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Abstract. Changes in Southern Ocean (SO) phytoplankton

distributions with future warming have the potential to sig-

nificantly alter nutrient and carbon cycles as well as higher

trophic level productivity both locally and throughout the

global ocean. Here we investigate the response of SO phy-

toplankton productivity and biomass to 21st century climate

change across the CMIP5 Earth System Model suite. The

models predict a zonally banded pattern of phytoplankton

abundance and production changes within four regions: the

subtropical (∼ 30 to 40◦ S), transitional (∼ 40 to 50◦ S), sub-

polar (∼ 50 to 65◦ S) and Antarctic (south of∼ 65◦ S) bands.

We find that shifts in bottom-up variables (nitrate, iron and

light availability) drive changes in phytoplankton abundance

and production on not only interannual, but also decadal and

100-year timescales – the timescales most relevant to climate

change. Spatial patterns in the modelled mechanisms driving

these biomass trends qualitatively agree with recent obser-

vations, though longer-term records are needed to separate

the effects of climate change from those of interannual vari-

ability. Because much past observational work has focused

on understanding the effects of the Southern Annular Mode

(SAM) on biology, future work should attempt to quantify

the precise influence of an increasingly positive SAM on SO

biology within the CMIP5 models. Continued long-term in

situ and satellite measurements of SO biology are clearly

needed to confirm model findings.

1 Introduction

The photosynthetic activity of marine phytoplankton pro-

vides the ultimate source of food for virtually all marine

biota, including organisms of vast commercial value. This

phytoplanktonic activity also drives the biological pump, the

process by which surface carbon dioxide and nutrients are

drawn down via photosynthesis with subsequent sinking of

organic matter to the deep ocean that effectively removes

carbon from the atmosphere for centuries to millennia (Ep-

pley and Peterson, 1979; Heinze et al., 1991). The warming

trend recorded in the global surface ocean since the mid-20th

century is projected to continue in the 21st century (Stocker

et al., 2013) and can impact phytoplankton activity both di-

rectly via the physiological effect of temperature on growth

rate and/or indirectly by altering key environmental factors

such as nutrient and light availability (e.g. Marinov et al.,

2010). The responses of phytoplankton communities to cli-

mate change may have profound ecological and biogeochem-

ical repercussions with potential feedbacks on climate, the

net sign and magnitude of which are still largely uncertain.

Documenting and understanding these responses is one of

the main goals of global change science today (Falkowski et

al., 2000; Geider et al., 2001).

As a major region of deep, intermediate and mode water

formation, the Southern Ocean (SO) is one of the few places

on Earth where there is direct communication between the at-

mosphere and the deep ocean. Because of this, the SO plays

a critical role in the global climate system via its significant

impacts on the global heat and carbon budgets. Additionally,

intermediate and mode waters formed here allow for large

advective transfers of macronutrients such as nitrate, phos-
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phate and silicate from the SO to the low-latitude oceans,

indirectly accounting for up to 75 % of phytoplankton pro-

duction north of 30◦ S (Sarmiento et al., 2004a; Marinov et

al., 2006). Thus, potential changes in SO productivity can af-

fect not only local nutrient and carbon cycles, but may also

drastically alter nutrient and carbon cycles as well as phyto-

plankton distributions throughout the global ocean.

Much of the SO is a so-called HNLC (high-nutrient, low-

chlorophyll) region, where chlorophyll concentrations (and

implicitly phytoplankton biomass and production) are rela-

tively low, in spite of a large upwelled supply of macronu-

trients (e.g. Martin et al., 1990; Cullen, 1991; Pitchford and

Brindley, 1999). Here insufficient light availability may help

explain why biological productivity is not as high as it could

be. Because light is a potentially stronger limiting factor than

macronutrient supply for photosynthesis here, warming is

generally postulated to be advantageous for algal commu-

nities within these regions because shallower mixed layer

depths (MLDs) (due to enhanced stratification and increased

freshwater influx with future warming) are expected to in-

crease light availability to phytoplankton and prolong the

growing season (Bopp et al., 2001; Le Quéré et al., 2005;

Doney, 2006). Warming may also directly enhance produc-

tivity by alleviating growth rate limitations due to low tem-

peratures (Steinacher et al., 2010). If this line of reason-

ing holds, we should observe an increase in phytoplankton

biomass and chlorophyll concentrations in the high-latitude

SO with future warming. A further complicating factor, how-

ever, is that SO phytoplankton are also limited by iron and

silicate, such that they can be light–iron–silicate (or any com-

bination of the three) co-limited (C. M. Moore et al., 2013).

Thus, changes in any of these factors will affect phytoplank-

ton productivity and biomass within the SO. Because of the

complicated multifactorial nature of the problem, a synergy

of observations and models is needed to understand the driv-

ing mechanisms of projected changes in SO phytoplankton

distributions.

Recent studies have suggested that SO phytoplankton

biomass and productivity will change in response to rising

atmospheric CO2 concentrations, but the direction, signif-

icance, and causes of these changes are still under debate

(Bopp et al., 2001, 2005, 2013; Schmittner et al., 2008;

Steinacher et al., 2010; Wang and Moore, 2012; Marinov et

al., 2013; Cabré et al., 2014; Laufkötter et al., 2015). Here

we use the newest generation of fully coupled CMIP5 (Cou-

pled Model Intercomparison Project 5) Earth System Models

to systematically study the response of SO phytoplankton to

21st century climate change, assuming the rcp8.5 emissions

scenario. To this end, we borrow some statistical methods

developed in Cabré et al. (2014) (namely, the model weight-

ing scheme and the bootstrap technique, both described in

Section 2 below) to conduct our work. All 16 of the CMIP5

models that incorporate ecological subroutines and provide

their output on the CMIP5 portal are included in our study.

We also summarize and review past field studies of SO phy-

toplankton to see what has already been observed and to un-

derstand where there may be disagreement over mechanisms

and/or recent directions of changes between the models and

field data. We find that over the next 100 years, the CMIP5

models predict a zonally banded pattern of SO phytoplank-

ton abundance and productivity changes driven by shifts in

light, nitrate and iron availability with future warming. We

show that the SO south of ∼ 30◦ S can be separated into four

zonally defined biomes: the subtropical (∼ 30 to ∼ 40◦ S),

transitional (∼ 40 to∼ 50◦ S), subpolar (∼ 50 to∼ 65◦ S) and

Antarctic (south of ∼ 65◦ S) bands. Each of these biomes

shows consistent ecological responses to 21st century cli-

mate change across most of the CMIP5 models studied. We

further find that this banded structure is in general qualitative

agreement with patterns and mechanisms of phytoplankton

distribution changes which have emerged from observations

over recent decades.

2 Methods

2.1 CMIP5 model description

A list of the models used along with relevant model de-

tails are summarized in Table 1. The scenarios used in our

study are the historical and rcp8.5 scenarios from the IPCC’s

Fifth Assessment Report, with output data downloaded from

http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html. See Ta-

ble 2 for a description of the variables downloaded and how

they were used within this study. For all model analyses con-

ducted here we use yearly time series, which were sometimes

calculated from CMIP5 monthly output and sometimes taken

straight from CMIP5 yearly output depending on availability.

Some models lacked output data for certain variables. Ta-

ble S1 shows which models had output for which variables.

Only the first ensemble members (r1ip1) within the archives

are used here. The historical scenario, spanning years 1850–

2005, is forced with observed atmospheric CO2 concentra-

tions and is used to represent present-day conditions. The

rcp8.5 scenario, spanning years 2006–2100, is representative

of future unmitigated climate change conditions with radia-

tive forcing increasing by 8.5 W m−2 relative to preindustrial

by year 2100. See Taylor et al. (2012) and van Vuuren et

al. (2011) for further details on CMIP5 experimental design

and forcing scenarios. Absolute 100-year mean changes are

calculated as the mean value from years 1980–1999 within

the historical simulation subtracted from the mean value

from years 2080–2099 within the rcp8.5 simulation. Relative

change is defined as the 100-year absolute change divided by

the historical 1980–1999 mean.

For multi-model statistical analysis, we weight models

based on their similarity to avoid double counting and to

preserve model independence. If two models are very sim-

ilar in terms of their ocean biogeochemistry or physics (typ-

ically because they are two slightly different versions of the
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Table 1. CMIP5 model details. Summary of all the CMIP5 models that keep track of phytoplankton biomass and/or primary production

with information on the following for each model: spatial resolution in the atmosphere and ocean, explicitly modelled nutrients, ecology

subroutine, references and weight (wt) applied in the all-model averages. (∗Note: CMCC-CESM runs did not appear to reach equilibrium,

which was a necessary condition we imposed in order to work with a model; thus, we only show data from CMCC-CESM in the Supplement

figures, but do not take this model into account in the all-model averages.)

