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Abstract

Trace element deposition from desert dust has important impacts on ocean primary
productivity. In this study, emission inventories for 8 elements, which are primarily of
soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global min-
eral dataset and a soils dataset. Datasets of elemental fractions were used to drive
the desert dust model in the Community Earth System Model (CESM) in order to sim-
ulate the elemental concentrations of atmospheric dust. Spatial variability of mineral
dust elemental fractions was evident on a global scale, particularly for Ca. Simula-
tions of global variations in the Ca /Al ratio, which typically ranged from around 0.1
to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a
good signature for dust source regions. The simulated variable fractions of chemical
elements are sufficiently different that estimates of deposition should include elemental
variations, especially for Ca, Al and Fe. The model results have been evaluated with ob-
servational elemental aerosol concentration data from desert regions and dust events
in non-dust regions, providing insights into uncertainties in the modeling approach. The
ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 ex-
cept for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved
the correspondence of the spatial hetereogeneity in the modeling of several elements
(Ca, Al and Fe) compared to observations. Total and soluble dust associated element
fluxes into different ocean basins and ice sheets regions have been estimated, based
on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with
dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32Tg, 22.84 Gg, 0.068 Tg, and
0.15Tg to global oceans and ice sheets.
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1 Introduction

Desert dust aerosols are principally soil particles suspended in the atmosphere by
strong winds, and originate primarily from regions with dry, un-vegetated soils. Desert
dust particles are thought to contain several important chemical elements, which can
impact the earth system by influencing biogeochemical cycles, and in particularly ma-
rine primary productivity (Martin et al., 1991; Duce et al., 1991; Herut et al., 1999,
2002, 2005; Okin et al., 2004; Jickells et al., 2005). Iron (Fe) is considered the most
important element carried in dust, and low Fe supplies combined with a low solubility
are thought to limit phytoplankton growth in so-called High Nutrient Low Chlorophyll
(HNLC) regions. The HNLC regions feature residual macronutrient (e.g. nitrogen (N)
and phosphorus (P)) concentrations, but productivity remains low because of the low
supply of Fe (e.g. Martin et al., 1991; Boyd et al., 1998). Further studies have linked
Fe to the nitrogen cycle, because of high Fe requirements of N fixing organisms (e.g.
Capone et al., 1997). While there are internal sedimentary sources of Fe in the ocean,
dust deposition is an important source of new Fe to remote regions of the ocean (e.g.
Fung et al., 2000; Lam and Bishop, 2008; Moore and Braucher, 2008). Desert dust also
contains P, which is a limiting nutrient in some ocean and land regions (e.g. Mills et al.,
2004; Okin et al., 2004; Swap et al., 1992), especially on longer time scales. In addi-
tion, as a dominant constituent of mineral dust, silicon (Si) is an important nutrient for
diatoms which are central in ocean productivity (Morel et al., 2003). Other elements re-
leased from mineral dust which may be important for ocean biogeochemistry including
manganese (Mn) as a biologically essential nutrient and aluminum (Al) as a tracer of at-
mospheric inputs (e.g. Nozaki, 1997; http://www.geotraces.org/science/science-plan).

Previous studies have emphasized the importance of measuring elemental compo-
sition of dust elements (Kreutz and Sholkovitz, 2000; Cohen et al., 2004; Marino et al.,
2004; Marteel et al., 2009), and there are a range of studies highlighting observations
of elemental distributions and ecosystem impacts (e.g. Baker et al., 2003; Herut et al.,
2002; Buck et al., 2006; Paytan et al., 2009; Chen and Siefert, 2004; Measures and
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Vink, 2000). In-situ observations show evidence of heterogeneities in elemental frac-
tions over arid soil regions (Svensson et al., 2000; Zhang et al., 2003; Shen et al.,
2005, 2006; Li et al., 2007). Ratios between elements including Si, Al, Mg, Ca, and
in particular Ca/Al ratios have also been used to distinguish dust source regions, for
example for the Asian desert (Zhang et al., 1996; Sun et al., 2005; Han et al., 2005;
Shen et al., 2007) and African deserts (Bergametti et al., 1989; Formenti et al., 2008).

