering that the FMC inversion

models were not calibrated with any data from the field cam-

paign and that the results were similar to those obtained using

empirical approach (Fig. 7) we believe that the models can be

applied in other similar areas.

Future work in this line can still be done, testing other in-

version techniques, using multiple observations or other op-

timization algorithms might help to improve the performance

of physical-based estimates of biophysical variables of vege-

tation.

5 Conclusions

This work showed a complete analysis of three metrics,

EWT, FMC and CWC, to measure grass water content at

two different spatial scales by using proximal sensing from

a field spectroradiometer and MODIS images. The tempo-

ral changes in these metrics are more critical than their spa-

tial variation within the MODIS pixel. Results indicated that

larger samples collected using quadrants as spatial reference

sampling units are more representative than small samples

in order to follow the temporal trends in FMC and CWC.

Protocol standardization should be considered to make dif-

ferent data sets comparable both spatially and temporally.

Due to the high seasonal Dm variability, a constant annual

value should not be used to estimate EWT from FMC in this

ecosystem. The dependence of CWC on LAI makes this veg-

etation water content variable easier to predict than FMC or

EWT in grasslands due to the strong existing link between

LAI, water content and chlorophyll activity.

GEMI, NDII and EVI reliably predicted vegetation water

content. The best empirical estimator differed between sen-

sors. Empirical models based on vegetation indices showed

higher R2 for MODIS than from proximal sensing, proba-

bly due to differences induced by observation geometry and

canopy observed. These empirical methods still exceed RTM

inversions developed for other sites to predict FMC (Jurdao

et al., 2013; Yebra et al., 2008b) and CWC (Trombetti et al.,

2008). Conclusions from this study are much related to grass-

land physiology and cannot be extended to other vegetation

types such as forest or shrubs.
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