Model Atm

(levels,

long/lat)

Ocean

(levels,

long/lat)

Nutrients Ecology

module

Reference Wt

CanESM2 L35

2.8/2.8

L40

1.4/0.9

N (but also

accounts for

Fe limitation)

NPZD

Denman and

Peña (1999)

Zahariev et al. (2008) 1

CESM1-BGC L26

1.25/0.94

L60

1.125/0.27–

0.53

(P), N, Fe, Si MET Moore et al. (2004);

Moore et al. (2006)

1

CMCC-CESM L39

3.8/3.7

L31

2/ 0.5–2

(P), N, Fe, Si PELAGOS Vichi et al. (2007) 0*

GFDL-ESM2G L24

2.5/2.0

L63

1/0.3–1

P, N, Fe, Si TOPAZ2 Dunne et al. (2013) 1

GFDL-ESM2M L24

2.5/2.0

L50

1/0.3–1

P, N, Fe, Si TOPAZ2 Dunne et al. (2013) 1

HadGEM2-CC L60

1.25 /1.875

L40

1/0.3–1

N, Fe, Si Diat-

HadOCC

(NPZD)

Palmer and

Totterdell (2001)

0.5

HadGEM2-ES L38

1.25 /1.875

L40

1/0.3–1

N, Fe, Si Diat-

HadOCC

(NPZD)

Palmer and

Totterdell (2001)

0.5

IPSL-CM5A-LR L39

3.75/1.875

L31

2/0.5–2

P, N, Fe, Si PISCES (from

HAMOCC5)

Aumont and

Bopp (2006);

Séférian et al. (2013)

0.5

IPSL-CM5A-MR L39

2.5/1.25

L31

2/0.5–2

P, N, Fe, Si PISCES (from

HAMOCC5)

Aumont and

Bopp (2006);

Séférian et al. (2013)

0.5

MIROC-ESM L80

2.8

L44

1.4/0.5–1.7

N NPZD-type

Oschlies (2001)

Watanabe et

al. (2011)

0.5

MIROC-ESM-

CHEM

L80

2.8

L44

1.4/0.5–1.7

N NPZD-type

Oschlies (2001)

Watanabe et al. (2006) 0.5

MPI-ESM-MR L47

1.9

L40

0.4

P, N, Fe, Si HAMOCC5.2

(NPZD)

Ilyina et al. (2013) 0.5

MPI-ESM-LR L47

1.9

L40

1.5

P, N, Fe, Si HAMOCC5.2

(NPZD)

Ilyina et al. (2013) 0.5

MRI-ESM1 L23

1.125/1.121

L51

1/0.5

P,N NPZD

Oschiles (2001)

Yukimoto et al. (2011) 1

NorESM1-ME L26

1.9/2.5

L53

1/1.25

P, N, Fe, Si HAMOCC5.1

(NPZD)

Assmann et al. (2010) 1

GISS-E2-H-CC L40

2.5/2

L26

1/1

N, Fe, Si NOBM Gregg (2008) 1

GISS-E2-R-CC L40

2.5/2

L32

1.25/1

N, Fe, Si NOBM Gregg (2008) 1
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Table 2. Details of the CMIP5 variables studied here.

Variable description Variable

abbreviation

used in this

study

CMIP5 variable

downloaded with

units (raw monthly

data)

Calculations to generate yearly

data used in this study

Variable used

in the following

figures

Phytoplankton surface carbon

biomass concentration

PB phyc (mol m−3) Annual max Figs. 1–3, 5–6,

S1, S12–17

Vertically integrated total

primary production by

phytoplankton

PP intpp (mol m−2 s−1) Annual avg Figs. 1–2, 4–6,

S2, S16–17

Dissolved surface nitrate

concentration

Nitrate no3 (mol m−3) Annual max

(representing

winter)

Figs. 1–6, S3,

S12–17

Mixed layer depth MLD mlotst (m) Annual max (winter),

annual min MLD (summer)

Figs. 1–6,

S4–5, S12–17

Dissolved surface iron

concentration

Iron dfe (mol m−3) Annual max (winter) Figs. 1–6, S6,

S12–17

Incident photosynthetically

active radiation

IPAR rsntds (W m−2) Annual max (summer) Figs. 1–6, S7,

S12–17

Total cloud area fraction Cloud cover clt (%) Annual avg, avg over

months Dec-Feb (summer)

Figs. 1–6, S8,

S12–17

Zonal wind stress Wind stress tauu (Pa) Annual avg, annual

average (winter)

Figs. 1–5, S10,

S12–15

Sea ice area fraction Sea ice cover sic (%) Annual avg, annual

min (summer)

Figs. 2–3, S9,

S13, S15

Dissolved surface silicate

concentration

Silicate si (mol m−3) Annual max (winter) Figs. 2–3,

S12–15

Sea surface temperature SST tos (K) Annual max Figs. 2–3,

S12–15

Sea surface salinity Salinity sos (psu) Annual avg Figs. 2–3,

S12–15

same basic model coming from the same modelling centre

– see Fig. S1 comparing phytoplankton biomass changes in

HadGEM2-CC and HadGEM2-ES, for example), we give

them each a weight of 0.5 instead of 1. See Table 1 for a list

of model weights and Cabré et al. (2014) for a more detailed

discussion on weighting. We do not attempt to weight mod-

els according to how well they reproduce observed chloro-

phyll a (chl) concentrations or primary productivities for the

following reasons: (1) we cannot tell whether they reproduce

current mean-state values of these variables for the right rea-

sons, and (2) we would like to understand equally the reasons

for each individual CMIP5 model’s predictions and the rea-

sons for the entire suite’s predictions on average.

2.2 Bootstrap analysis (Figs. 1, 5, 6)

To quantify the significance of multi-model mean 100-year

trends, we calculate the percentage of simulated model re-

alizations that agree on the sign of a predicted trend for a

given variable, using the statistical technique known as boot-

strapping. We built 1000 realizations of the 100-year trend by

randomly selecting n models (where n is the number of mod-

els with data available for any given variable) with replace-

ment among the n available models. Within a single realiza-

tion, one model may be represented more than once, while

other models may not be represented at all. We take into ac-

count interannual variability by randomly selecting one of

the 20 years from the present-day historical scenario (1980–

1999) and one of the 20 years from the future rcp8.5 climate

change scenario (2080–2099) for each selected model. For

every variable of interest at every spatial grid point, we then
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create a realization of the 100-year trend by finding the dif-

ference between the two randomly chosen years. We then

obtain the multi-model significance of this trend at each grid

point by calculating the percentage of 1000 realizations that

predict a positive change. Thus, the higher (lower) the boot-

strap percentage above (below) 50 %, the greater the signifi-

cance of the positive (negative) trend at a given location. This

bootstrapping procedure provides a more robust measure of

significance than simply calculating the percentage of mod-

els that agree based on single model runs alone because it

both takes into account interannual variability and greatly in-

creases the number of permutated realizations. See Cabré et

al. (2014) for further details on application of the bootstrap-

ping method to the CMIP5 data set.

3 Results and discussion

In this study, we attempt to understand how the general

characteristics of SO phytoplankton may change with future

warming by investigating biomass and productivity at both

peak bloom times and averaged over the entire year. To this

end, we choose to study the following two variables: (1) max-

imum annual surface phytoplankton biomass (henceforth PB,

representative of phytoplankton biomass at the peak of an an-

nual bloom) and (2) average annual primary production ver-

tically integrated down to 100 m depth (henceforth PP, rep-

resentative of average yearly water column integrated condi-

tions). We conducted all of our analyses with both of these

variables, but only show results for the variable which made

the most sense to use in the context of the analysis. For ex-

ample, whenever we analyse individual models, we show

PB because we frequently only have monthly model output

(with which to generate maximum, minimum or average an-

nual data) at the surface of the ocean (i.e. monthly NO3, iron

and light output are only available at the surface) and want

to keep the variables we are cross-correlating spatially con-

sistent whenever possible (either all variables at the surface

only or all vertically integrated only). Although PB and PP

are obviously different biological quantities (PB is surface

phytoplankton biomass concentration and is directly affected

by grazing, while PP is the integrated product of growth

rate and biomass and is only indirectly affected by grazing

– see references cited in Table 1 for model equation details),

the direction of projected changes in the two variables are

highly similar in our regions of interest (Fig. 1a, b; Figs. S1–

S2 in Supplement). Some exceptions to this occur between

∼ 50 and 65◦ S in models GISS-E2-H-CC and CESM1-BGC

(Figs. S1–S2); here PP increases while PB decreases, sug-

gesting that the effects of top-down controls (grazing) win

out over the effects of bottom-up controls (nutrients, light,

temperature). Among the other models as well as other re-

gions within these two models, however, changes in bottom-

up controls appear to explain most of the projected phyto-

plankton response such that patterns of predicted PP and PB

change overlap significantly. Because of this and large uncer-

tainties in how well the models’ grazing parameterizations

approximate the real ocean due to their incomplete food-web

dynamics (see references cited in Table 1 for model equa-

tion details), we focus mostly on understanding the effects

of bottom-up controls within all of the models. One other

notable difference between PB and PP is that trends in PP

appear to be slightly more regionally consistent across the

models than trends in PB (Figs. S1–S2; Figs. 5–6), so that

whenever we look at relationships across models, we use PP

instead of PB. PP output is also available for a larger number

of the models.