Xuan (2005) has simulated the emission inventory of trace elements in dust source
regions of East Asia. However, there has not yet been a study to model the distribution
of dust associated elements on a global scale. Global dust models usually assume
a fixed fraction (e.g. normalized to Al) of each element in dust to simulate global dust
elemental transport and deposition, and for example Fe is thought to contribute 3.5 %
and P 0.075 % to mineral dust (by mass) (e.g. Luo et al., 2008; Mahowald et al., 2008).
Besides spatial variations in elemental compositions, particle size distribution forms an-
other important determinant of elemental abundance in deposited dust. Depending on
the particle size distribution, trace elements may remain more or less suspended in the
atmosphere and deposited by dry or wet deposition at various distances from desert
regions (Seinfeld and Pandis, 1998). There have been very few studies investigating
particle size distribution and relate this to elemental concentrations in soil and dust by
direct measurement (Schitz and Rahn, 1982; Reid et al., 2003; Castillo et al., 2008;
Engelbrecht et al., 2009), and fewer modeling studies have included these phenomena.
The ability to model the deposition of specific elements associated with dust in global
simulations has been hindered by a lack of understanding of the spatial and temporal
variability as well as the particle size distribution associated with different dust sources.
As noted by Lawrence and Neff (2009), it seems most appropriate to use a globally
averaged value of dust composition to estimate the elemental flux from dust, given the
lack of direct measurements of the spatial distribution of elements in dust. However, the
use of a global mineral map (Claquin et al., 1999; Nickovic et al., 2012; Journet et al.,
2014) and chemical compositions of minerals (Journet et al., 2008) allows us to sim-
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ulate global elemental inventories from mineral soils, which could be used in a global
dust model.

This study aims to introduce a technique to determine a size-fractionated global
soil elemental emission inventory based on a global soil and a mineralogical datasets.
A companion paper evaluates the ability of the model to simulate mineralogy and the
impact on radiation (Scanza et al., 2014). The elemental emission dataset was used as
an input to a model simulation of the global dust cycle to present the elemental distribu-
tions, which were compared against available observations, and deposition to different
ocean regions, estimated for Mg, P, Ca, Fe, Mn, K Al, and Si. Our goal is to assess the
variability of elemental fractions in atmospheric and deposited dust, and to investigate
whether the elemental emission dataset can adequately predict this variability. This
study focuses on desert dust particles, and thus disregards other potentially important
sources of the elements such as combustion processes (e.g. Guieu et al., 2005; Luo
et al., 2008; Mahowald et al., 2008). We focus on total elemental concentrations, but
discuss two methodologies for soluble metal distributions from soil emissions. We also
do not consider any atmospheric processing, which is likely to be important for some
chemical components (e.g. Mahowald et al., 2005; Baker and Croot, 2010).

2 Materials and methods
2.1 Soil and mineral datasets

The soil map of the world used in this study came from the Food and Agricul-
ture Organization (FAO) of the United Nations soils dataset, and includes 136 soil
units (FAO-United Nations Educational, Scientific, and Cultural Organization, FAO-
UNESCO, 1976) at a 5min resolution. The global dataset of soil clay and silt data
were used in this study. Following Claquin et al. (1999) and Nickovic et al. (2012), the
illite, hematite, kaolinite, smectite, quartz, feldspars, calcite and gypsum contents were
specified for different clay and silt soil types, and the global mineral distribution is pre-
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sented in Scanza et al. (2014). Some minerals found in dust such as dolomite were
not considered by Claquin et al. (1999) and Nickovic et al. (2012) and have also been
disregarded in this study due to the lack of data on their distribution.

The elemental compositions of hematite and aluminosilicate minerals used in this
study are taken from previous works (Journet et al., 2008 and personal communication,
Emilie Journet, 2012) and were obtained by X ray fluorescence spectrometry (XRF)
(Table 1a). Most of minerals used by Journet et al. (2008) are reference materials from
the Society’s Source Clays Repository, i.e. hematite, illite, kaolinite, montmorillonite.
The elemental composition obtained by XRF are in the range of published values for
these reference materials (e.g. Mermut and Cano, 2001; Gold et al., 1983), validat-
ing the obtained composition for the unreferenced materials. Moreover, the purity of
all minerals samples is estimated by X-Ray diffraction. It is noted actual mineralogical
maps used in this study do not distinguish feldspars and smectites subtypes. For feld-
pars, the elemental composition are mostly averaged based on 2 subtype minerals:
orthose (potassic feldspar) and oligoclase (sodium-calcium feldspar). For smectites,
montmorillonite is the most usually identified smectite in the desert dust (at particularly
for Sahara dust e.g. Goudie and Middleton, 2006). The chemical composition of mont-
morillonite is so used in this study as an analogous of smectite. Forcalcite, gypsum,
and quartz, the natural minerals could contain typically substitutions or impurities as
clays, which are very variable depending on origin of minerals, formation, contamina-
tion etc. The theoretical compositions of elements in calcite, gypsum and quartz are
used in this study (Table 1a) since we have not samples to check the chemical compo-
sitions of impurities in them. The mass fractions of Ca in calcite (CaCO3) and gypsum
(CaS0O,-2H,0) are taken as 40 and 23.3 %, respectively. A mass fraction of 46.7 % Si,
is used for pure quartz (SiO,).