3.1 Zonally banded all-model mean 100-year changes

(Fig. 1)

Predicted multi-model mean 100-year changes in both PB

and PP exhibit a zonally banded pattern similar to those

predicted by individual models alone (Figs. 1a, b, S1–S2;

Tables S2–S3 in Supplement). This leads to a natural divi-

sion of the SO into four zonally banded biomes separated

by switches in the sign of predicted PB and PP changes, as

follows:

1. Subtropical – Within the first zonal band (∼ 30 to

∼ 40◦ S), there is a predicted decrease in PB, PP, and

wintertime nitrate concentrations (Figs. 1c, S3). Here

shallower wintertime MLDs (Fig. S4) and resulting de-

creases in nitrate supply are associated with increases in

water column stratification and the climate-driven pole-

ward expansion of subtropical gyres observed across all

CMIP5 models (Meijers et al., 2012; Cabré et al., 2014).

2. Transitional – Within the second zonal band (∼ 40 to

∼ 50◦ S), the models predict an increase in PB and PP

with climate change, which we attribute to a shoaling

of the summertime MLD (which alleviates light limita-

tion) present during the peak of phytoplankton blooms

(Figs. 1d, S5), as well as an increase in surface iron

(Figs. 1e, S6).

3. Subpolar – Within the third zonal band (∼ 50 to

∼ 65◦ S), we ascribe a predicted drop in modelled PB

and PP over the 21st century to deeper summertime

MLDs (Figs. 1d, S5) and decreased summertime IPAR

(incident photosynthetically active radiation) (Figs. 1f,

S7) due to increased total cloud fraction (Figs. 1g, S8),

both of which exacerbate phytoplankton light limitation

in this region.

4. Antarctic – South of ∼ 65◦ S, a second region of pre-

dicted PB and PP increase is associated with enhanced

iron supply (Figs. 1e, S6) and increased light availabil-

ity due to accelerated melting of sea ice (Figs. 1f, S7,

S9).

www.biogeosciences.net/12/5715/2015/ Biogeosciences, 12, 5715–5734, 2015
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Figure 1. All-model mean 100-year changes. 100-year all-model mean changes in (a) maximum annual surface phytoplankton biomass (PB),

(b) average annual 100 m depth vertically integrated primary production (PP), (c) wintertime surface nitrate concentration, (d) summertime

mixed layer depth (MLD), (e) wintertime surface dissolved iron concentration, (f) summertime incident photosynthetically available radiation

(IPAR), (g) summertime percentage area of grid cell covered by clouds, and (h) average annual zonal wind stress. Hatched areas are where

greater than 80 % of model realizations agree on the sign of the change using a bootstrap significance test (see Sect. 2.2 for methodological

details). Zero contours for PP change are plotted over each map. The number of models (n) and the total model weight (w) taken into account

for each variable are listed in Fig. 5. Historical all-model mean maps are presented in Figs. S1–10.

These abovementioned factors are proximate physical

and biogeochemical drivers of predicted phytoplankton re-

sponses within the models, but what is the ultimate driver of

all of these physical and biogeochemical changes?

Historical and projected 21st century increases in the

strength of the principal mode of variability in the SO –

called the Southern Annular Mode (SAM) – due to a com-

bination of elevated CO2 concentrations and ozone depletion

could be one explanation. One highly agreed upon dynam-

ical change captured within all of the CMIP5 models anal-

ysed here is an intensification and poleward shift of the SO

westerly wind belt (Figs. 1h, S10) associated with an increas-

ingly positive phase of the SAM with future warming, as

seen both here (Fig. S11) and in previous work (e.g. Yin,

2005; Arblaster and Meehl, 2006; Russell et al., 2006; Gillett

and Fyfe, 2013; Zheng et al., 2013). This highly consistent

increase in wind stress (which is most pronounced in the

summer – plots not shown) south of 50◦ S may explain the

deepening of summertime MLDs south of 50◦ S, while the

decrease in wind stress between 30 and 50◦ S may explain

the shoaling of summertime MLDs in that region (Figs. 1d,

S5). These changes in MLD can then affect nutrient supply to

the surface, perhaps leading to the large decreases in surface

nitrate concentrations between 30 and 50◦ S (Figs. 1c, S3).

Warming, tropospheric stability changes, and southward-

shifted storm tracks can also lead to shifts in cloudiness (e.g.

Yin, 2005; Bender et al., 2012; Ceppi et al., 2014; Kay et al.,

2014), which may help explain the increase in summertime

cloud cover south of 50◦ S (Figs. 1g, S8) and the concomitant

decrease in summertime IPAR between 50 and 65◦ S across

the models (Figs. 1f, S7). South of ∼ 65◦ S in most models,

sea ice melt (see Figs. S9; Turner et al., 2013; Mahlstein et

al., 2013) allows more light to reach the surface of the ocean,

resulting in a net increase in IPAR despite concurrent cloud

cover increases. A robust analysis of the effects of SAM and

SO westerly wind stress changes on the various proximate

drivers we study here is out of the scope of this paper, but is

a key issue that should be addressed in future work.

As for the ultimate driver of increases in surface iron

concentrations, which contribute to increases in PB and PP

in the Transitional (∼ 40–50◦ S) and Antarctic (south of

65◦ S) bands, there may be other complicating factors at

work. Parameterizations of the marine iron cycle differ from

model to model and include processes such as atmospheric

dust deposition, phytoplankton-community dependent bio-

logical uptake and remineralization, vertical particle trans-

port, scavenging, and the release of iron from sediments (e.g.

J. K. Moore et al., 2013). While atmospheric dust deposition

Biogeosciences, 12, 5715–5734, 2015 www.biogeosciences.net/12/5715/2015/
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is kept constant in the CMIP5 simulations, other processes

listed above may change, thus altering surface iron invento-

ries. For example, the increase in iron in the 40–50◦ S Transi-

tional band can be explained by enhanced vertical supply due

to deeper wintertime mixed layers (Fig. S4) or by increases in

summertime water column stratification, which can trap and

concentrate iron deposited from the atmosphere closer to the

surface. On the other hand, Misumi et al. (2014) showed that

in the CESM1-BGC model (rcp8.5 scenario), a southward

expansion of the subtropical gyre and changes in low-latitude

iron utilization resulted in increased lateral advection of iron

into the SO over the 21st century. Another potential iron-

enhancing mechanism in the SO is increased release of iron

from sediments, a mechanism important within at least the

GFDL models (J. Dunne, personal communication, 2014).

3.2 Multiple timescale analysis within models

GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-MR

3.2.1 Interannual to decadal timescale analysis (Fig. 2)

To check the significance and robustness of the associa-

tions between phytoplankton abundance and the physical-

biogeochemical variables of interest (the bottom-up controls)

discussed in Sect. 3.1, we use regression and correlation anal-

ysis to study these associations in greater detail within three

individual models with well-established, complex ocean bio-

geochemical modules (GFDL-ESM2G, HadGEM2-ES and

IPSL-CM5A-MR). An important point to note is that multi-

model mean changes in a given variable may be dominated

by models with the biggest changes in some cases, so the

analysis of individual models here is helpful in better illumi-

nating particular relationships between variables.

In Fig. 2, we show scatter plots of PB versus our vari-

ables of interest on multiple timescales, across the four cho-

sen zonally banded biomes (as defined in Sect. 3.1). We use

only the grid points within each of the four zonal bands in a

given model where the 100-year change in PB is predicted

to go in the same direction as the entire band in the all-

model average. As an example, in Fig. 1a, we see that PB

is expected to increase with future warming in the Antarctic

band (south of 65◦ S) in the all-model average; accordingly,

we mask the grid points south of 65◦ S within each individ-

ual model where PB increases and study those grid points

alone to understand what is driving PB increases within the

south-of-65◦ S band as a whole. By this same procedure, we

mask and investigate only the areas where PB decreases be-

tween 30–40◦ S, where it increases between 40–50◦ S, where

it decreases between 50–65◦ S, and where it increases south

of 65◦ S. We undertake this masking procedure because we

would like to tease out the dominant driver of the net phy-

toplankton response within the zonal band of interest and

masking helps to further amplify the signal we are look-

ing for by focusing on what the majority of points we are

interested in are doing, thus effectively diluting the con-

founding effects of natural background variability. To con-

firm that masking does not significantly alter our results be-

sides by potentially enhancing the signal-to-noise ratio of

our correlations, we repeat any analyses (namely, Figs. 2–

4) involving masking with all (both masked and unmasked)

grid points. Results from these all-inclusive analyses agree

with those presented here for masked points only, but with

slightly weaker correlation coefficients between phytoplank-

ton biomass or productivity and a given driving variable of

interest in some cases, as expected (see discussion below).

After spatially averaging PB and our variables of inter-

est over the masked grid points within each zonal band,

we then created different time series representing multiple

timescales. To remove the effects of climate change and

isolate interannual variability, we subtracted a 25-year run-

ning mean from every spatially averaged yearly data point

within each scenario’s raw yearly time series (historical from

1911–2005, rcp8.5 from 2006–2100). To capture variability

and mechanisms which act on a longer than interannual but

shorter than decadal timescale in the absence of confound-

ing climate change effects, we took the 5-year running mean

of the raw yearly time series data and then subtracted a 25-

year running mean from each 5-year running mean-smoothed

annual value. Here we purposely chose to use detrended his-

torical scenario time series rather than preindustrial control

scenario time series (forced with constant preindustrial CO2

concentrations) for practical reasons (not all the models pro-

vided all the necessary variables in the preindustrial control

experiment). We did, however, prove that in at least model

GFDL-ESM2G, the interannual drivers affect phytoplankton

biomass in the same direction and with a similar magnitude

in the preindustrial control case and the detrended histori-

cal and rcp8.5 cases, as expected. Finally, to investigate and

emphasize the effects of climate change, we created a set of

historical and rcp8.5 “climate change” time series by taking

10-year averages (not running means, but rather averages of

non-overlapping 10-year intervals) of the same raw yearly

spatially averaged time series as before.

A quick summary of the making of Fig. 2 is as follows:

we spatially averaged PB and our driving variables of inter-

est over each masked zonally banded biome and temporally

correlated them across three distinct timescales of variabil-

ity. Only those variables of interest which were significantly

correlated with PB over at least two of the three (interan-

nual, 5-year and decadal) studied timescales are shown (see

Fig. S12 for examples of how correlations between PB and

variables which were not chosen looked in comparison to the

correlations between PB and the variable which was cho-

sen). The driving variables shown are thus the ones whose

relationships with PB hold on interannual, five-year, as well

as longer-term climate change timescales in both the his-

torical and rcp8.5 scenarios. Significantly, this implies that

changes in these particular variables are the likely drivers of

changes in phytoplankton biomass on an interannual as well

as a longer-term timescale associated with future warming.
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Figure 2. Drivers of phytoplankton biomass on multiple timescales. Scatter plots of PB versus the listed variable on interannual and 5-

year (both with their climate change signals removed) as well as 10-year timescales. Each column corresponds to a different model, while

each row corresponds to a different zonal band. Slopes of the historical and rcp8.5 10-year average best-fit lines are listed. Only variables

with significant (p < 0.05) best-fit lines on at least two out of the three timescales studied (interannual, 5-year, and 10-year) are shown.

Best-fit lines are drawn only when correlations are significant (p < 0.05). Variables tested are all those listed in Table 2. ∗Wintertime MLD

was also significant on all three timescales. ∗∗Summertime MLD and avg annual cloud cover were also significant on all three timescales.
∗∗∗Wintertime MLD was also significant on all three timescales. ∗∗∗∗The y axis here is PP (µmol m−2 s−1) instead of PB because no

variables were significantly correlated on at least two timescales with PB. Summertime IPAR was also significant on the same timescales as

average annual sea ice cover.

It is important to note here that these inferred linkages are

based only on correlations, but in all cases are also supported

by model equations and previous studies.

PB between 30 and 40◦ S is strongly positively corre-

lated with maximum annual surface nitrate concentration in

all three models on all timescales (Fig. 2a). This suggests

that predicted future decreases in PB between 30 and 40◦ S

are largely driven by climate warming-induced decreases in

macronutrient supply to the surface during winter. This de-

creased supply is in turn a consequence of increased water

column stratification and decreased maximum annual win-

tertime MLD associated with future warming, as was sug-

gested by the analysis of multi-model mean maps discussed

in Sect. 3.1.

Between 40 and 50◦ S, projections of enhanced PB are

driven by either increases in iron concentrations (GFDL-

ESM2G and IPSL-CM5A-MR) or reduced light limitation

associated with shoaling of the summertime mixed layer

(HadGEM2-ES) (Fig. 2b), again in agreement with the anal-

ysis in Sect. 3.1.

Within the 50–65◦ S band, where PB is predicted to de-

crease across all three models, light and iron are the most

important limiting factors (Fig. 2c). For GFDL-ESM2G, in

regions within this band where PB decreases with climate

change, cloud cover (which is negatively correlated with PB

– plot not shown) increases, leading to a concomitant de-

crease in surface light availability, which is positively corre-

lated with PB (Fig. 2c). Furthermore, in both GFDL-ESM2G

and HadGEM2-ES, the summertime MLD is predicted to

deepen with climate change, creating an even more light-

limited environment for phytoplankton here (Fig. 2c), as was

deduced using multi-model means in Sect. 3.1. In contrast
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to the first two models and missing from the analysis in

Sect. 3.1, IPSL-CM5A-MR’s wintertime surface iron con-

centrations appear to play the biggest role in determining PB

between 50 and 65◦ S (wintertime MLD was also well cor-

related with PB on all studied timescales here, most likely

because it drives the supply of iron from the deep ocean)

(Fig. 2c).

South of 65◦ S, iron is significantly positively correlated

with PB on all three timescales within the models GFDL-

ESM2G and IPSL-CM5A-MR (Fig. 2d), as was expected

from multi-model mean change analyses in Sect. 3.1. For

HadGEM2-ES, both average annual sea ice fraction and

maximum annual IPAR were significantly correlated with PP

south of 65◦ S, such that available light at the ocean surface is

likely the limiting factor within this model’s Antarctic band.

An increase in IPAR due to a decrease in sea ice fraction

is thus the most probable cause of projected phytoplankton

abundance increases here, again in agreement with the rea-

soning in Sect. 3.1.

In sum, these findings from Fig. 2 agree well with those

deduced from Fig. 1, as discussed in Sect. 3.1. In particu-

lar, within each zonally banded biome, the proposed drivers

of projected phytoplankton responses in the all-model means

are the same ones driving phytoplankton responses within the

individual models studied here (with the possible exception

of the 50–65◦ S band, where iron appears to play a role within

IPSL-CM5A-MR, but not in the all-model mean). Results for

Fig. 2 were the same but with slightly smaller correlation co-

efficients when using all (both masked and unmasked) grid

points (see Fig. S13).

3.2.2 Centennial timescale analysis (Fig. 3)

To confirm that the bottom-up controls on PB proposed in

Sects. 3.1 and 3.2.1 hold across the four SO biomes on even

longer 100-year timescales, we undertake a spatial corre-

lation analysis within the same three models as before. In

Fig. 3, we show the results of this spatial correlation analy-

sis in which we look at the relationship between 100-year

changes in PB and the variables of interest at every grid

point within each masked latitudinal band. Each dot in a scat-

ter plot represents a masked grid point which undergoes a

100-year change in a variable of interest and an associated

change in PB at that same grid point. By plotting only those

variables with the largest magnitude correlation coefficients

when correlated with PB, we are able to discover which vari-

ables affect PB most in each latitudinal band over 100-year

timescales within each of the three models studied in detail

(see Fig. S14 for an example of how correlations between

PB and variables not chosen looked in comparison to corre-

lations between PB and the variable chosen). For each cho-

sen variable, scatter plots of either relative or absolute 100-

year changes are shown, depending on which type of change

generated the clearest relationship between PB and the vari-

able of interest. Least squares best-fit lines are drawn for each

scatter plot to help visualize the slopes and enable compar-

ison with the corresponding slopes in Fig. 2. Because it is

difficult to accurately test for significance in this type of spa-

tial correlation (neighbouring grid points are likely highly

correlated, leading to large significance overestimates), these

regression lines may or may not be statistically significant.