Following the total element calculating, soluble elemental fractions were estimated
based on soluble elemental contents of minerals at pH=2 reported by Journet
et al. (2008) for the hematite and aluminosilicates, and listed in Table 1b. The frac-
tional solubility of Ca in calcite and gypsum used were 7 and 0.56 %, respectively, and
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that of Si in quartz was 0.0003 % based on individual solubility product (K,) at pH = 2
(Petrucci et al., 2001). Here the mineral dependent method is defined as M1. To present
uncertainties, the other approach (M2) is introduced as reference. It is based on the
extractable fraction of in-situ 20 um sieved soil samples, reported by Sillanp&aa (1982)
(Table S1) to combine with FAO soil dataset to get a global soluble elemental inventory
independent of soil minerals. It is noted that there is no detailed size distribution for soil
samples in M2. Thus, the fractions of soluble elements in clay and silt soil are assumed
to be equal to the one in the bulk soils themselves.

One drawback of our approach is that we disregard the large variability of soils in-
cluded within each defined “soil type”. The range of minerals within each soil type is
large (e.g. Claquin et al., 1999), and the range of elemental concentrations in each
mineral is also large (Journet et al., 2008). Our models apply averages, which tends to
reduce the variability in elemental composition in the mineral dust in the atmosphere.

2.2 Numerical model description

Community Earth System Model version 1.0.3 (CESM1.0.3) is coordinated by the Na-
tional Center for Atmospheric Research (NCAR), and has been used to simulate ele-
mental dust emission, transport and deposition in this study. The bulk mineral aerosol
in the Community Atmosphere Model version 4 (CAM4) was adapted to include eight
trace elements within total dust (Scanza et al., 2014). In this model simulation, the
physical scheme CAM4 was driven by the meteorological dataset MERRA, and was
simulated spatially at 1.9° x 2.5° resolution and refered to the years 2000-2010. The
soil erodibility map used by the dust model has been spatially tuned (Albani et al.,
2014). There were four size classes of dust particles used in the dust emission mod-
ule in the bulk scheme with particle diameters of 0.1-1.0, 1.0-2.5, 2.5-5.0 and 5.0—-
10.0 um. The sub-bin size distribution was assumed to follow a log-normal distribution
with a mass median diameter of 3.5 um (Mahowald et al., 2006) and a geometric SD
of 2.0 um (Zender et al., 2003). Combing these log-normal parameters with the brittle
fragmentation theory of dust emission (Kok, 2011) yields each bin’s partitioning of dust
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aerosol mass between the soil’s clay and silt size fractions (see Table S3 and Scanza
et al., 2014). The elements in the dust undergo three dimensional transport individually
in each of the different size bins, identically to bulk dust in the original model. Elemental
atmospheric mixing ratios, wet and dry deposition are updated at each model time step
based on actual elemental fields and the corresponding tendencies.

2.3 Observational data

An element dataset of ground based aerosol measurements at 17 sites (Fig. 1 and
Table S3) was used to evaluate the elemental dust simulation (Sun et al., 2004a, b;
Wang et al., 2010; Chen et al., 2008; Engelbrecht et al., 2009; Carpenter et al., 2010;
Cohen et al., 2011; Guo et al., 2014; Formenti et al., 2008; Desboeufs et al., 2010).
The sites are close to major dust-producing regions across the world as shown in
Fig. 1, the observation sites include 10 Asian sites (Central Asia: Hetian, Tazhong; East
Asia: Yulin, Duolun, Shengshi; South Asia: Hanoi, and Marnila; Middle East: Balad,
Baghdad, Taji), 5 African sites (West Africa: Cape Verde Atmospheric Observatory
(CVAO); East Africa: Eilat; North Africa: Tamanrasset, Banizoumbou, and Douz), and
2 Australian sites (Muswellbrook, Richmond). Generally, these field aerosol samples
(Total Suspended Particulates (TSP), PM,,, PM,5) have 1-3day collection periods
during the period 2001-2010, and were chemically analyzed for elemental contents.
No observational aerosol mass concentrations at the Cape Verde station could be
used in this study. At this site, the particle matter (PM) concentrations were estimated
by assuming an Al to mass ratio of 0.0804. In order to be certain that only desert dust
elements are compared with the model results, only data collected during dust storms
season were selected. Measurement sites from which data were taken are listed in
Table S3, which includes related methodological details.