Thus, the lines are meant only to serve as a qualitative vi-

sual guide. As in Fig. 2, Fig. 3 showed the same results

but with potentially slightly smaller correlation coefficients

when using all (both masked and unmasked) grid points (see

Fig. S15).

Together, Figs. 2 and 3 show that the variables of inter-

est within each zone that drive PB on decadal and shorter

timescales also tend to be those that drive PB on an even

longer 100-year climate change timescale. There are, how-

ever, a couple of important discrepancies. The first occurs in

GFDL-ESM2G within the 50–65◦ S band, where light limi-

tation is shown to be most important on decadal and shorter

timescales (Fig. 2c) while iron limitation appears to take over

on a 100-year timescale (Fig. 3c). This suggests the pres-

ence of iron–light co-limitation in this region within GFDL-

ESM2G, in agreement with previous studies (e.g. Sunda and

Huntsman, 1997; Boyd et al., 2001; Feng et al., 2010). The

second discrepancy occurs in IPSL-CM5A-MR within the

south-of-65◦ S band, where iron limitation is most important

on decadal and shorter timescales (Fig. 2d) while increases in

sea surface temperature (SST) become the dominant driver of

PB increases on a 100-year timescale (Fig. 3d) (though iron

is still somewhat important on the centennial timescale with

R = 0.703 when spatially correlated with PB change – plot

not shown).

In sum, we find that for the most part, the mechanisms

within each zonal band that determine PB on decadal and

shorter timescales tend to be those that determine PB on

longer, centennial climate change-driven timescales as well.

The magnitude of each driver’s effect on phytoplankton

biomass (as seen from the slopes of best-fit lines in Figs. 2–3,

summarized in Table 3) also remains the same across the rel-

evant timescales, further supporting the notion that the same

mechanisms act on the different timescales studied. Impor-

tantly, the magnitude of 100-year changes in the chosen vari-

ables of interest are also hypothetically large enough to drive

most of the 100-year change in PB. We note, however, that in

the real ocean, phytoplankton adaptation and evolution could

alter the driver–response relationship observed at the interan-

nual scale within these models.

3.3 Consistency of trends and mechanisms driving

phytoplankton changes across all models

3.3.1 Drivers of 100-year phytoplankton changes

across all models (Fig. 4)

Finally, we ask whether the mechanisms proposed in

Sects. 3.1 and 3.2 hold across all 16 CMIP5 models with
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Figure 3. Spatial correlation scatter plots of 100-year changes in phytoplankton biomass versus 100-year changes in driving variables of

interest. Each column corresponds to a different model, while each row corresponds to a different zonal band. Only the variable of interest

with the largest magnitude correlation coefficient is plotted for each zone within each model. Variables tested are all those listed in Table 2.

Relative changes are plotted for PB vs. nitrate, while absolute changes are plotted for PB vs. all other variables. Best-fit lines are forced to

have a zero-intercept. Correlation coefficients and slopes of best-fit lines corresponding to absolute 100-year changes (even for nitrate) to

facilitate comparison with slopes in Fig. 2 are listed beneath the variable names.

explicit phytoplankton biology. To answer this, we plot 100-

year changes in PP versus 100-year changes in chosen vari-

ables of interest across all of the models and look for among-

model agreement as to the effect of these variables on PP

within each masked zonal band (Fig. 4). These variables

were chosen by first plotting all of the potential drivers of

interest (listed in Table 2) and then choosing the ones which

showed the strongest correlations or most consistent direc-

tions of changes across the models, guided by the relation-

ships found in Figs. 1–3. Here each point in a scatter plot

represents a 100-year change in PP versus a 100-year change

in the variable of interest spatially averaged over the given

model’s masked zonal band. We box only the points driven

by processes which could be logically predicted from previ-

ously discussed mechanisms or model equations. For exam-

ple, although almost all models undergo increases in cloud
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Figure 4. Drivers of 100-year phytoplankton productivity changes across CMIP5 models, by model and latitudinal band. Scatter plots of each

model’s 100-year relative change in PP versus its corresponding relative change in the listed variable within each zonal band. Each colour

represents a different zonal band, while each symbol represents a different model. Coloured boxes enclose points which behave in line with

our expectations and proposed mechanisms based on Figs. 1–3. Best-fit lines are drawn only when correlations are significant (p < 0.05).

fraction and primary production south of 65◦ S, we do not

box the orange points in the PP versus average annual cloud

cover plot (Fig. 4e) because we know that an increase in

cloud fraction would decrease light availability and conse-

quently lead to decreases, not increases, in primary produc-

tion. Thus, we can safely ignore changes in cloud cover as a

driver of changes in primary production among the models

south of 65◦ S and instead view these changes in cloud cover

as merely a consequence of underlying dynamical changes

already occurring in that region. Via this technique, we find

a consistent set of mechanisms driving 100-year changes in

productivity across the CMIP5 model suite (highlighted by

coloured boxes in Fig. 4), in agreement with the mechanisms

brought to light by the analyses in Sects. 3.1 and 3.2.

Nitrate emerges as the driver for changes in PP within the

30–40◦ S band across all models (i.e. all red points lie in the

third quadrant and within the red box in Fig. 4b). Models

with greater relative decreases in wintertime surface nitrate

concentrations undergo significantly (p < 0.05) greater de-

creases in average production within the 30–40◦ S band. It

is worth noting that this is the only significant, highly lin-

ear intermodel relationship within any of the zonal bands.

In the rest of the bands, we mostly interpret only the sign,

rather than the linearity, of PP changes related to the driv-

ing variables of interest across models. Within the 40–50◦ S

band, in general, models with increases in relative iron con-

centration and decreases in summertime MLD also experi-

ence relative increases in PP (Fig. 4a, c, purple boxes). Mod-

els NorESM1-ME and IPSL-CM5A-LR are exceptions to

this, however, in that PP still increases while iron concen-

trations decrease (Fig. 4c, purple unboxed). In these models,

increases in light availability due to shoaling of summertime

MLDs (Fig. 4a) and decreases in cloud cover (Fig. 4e) are

large enough to cancel out the PP-suppressing effects of iron

concentration decreases (Fig. 4c) between 40 and 50◦ S. Fur-

ther solidifying the importance of climate-driven changes in

light availability within the 50–65◦ S band, models predict-

ing relative increases in summertime MLD or average annual

cloud cover, along with decreases in maximum annual IPAR,

also predict relative decreases in PP in this region (Fig. 4a,

d, e, green boxes). Iron also emerges as a potential driver of

PP decreases within the 50–65◦ S band, but not across all of

the models (Fig. 4c). In models which undergo PP decreases

concurrent with iron concentration increases (GISS-E2-R-

CC, GISS-E2-H-CC, HadGEM2-CC, HadGEM2-ES, IPSL-

CM5A-LR, NorESM1-ME, and MPI-ESM-LR; see Fig. 4c,

green unboxed), reductions in light availability tend to be rel-

atively large such that they win out in determining overall

PP change. For example, GISS-E2-R-CC exhibits the largest

relative iron increase between 50 and 65◦ S out of all the

models (Fig. 4c), but also the greatest relative summertime

MLD deepening (Fig. 4a), leading to vast reductions in light

supply to phytoplankton during the most productive time of

year. An increase in both IPAR and iron supply across the

models results in PP increases south of 65◦ S, as highlighted

by the orange boxes in Fig. 4c and d. Models IPSL-CM5A-
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Table 3. Summary of the best-fit line slopes between phytoplankton biomass and given variables of interest, corresponding to Figs. 2 and 3.

The first of the three numbers in each table entry is the historical 10-year average slope between PB and the given variable of interest, while

the second number is the rcp8.5 10-year average slope, both from Fig. 2. The third number in each entry is the 100-year change spatial

correlation slope from Fig. 3. For variable units, see Figs. 2 and 3.

HadGEM2-ES GFDL-ESM2G IPSL-CM5A-MR

30–40◦ S Nitrate max: 1.38, 1.37, 1.14 Nitrate max: 0.57, 0.73, 0.48 Nitrate max: 0.32, 0.44, 0.33

40–50◦ S MLD min: −0.63, −0.22, −0.22 Iron max: 6.04e-4, 3.20e-4, 2.59e-4 Iron max: 1.12e-3, 1.12e-3, 1.07e-3

50–65◦ S MLD min: −0.18, −0.25, −0.18 IPAR max: 1.40e-2, 5.77e-3

Iron max: 5.02e-4

Iron max: 2.23e-3, 9.77e-4, 1.16e-3

South of 65◦ S SIC avg: −2.48e-2, −4.49e-2, −4.63e-2 Iron max: 6.43e-4, 5.59e-4, 6.19e-4 Iron max: 1.07e-3, 1.12e-3

SST max: 0.83

LR, IPSL-CM5A-MR, and GFDL-ESM2G deviate from this

trend slightly in that they experience small relative decreases

in IPAR south of 65◦ S, while still experiencing increases in

PP. However, these three models also exhibit shoaling of the

summertime MLD here, which would increase light avail-

ability, likely cancelling the effects of decreased IPAR at the

surface. Note that for all models except for the three just

mentioned, IPAR increases despite an increase in cloud cover

(Fig. 4e, orange dots). This suggests that sea ice fraction,

rather than cloud cover, is the most important factor in de-

termining IPAR changes in this region within most models.

As sea ice cover declines near the Antarctic continent within

the models (Fig. S9), more light is able to reach the ocean

surface, ultimately leading to increased IPAR and PP here.

While general agreement on the mechanisms driving 100-

year phytoplankton changes among models is high, one note-

worthy result is that there appear to be two distinct groups

of models: one group with phytoplankton which are highly

sensitive to changes in iron concentrations south of ∼ 40◦ S

(consisting of GFDL-ESM2, CESM1-BGC, IPSL-CM5A,

CMCC-CESM – see Fig. S16, for models where zonal PB

or PP changes closely follow zonal iron changes) and a sec-

ond group with phytoplankton which are less iron sensitive

(NorESM1-ME, HadGEM2, GISS-E2, MPI-ESM) or do not

include iron at all (CanESM2, MIROC-ESM, MRI-ESM1).

Iron cycling within the ocean remains poorly characterized

and is typically crudely parameterized (if at all) compared to

the macronutrients. These models also differ considerably in

many aspects of their treatment of iron including but not lim-

ited to the magnitude and location of sources (from both the

atmosphere and the sediments), ligand dynamics, scavenging

losses, and iron to carbon biomass ratios (J. K. Moore et al.,

2013). It is out of the scope of this paper to assess all of these

differences, but at first glance, it appears that the models

with more complex iron cycling dynamics have phytoplank-

ton that are more sensitive to iron changes. For example, the

more iron-sensitive GFDL-ESM2, CESM1-BGC, and IPSL-

CM5A models have variable iron to carbon ratios and in-

clude sedimentary sources of iron (however crudely parame-

terized) (Dunne et al., 2013; J. K. Moore et al., 2013; Aumont

and Bopp, 2006), while the less iron-sensitive NorESM1-

ME, HadGEM2, GISS-E2, MPI-ESM models do not (Ass-

mann et al., 2010; Collins et al., 2011; Gregg, 2008). Mod-

els within the more iron-sensitive group tend to exhibit less

well defined latitudinally banded 100-year phytoplankton

changes, while the other models tend to exhibit a more ob-

viously banded PB and PP change structure (see Figs. S1–

2). These less iron-sensitive models also frequently display

iron and phytoplankton changes of opposite signs south of

40◦ S (Fig. 4c, unboxed purple and green points; Fig. S16).

In these cases, changes in light availability due to changes

in MLD and IPAR are able to explain predicted phytoplank-

ton trends (see Fig. S16, for models where zonal PB or PP

changes closely follow zonal MLD and/or IPAR changes).

Within the group of models with iron-sensitive phytoplank-

ton, changes in physical variables altering light availability

are also occurring, but their effects are much less pronounced

because iron plays a more dominant role. As was discussed

in Sect. 3.1, changes in MLD and IPAR in both groups of

models are in turn driven by first-order changes in ocean–

atmosphere dynamics associated with climate warming and

an increasingly positive SAM index, such as westerly wind

intensification, alterations to tropospheric stability and ther-

mal structure (e.g. Ceppi et al., 2014; Kay et al., 2014), and

poleward displacement of extratropical storm-tracks and as-

sociated clouds (e.g. Yin, 2005; Bender et al., 2012).

3.3.2 Spatial agreement on projected changes across all

models (Figs. 5-6)

To get a wider sense of spatial agreement among models

throughout the SO, we look at maps of intermodel consis-

tency in projected SO phytoplankton trends and their pro-

posed drivers across all 16 CMIP5 models with ocean bio-

geochemistry in Fig. 5 (complementary to Fig. 1). The maps

in Fig. 5 detail the fraction of model realizations (via the

bootstrap technique explained in Sect. 2.2) that predict a pos-

itive trend in the listed variable at each grid point. Thus, the
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Figure 5. Spatial agreement among models on the sign of predicted trends, represented by maps of the fraction of model realizations that

agree on a positive 100-year change in variables of interest at each grid point, based on a bootstrap analysis test (see Sect. 2.2). The closer

to 1 the grid point, the greater the agreement among models on an increase. The closer to 0 the grid point, the greater the agreement among

models on a decrease.

closer the fraction to 1 at a given location, the greater the

intermodel agreement on a positive trend at that point, and

the closer the fraction to 0, the larger the intermodel agree-

ment on a negative trend at that point (0.5 denotes the great-

est amount of intermodel disagreement, where 50 % of model

realizations predict an increasing trend and 50 % predict a de-

creasing trend). To also get a better idea of how well models

agree with one another within each zonal band, Fig. 6 shows

zonally averaged all-model mean projected trends (zonal av-

erages of Fig. 1) and zonal band averaged intermodel agree-

ment percentages (areal averages over each zonal band of

Fig. 5, listed above each zonal band accompanied by an ar-

row indicating the direction of the trend agreed upon by the

majority of model realizations). Only percentages for vari-

ables which are most important within each zonal band (as

determined by Figs. 1–4) are listed and as such, represent a

summary of the important drivers of projected phytoplankton

change discussed here. Agreement among models is highest

at the centre of each zonal band (Fig. 5), but decreases to-

wards the edges due to offsets in the precise boundaries of

water masses among the models. These slight offsets lower

the zonal band-average agreement among models shown in

Fig. 6, such that if one were able to perfectly compare water

masses among models, consistency in predicted trends within

each zonally banded biome would likely be even higher. Fig-

ure S17 complements Fig. 6 by showing zonally averaged

all-model historical means and 100-year absolute changes in

all variables of interest.

Within the subtropical (30 to 40◦ S) band, the majority of

model realizations predict a decrease in both PB (64 %) and

PP (62 %), accompanied by a highly consistent decrease in

wintertime nitrate supply (77 %) (Figs. 5a–c, 6). This pro-

jected change agrees with the general expectation from pre-

vious theoretical and modelling studies that warming should

stratify the water column, decrease macronutrient supply,

and consequently lower biological productivity within the

subtropics (e.g. Sarmiento et al., 2004b; Doney, 2006; Cabré

et al., 2014). Within the transitional (40◦ S to 50◦ S) band,

most of the model realizations predict an increase in PP

(70 %) while only around half of the models predict an in-

crease in PB (55 %) (Figs. 5a–b, 6). These predicted shifts are

accompanied by a decrease in summertime MLD (71 %) and

an increase in wintertime iron concentration (64 %) (Fig. 5c–

d; Fig. 6). Because of a predicted poleward shift of the west-

erly winds in all of the models (Figs. 5h, S10), winds will

weaken here, shoaling the MLD and prolonging the grow-

ing season by allowing phytoplankton to remain within the

well-lit surface layers for longer. Thus, enhanced future phy-

toplankton populations within this transitional band are not

unexpected. Within the subpolar (50 to 65◦ S) band, mod-
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Figure 6. Summary of predicted phytoplankton responses and their drivers within each zonal band. Here each coloured line represents

normalized 100-year all-model mean zonal changes in the listed variable. Each variable was normalized by first computing the all-model

mean zonally averaged 100-year change at every latitude and then dividing by the absolute value of the largest of these changes occurring

south of 30◦ S. Listed above each band is the spatially averaged percentage of model realizations that agree on the sign of the change (based

on a bootstrap analysis – see Sect. 2.2 and Fig. 5) in each variable over that band. The coloured arrows denote the direction of the trend

agreed upon by the majority of models. The number of models (n) and the total model weight (w) taken into account for each variable are

listed in Fig. 5.