In addition, the dataset of dust deposition at more than 100 sites worldwide was used
to evaluate modeled dust deposition fluxes (Albani et al., 2014).
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3 Results and discussion
3.1 Fractions of element in arid soil regions

The global distributions of the elements Mg, P, Ca, Mn, Fe, K, Al, and Si in bulk soils
as mass percentages in soils are presented in Fig. 2.

3.1.1 Global mapping of soil associated elements

Fractions of elements in soils varied between mineralogical clay and silt fractions. Spa-
tial variability of soil chemistry demonstrated on a global scale (Fig. 2). A large range
of variability for some elements within one given source region is observed (e.g. Ca,
Fe, Mn, Al). The most extreme variability is observed for Ca in soil silt, which varied
from 0.5 to 34.3 %, and was much higher in West and Central Asia, South Africa and
Northern South America than in other parts in the world. This is ascribed to the pres-
ence of feldspar and gypsum, both being important source minerals for Ca in these
regions. In Central and East Asia, the Ca content increased from east to west, showing
a similar spatial trend to that reported by Xuan et al. (2005). A south to north gradient
of Ca content was also observed in the Sahara following the carbonate distribution of
soils (Kandler et al., 2007; Formenti et al., 2011). In southern North Africa, South Africa
and the Western Australia, clay soil and fine dust emissions have higher Al and P con-
centrations than elsewhere. In Eastern Australia, Patagonia, and the northern South
Africa, the Fe content of soils is also higher than in other regions. Due to their high
content of quartz, soils generally have 25—40 % Si. These elemental distributions are
in agreement with other published data for Fe, as they are derived from similar regions
(e.g. Claquin, 1999; Hand et al., 2004).

3.1.2 Elemental composition of soils and airborne dust

Trace elements in soils showed different associations with particle size patterns de-
pending on the size distribution of soil minerals, e.g. Mg, P, Fe, Mn, and Al were dom-
17500
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inant in the clay size fraction (< 2um) (Fig. 3b). Fractions of Al and Fe reach 11.7 and
3.1% in clay fractions of soils, while only 2.8 and 1.2% in silt fractions of soils, re-
spectively. However, Ca and Si showed a slight enrichment in coarser soil fractions.
Ca is 2.6 % in clay fractions of soils but 3.6 % in silt soil fractions. This is consistent
with the size distribution of Ca and Fe-rich individual particle groupings measured in
Sahara dust (Reid et al., 2003). K is almost equally distributed in clay and silt fractions
of soils. Taking the fractions of elements in soils as inputs, the fractions of elements
in dust emission can be predicted. Our classification of soil particles into four aerosol
sizes (Table S2) provides heterogeneity in elements across sizes, but allows for a mix-
ing across soil sizes, reducing the differences among size fractions. For example, the
percentage of Fe remained unchanged from clay soil to fine mode dust emission, but
changed substantially from silt soil (1.2 %) to coarse mode dust (2.2 % in Bin3). A sim-
ilar pattern appeared for the other elements, where difference in elemental percentage
in the soils is reduced in the dust emissions (Fig. 3a and b).

3.1.3 Elemental dust emissions over desert regions

Annual elemental dust emissions over 15 dust-producing regions (shown in Fig. 1)
were determined (Table 2). The annual average of total global dust emission was esti-
mated to be 1582 T9 based on 2001-2010 simulations, and was within the wide range
(514 to 5999 Tgyr ') as reported by previous studies (e.g. Shao, 2001; Textor et al.,

2006, 2007; Prospero et al., 2010; Huneeus et al., 2011). Africa and Asia accounted
for 68 and 31 % of the global emissions, respectively. Correspondingly, trace element
emissions were dominant from African desert regions, with percentages ranging be-
tween 65-70 %. Specifically, Al emission from Africa accounted for 70 % of global Al
emissions, of which 64 % originated from the Western Sahara. For Asian desert re-
gions, elemental dust accounted for 29—-34 % of the global total amount, with Ca being
the strongest contributor (at 34 %) to global Ca emissions. Iron showed a similar per-
centage to Al to the total dust emissions with 67 and 32 % of Fe from Africa and Asia,
respectively. The maximum contribution for Ca at 5% was in dust emission from West
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Asia, being more than 4 times higher than Southern North Africa. However, the fraction
of Al and Si was largest in dust emission from Southern North Africa, with values of 9.0
and 31 %, respectively. The fractions of Fe and P were 2.8 %, and 0.08 % in Australia,
which is higher than that in other source regions. The simulated elemental fractions
showed that differentiating between global source areas is possible and meaningful.

3.2 Spatial and seasonal distribution in fractions of elements in atmospheric
and deposited dust

3.2.1 Elemental fractions in global atmospheric dust and deposited dust

The modeled fractions of different elements in atmospheric dust vary substantially on
a spatial scale (Fig. 4). Fe content is greater than 2 % for most regions, with a global
mean of 2.7 % in atmospheric dust. The maximum contributions of Fe, Al, P and Mn
fractions are observed in the tropical Pacific region with values greater than 3, 10, 0.08,
and 0.02 %, respectively. For Ca, Si and K, a higher fraction was evident in terrestrial
environments. There were obvious land-ocean gradients existing in the distributions of
elemental fractions, with higher Ca and Si fractions in terrestrial regions and higher
P, Fe, and Al fractions in oceanic areas, likely due to their differences in particle size
distribution (Fig. 3). There were very similar spatial partterns and magnitudes shown
for the elemental fractions in deposited dust comparing with that in atmospheric dust
for each element (Fig. 5). Higher fractionsof Ca and Si in deposited dustis observedin
regions close to desert dust sources where the two elements occur in the coarser size
fractions. Conversely, lower Mg, P, Mn, Fe and Al contents are found dust deposits
close to source regions but are higher over oceans in the finer particle size fractions.
The importance of relative location of the source compared to the deposition to the
elemental ratio adds complexity in applying simple percentages to dust deposition to
obtain elemental deposition amounts.
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3.2.2 Seasonal variability of elemental fraction

As described above, the fractions of elements in dust fluctuate temporally and spatially
on a global scale. There are seasonal variations in dust emissions from various desert
regions showing different emission patterns (Fig. S2). The peak periods for dust emis-
sions for various desert regions are consistent with those found by Werner et al. (2002)
(Fig. S2). Combining the seasonal cycles in atmospheric dust production with the el-
ement distributions in desert regions, the elemental fractions showed large monthly
variations but small inter-annual variability during 2001-2010 (Fig. S3). Calcium and Al
showed clear seasonal cycles, with Ca having the largest monthly variability, with peak
concentration in the period July to September. That is ascribed to the higher Ca con-
tent of dust originating in West Asia, Central Asia and Southern Africa, regions which
provided large global dust emissions in the period June to September. For the other
elements, the peak values usually occurred in the period March to May or November to
January, corresponding to the periods that global dust emissions reached a maximum.

We modeled the seasonal variability of these elemental fractions. The monthly vari-
ability is calculated by:

SD of twelve monthly fractions

Monthly variablility (%) = 100 1
y y (%) Mean of twelve months fractions 8 M

Twelve monthly mean fractions were calculated from ten-years of simulation results
while the SDs were calculated from these monthly mean data. Finally, the percentages
(Eqg. 1) of the SD in monthly mean was derived to describe the variability in elemental
fractions of atmospheric dust and deposited dust (shown in Figs. 6 and 7).

The monthly mean variation is greatest for Ca, reaching more than 30 % variabil-
ity in some regions. The temporal variability of elemental percentages in deposited
dust tended to be larger than those in atmospheric dust and showed a greater spatial
gradient from land to sea. That is similar to the trend of the elemental fractions in at-
mospheric and deposited dust (Sect. 3.2.1) since the temporal variation was originally
induced by the spatially variable elemental fraction. In the South Indian Ocean and the
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South Atlantic Ocean, the monthly variability was even higher, ascribed to the com-
bined effect of variability in dust emissions, spatial elemental concentration, and dust
transport patterns.