els are not as consistent in their predictions of phytoplank-

ton changes compared with the other regions. The major-

ity of model realizations predict an increase in PP (59 %),

while 55 % predict a decrease in PB (Fig. 5a–b). Predicted

changes in driving variables are somewhat more consistent

within this region, however, with a decrease in summertime

MLD predicted by 56 % of model realizations, a decrease

in IPAR predicted by 71 %, and an increase in cloud cover

predicted by 60 % (Figs. 5c, f, g, 6). With a projected pole-

ward shift of the westerlies, cloud cover should increase (due

to a concomitant shift in storm-track cloudiness and/or al-

tered tropospheric stability with future warming) and MLDs

should deepen as winds intensify within this band, both of

which act to decrease phytoplankton populations, exactly as

we see here. Within the Antarctic (south of 65◦ S) band, 76 %

of model realizations predict an increase in PP, while 64 %

predict an increase in PB, both of which are associated with

projected increases in wintertime iron concentrations (72 %)

and summertime light availability (59 %) (Figs. 5a–b, e–f,

6). This goes with our expectation that the melting of sea ice

projected by the models will lead to higher amounts of light

reaching the ocean surface and that intensified westerlies will

bring a larger supply of upwelled iron to the surface in this

region, both of which act to increase phytoplankton popula-

tions, just as we see here.

3.4 Linking CMIP5 model projections to observations

Because the same interannual mechanisms for phytoplank-

ton growth hold on 5-year, decadal, and even longer-term

timescales within the CMIP5 models, it is reasonable to com-

pare recent observations to future model projections if it is

also assumed that short-term drivers of observed phytoplank-

ton variability propagate up to longer-term timescales in the

real ocean as well. However, it is out of the scope of this pa-

per to compare recent observations to historical model output

from the same period. Instead, we would like to understand

how our modelled 21st century SO predictions compare to

observed mechanisms and trends thus far.

The SO satellite chl record is not yet long enough to sep-

arate the effects of climate change from those of interan-

nual processes driven by the leading modes of shorter-term

variability in the SO (e.g. Boyd et al., 2008; Strutton et al.,

2012; Henson et al., 2010; Beaulieu et al., 2013), the most

important being the SAM (Thompson and Solomon, 2002);

in situ data from field campaigns suffer from the same tem-
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poral constraint. Furthermore, while models generate per-

fectly continuous data, observations tend to contain many

more gaps, such that a longer observational time series is

needed to detect significant trends compared to model data

when the same threshold of significance is applied. For these

reasons, many observational studies have looked at the ef-

fects of SAM and other modes of variability, rather than

climate change, on phytoplankton abundance and productiv-

ity. These types of studies can, however, still provide essen-

tial insight into the mechanisms driving possible longer-term

changes. For example, as was mentioned before, the SAM

index is expected to become increasingly positive as SO

westerlies strengthen and move poleward with future warm-

ing (see Fig. S11 for projected SAM time series within the

CMIP5 models). We have shown here that at least within the

CMIP5 models, mechanisms responsible for changes in phy-

toplankton biomass on interannual and five-year timescales

are also responsible for projected 100-year trends within the

SO. Thus, understanding the effects of a more positive SAM

on SO phytoplankton may help predict the direction of phy-

toplankton changes in a warmer future climate.

Another important caveat to keep in mind when looking

at observational data is that observations rarely span consis-

tent time frames, making it difficult to compare studies in

a perfectly congruent way. For instance, it has been shown

that the magnitude and sign of observed trends can be very

sensitive to the start and end years analysed (e.g. Fay et

al., 2014). Thus, rather than directly comparing recently ob-

served trends with 21st century CMIP5 projections, we seek

only to qualitatively understand whether there are common

mechanisms and directions of change within the observa-

tional data and model projections. The observational studies

cited in the following paragraphs are visually and tabularly

summarized in Fig. 7 and Table S4.

Analysing satellite data over years 1997–2004, Loven-

duski and Gruber (2005) (LG2005) found a negative corre-

lation (though not significant) between SAM and chl con-

centrations within the SO Subtropical Zone (∼ 30–40◦ S),

due to increased stratification and decreased upwelling of

macronutrients during positive SAM periods. Assuming

that SAM will continue to increase with future warm-

ing and that the same driving mechanisms will hold on

timescales ranging from interannual to centennial, phyto-

plankton biomass would be expected to decrease over the

21st century within the Subtropical Zone (∼ 30–40◦ S) due

to enhanced macronutrient limitation, which is indeed what

the CMIP5 models predict.

Via a combination of satellite, reanalysis and model data,

Johnston and Gabric (2011) (JG2011) found that both sum-

mertime chl concentrations and primary productivity in-

creased within the Australian sector between 40 and 50◦ S

over the years 1997–2007, which they attribute to increased

water column stratification or enhanced mineral dust de-

position from Australia. Gregg et al. (2005) (G2005) like-

wise found an increase in chl concentrations just south of

Australia (∼ 35–55◦ S) from satellite data over the period

1998–2003, accompanied by an increase in springtime SST,

likely associated with a shoaling of the mixed layer. Us-

ing satellite chl concentrations (1997–2010) calculated in

two different ways, Siegel et al. (2013) (S2013) also re-

ported an increase in chl concentrations between ∼ 40 and

50◦ S. These proposed mechanisms and directions of trends

are consistent with those of the CMIP5 models, which pre-

dict that increased dissolved iron concentrations together

with decreased light limitation due to shallower MLDs dur-

ing blooms will drive 21st century phytoplankton increases

within the 40–50◦ S band.

From satellite data (1997–2004), LG2005 found a signif-

icant negative correlation between SAM and chl concen-

trations within the ∼mid-40 to mid-50◦ S latitudes below

Australia, which they ascribe to increased light limitation

due to deeper summertime mixed layers in positive SAM

phases. Consistent with LG2005 and an increasingly positive

SAM index, Takao et al. (2012) (T2012) found a decreas-

ing trend in summertime net primary productivity within

the Indian Ocean sector of the Polar Frontal Zone (cen-

tred slightly north of ∼ 55◦ S) using satellite ocean colour

data from 1997–2007. Within the Australian sector, JG2011

observed similar decreases in summer and springtime chl

concentrations between 55–60◦ S from 1997–2007, allegedly

due to a decrease in the northward Ekman transport and

supply of iron here. Based on both in situ shipboard mea-

surements and satellite-derived chl concentrations, Montes-

Hugo et al. (2009) (MH2009) also reported a decrease in

phytoplankton biomass between 1978–1986 and 1998–2006

within the northern subregion of the West Antarctic Penin-

sula (61.8 to 64.5◦ S) because of deeper summertime mixed

layers, in turn driven by stronger winds and decreased sea ice

extent. Compiling net haul data from nine different countries,

Atkinson et al. (2004) (A2004) found significant decreases in

krill density between 1976 and 2003 within the southwest At-

lantic sector of the SO between ∼ 50 and 65◦ S, which they

attributed to decreases in phytoplankton populations. These

findings fit with the previously discussed CMIP5 model pre-

dictions of 21st century decreases in phytoplankton biomass

between∼ 50 and 65◦ S, which we attribute to more stressful

light (as in LG2005 and MH2009) and/or iron conditions for

phytoplankton (as in JG2011).

In the Antarctic Zone (south of ∼ 60◦ S), Ayers and Strut-

ton (2013) (AS2013) found a correlation between a more

positive SAM and increased upwelling of nutrients based

on multiple repeat hydrographic sections. LG2005 found a

similar positive correlation between SAM and chl concen-

trations here due to increased upwelling and iron supply in

positive SAM periods (also in agreement with a modelling

study by Hauck et al., 2013). Again, assuming that SAM will

continue to increase with future warming and that the same

driving mechanisms will hold on timescales ranging from in-

terannual to centennial, we expect increases in iron supply

to drive phytoplankton biomass increases south of ∼ 60◦ S
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Figure 7. Observed phytoplankton trends and variability. (a) Summary of past studies looking at trends and SAM-driven variability in

phytoplankton biomass and productivity. Orange/red regions are areas where past studies have found positive trends in phytoplankton biomass

or productivity, whereas blue regions are areas where past studies have found negative trends. Each coloured region or point is labelled with

the corresponding publication. See Table S4 for further details on each study. (b) Average monthly SeaWiFS chl concentrations, along with

yearly trends in (c) chl, (d) summertime cloud cover from ERA-INTERIM reanalysis, and (e) summertime MLD from Hadley reanalysis.

Hatching denotes regions where trends calculated as least-squares best-fit lines to the time series are significant using a two-tailed t test at

p < 0.05.

with future warming, which is indeed what the CMIP5 mod-

els predict. In terms of trends, MH2009 report an increase

in southern West Antarctic Peninsula (63.8 to 67.8◦ S) sum-

mertime phytoplankton populations between 1978–1986 and

1998–2006, which they ascribe to decreased light limitation,

driven by a decrease in cloudiness and wind intensity and an

increase in the number of ice-free summer days. Meanwhile,

S2013 observed a thin band of chl increase around ∼ 65◦ S

over the years 1997–2010. These observations are also con-

sistent with future CMIP5 model projections, which predict

that decreased sea ice cover will drive phytoplankton abun-

dance increases south of ∼ 65◦ S in spite of an increase in

cloud cover (contrary to the decrease in cloudiness measured

by MH2009). Lastly, Smith and Comiso (2008) (SC2008)

calculate an increase in annual primary productivity over the

entire Southern Ocean (defined as south of 60◦ S) between

1997 and 2006, while Arrigo et al. (2008) (A2008) calcu-

late no significant trend over the same period. The discrep-

ancy between these two works is partly due to the fact that

A2008 define the Southern Ocean as south of 50◦ S instead

of 60◦ S, and the region in between 50–60◦ S underwent a

decrease in productivity over both studies’ time periods (re-

ducing the magnitude of the increasing trend over the rest

of the SO), again consistent with model projections of fu-

ture phytoplankton biomass decrease between 50–65◦ S and

increase south of 65◦ S.

To conduct our own analysis, we obtained monthly global

satellite chl fields generated by the latest version of Sea-

WiFS’ (Sea-viewing Wide Field-of-view Sensor) band-ratio

algorithm (OC4v6) (http://oceancolor.gsfc.nasa.gov/cgi/l3)

from September 1997 to December 2010. The linear trend

in Fig. 7c was calculated from yearly-averaged monthly chl

anomalies, which ensures minimal autocorrelation. To look

at trends in observed summertime MLD, monthly ocean tem-

perature and salinity reanalysis products from the Met Of-

fice Hadley Centre’s EN3 data set (http://www.metoffice.gov.

uk/hadobs/en3/) were used to calculate minimum monthly

MLDs for each year from 1950 to 2013. To look at trends

in observed summertime cloud cover, synoptic monthly

mean ERA-INTERIM (http://www.ecmwf.int/en/forecasts/

datasets/era-interim-dataset-january-1979-present) reanaly-

sis products of total cloud cover from December 1980 to

February 2013 were averaged over the summer months (De-

cember to February) of each year to generate a yearly sum-

mertime cloud cover time series.

We found that recently observed spatial distributions of SO

chl trends over the SeaWiFS period (1998–2010) (Fig. 7b, c)

generally correspond well with CMIP5 all-model mean pro-
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jections (Fig. 1a, b), with the largest observed chl increases

occurring between ∼ 40 and 50◦ S and south of ∼ 65◦ S

and decreases occurring between ∼ 50 and 65◦ S. We also

found that spatial distributions of recent trends in summer-

time MLD and cloud cover generally match with CMIP5

model projections as well. For example, the largest observed

increases in summertime MLD (over the years 1950–2013)

and cloud cover (over the years 1980–2013) occur south of

∼ 50◦ S, while the largest decreases occur north of ∼ 50◦ S

(Fig. 7d, e compared with Fig. 1d, g, respectively).

In sum, the observed spatial distribution in trends of phy-

toplankton productivity, MLD and cloud cover over the past

few decades qualitatively matches the latitudinally banded

structure of the respective 100-year 21st century trends

predicted by the CMIP5 models. We have found that (a)

in CMIP5 simulations, interannual effects propagate up to

100-year timescales and (b) drivers for short-term biomass

change are similar in models and observations within indi-

vidual zonally banded biomes. If the CMIP5 model mecha-

nisms and projections are to be trusted, then this suggests that

observations may already contain a climate change signal

even though this signal cannot be teased apart from decadal

variability and shorter-term noise just yet (e.g. Henson et al.,

2010). In agreement with discussions above, the fact that

long-term model projections appear to agree with the sign

of observed SAM-driven effects throughout the SO further

suggests that an increasingly positive SAM may be respon-

sible for the predicted zonally banded pattern of phytoplank-

ton biomass changes in the models, though further work is

needed to precisely quantify SAM’s contribution to PB and

PP changes and variability within the CMIP5 model suite.

4 Conclusions

The 16 CMIP5 models with explicit phytoplankton ecology

predict a zonally banded pattern of 21st century phytoplank-

ton biomass and productivity changes within the Southern

Ocean: a decrease in the subtropical band (∼ 30–40◦ S), an

increase in the transitional band (∼ 40–50◦ S), a decrease

in the subpolar band (∼ 50–65◦ S), and an increase in the

Antarctic band (south of∼ 65◦ S). In line with previous stud-

ies, light (controlled by cloud cover, summertime MLD dur-

ing blooms, and sea ice fraction) and iron supply are found to

be the most important factors driving phytoplankton changes

in the transitional and subpolar Southern Ocean (south of

∼ 40◦ S), while nitrate is found to be the most important driv-

ing factor in the subtropical Southern Ocean (∼ 30–40◦ S).

Shifts in these driving variables consistently bring about

changes in phytoplankton abundance and production on mul-

tiple timescales. In particular, within a given zonally banded

biome in an individual model, the same mechanisms are gen-

erally responsible for phytoplankton biomass changes on an

interannual, decadal and 100-year basis. This suggests that

the mechanisms affecting shorter-term phytoplankton vari-

ability, which can in principle be gauged from in situ or

satellite observations, are also likely to be the mechanisms

responsible for climate-driven phytoplankton changes over

the 21st century. It is important to note that the relationships

between phytoplankton responses and their potential drivers

discussed here are based on correlative analysis and thus do

not perfectly prove causation. It is promising, however, that

in all cases the significant and most strongly correlated phy-

toplankton and potential driver relationships matched with

expectations based on both previous studies and model equa-

tions.

Twenty-first century trends in phytoplankton productiv-

ity predicted by the CMIP5 models go in the same direc-

tion as observed trends over the last couple of decades and

tentatively agree with the sign of established SAM-driven

changes. This suggests that an increasingly positive SAM

may be responsible for the projected zonally banded trends in

phytoplankton productivity and biomass that we observe in

the CMIP5 models, though more work is needed to carefully

test this hypothesis. Additionally, since the observed trends

in, and drivers of, short-term biomass change seem to agree

with those of modelled decadal and centennial projections, it

is possible that climate change is already having an effect on

SO phytoplankton biology within the real ocean.

With such short and discontinuous observational records,

our model–observational data intercomparison is clearly only

qualitative at this point in time. We advocate for longer and

more continuous in situ phytoplankton biomass and satel-

lite chl data collection in this important but massively under-

sampled region of the ocean to allow for the emergence of a

climate change signal from short-term variability. The main

result of this study – a consistency of the model-projected

phytoplankton trends within four distinct SO bands over the

21st century – suggests a framework for selecting a minimum

number of sites for future SO biogeochemical observational

time series stations or repeat sampling campaigns; at a mini-

mum, one or two representative time series are needed from

each of the four SO bands described here. These data sets

(and any observational data sets, for that matter) are subject

to all manner of spatial and temporal caveats, but over time

and in combination with larger-scale satellite observations,

longer-term in situ time series will allow us to distinguish

natural variability from the climate change signal and more

readily compare observed mechanisms and trends with those

predicted by our models.

Follow-up work is needed to determine how projected

changes in phytoplankton biomass and productivity will af-

fect SO carbon and nutrient cycling, as well as how changes

in the characteristics of regional SO seasonality can af-

fect these long-term trends (Thomalla et al., 2011). Driv-

ing higher trophic-level models with projected CMIP5 phy-

toplankton abundances may also yield important insights

into how ecologically and economically important species

such as zooplankton, krill, marine mammals, penguins, and

seabirds will respond to climate change. Given the critical
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importance of the SO in driving global carbon and nutrient

cycles as well as low-latitude productivity, our results high-

light the need for both long-term in situ and satellite moni-

toring of Southern Ocean biology and biogeochemistry.

The Supplement related to this article is available online

at doi:10.5194/bg-12-5715-2015-supplement.
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