3.3 Spatial Ca/Al distribution in soils and dust plumes

Of specific interest is the Ca/Al ratio in soil, atmospheric dust and deposited dust as
this ratio may be indicative of specific source regions (Fig. 8). Of all considered ratios,
the Ca/Al ratio in soils showed the greatest variability in relation to the relevant desert
region (e.g. Formenti et al., 2011). The Ca/Al ratio ranged mainly between 0.1-1 in
clay fractions of soils and 0.5-5.0 in silt fractions of soils (Fig. 8a and b). The maximum
Ca/Al ratios reached 160 times the global mean Ca/Al ratio of 1.96 in silt fractions of
soils (Fig. 8b), much higher than those of other ratios such as Fe, K, and Mn to Al.
Asian desert soils had higher Ca/Al ratios, with values greater than 5 in West Asia
and Central Asia. The Ca/Al ratio in dust emissions from Central Asia (1.0-1.6) were
higher than in East Asia (~ 0.5), which is close to Ca/Al ratios (1.0-1.7) derived from
source profiles of Asian dust (Zhang et al., 1997, 2003), also matching the observed
Ca/Al ratios (0.7-1.3) in Asia dust events (Sun et al., 2004a, b; Shen et al., 2007).
Also, the Ca/Al ratio in dust emissions in North Africa were below 0.5, confirming
the application of the Ca/Al ratio of 0.3 (or 3.8 with Al/Ca) as an indicator of North
African dust transport to the eastern United States (Perry et al., 1997). There was also
the case for ambient PM, 5 dust measured on the Canary Islands (Ca/Al = 1.004).
However, this ratio could be larger for PM;, or TSP (Engelbrecht et al., 2014). Due
to the high Ca/Al ratio (4.0-10.0) in a range of desert soils in some regions including
South Africa, yielded Ca/Al ratios in dust emissionsof 1.0, being much larger than
those from North Africa. The modeled spatial pattern of Ca/Al ratio in dust emission
from Asia and northwest Africa is consistent with the currently available dust pattern
compiled by Formenti et al. (2011), but showing relatively lower values for the Central
Asian desert region.
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Despite experiencing mixing of airborne dust from various source regions and as
a result of dust processing during transport, the Ca/Al ratios still showed spatial vari-
ations in global atmospheric dust and deposited dust. Relative to the Ca/Al ratio in
source regions (Fig. 8a, b and c), the Ca/Al ratio in atmospheric dust over most of ter-
restrial Asia ranged between 0.5-0.8, with a maximum reaching 1.8 (Fig. 8d). Due to
the spatial variability of Ca/Al ratio in dust emission (Fig. 9a) and despite the preferen-
tial settling during transport of silt fraction which presents the highest Ca/Al variability.
The variability in Ca/Al ratio in dust deposited into ocean and onto ice sheets regions
are also shown in Fig. 9b. Close to West Asia and Western Sahara higher Ca/Al ratios
are noted and the North Indian and Mediterranean areas have a Ca/Al ratio above 0.65
in deposited dust. As the combined downwind region of central Asia and East Asia, the
North Pacific has a Ca/Al ratio around 0.5. The Ca/Al ratio in dust deposited over the
Atlantic ranged between 0.3-0.4 due to the influence of southern North Africa desert
region and East Sahara desert both with low ratios of Ca/Al. Since the soil dataset has
a high spatial resolution of 5min (Fig. 8a and b), there is opportunity to improve the
grid resolution of 1.9° x 2.5° in this study to a finer resolution. It is expected that Ca/Al
ratio will show a more spatial heterogeneity when a finer-model resolution is used. We
conclude that the Ca/Al ratio can be used to identify different source areas and the
model can be used to support the observations.

3.4 Model evaluation with observational data

The averaged modeled fractions of elements in atmospheric dust at each site for the
periods for which observations are available are comparable with observations for most
of the sites (Fig. 10). In generally, the emission inventories based on mineralogy and
elemental compositions are consistent with the available data. A large variability in the
% of different elements could be observed at 17 sites for most elements, especially for
Ca (Fig. 10c1 and c2). The fraction of Fe in the fine mode is closer to the observa-
tional data than that the fraction of Fe is in TSP, implying Fe in clay fractions of soils is
more accurate than that for silt. There are only a few reported obsevations of Si is in
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particular difficult to verify. Based on averaged elemental fractions in TSPs at 13 sites,
the correlation coefficients (R) between modelled and observed ones ranged widely
(Table 3). Calcium and Al had the highest coefficient of 0.75 and 0.72. However, the R
for P, Mn and K were negative. For Fe, the correlation coefficient could reach 0.50 from
0.29 if not considering 3 sites in North Africa, in this area the observational Fe frac-
tions in TSP are high whereas the modeled ones keep low (Fig. 10 e1). The modelled
elemental fractions in TSP are close to the observed data, most ratios between which
range from 0.7 to 1.6 (Table 3). It is noted that either of median of observed (3.10 %)
and modeled (2.9 %) was lower than 3.5 %, which was thought to the fraction of Fe in
dust (e.g. Luo et al., 2008; Mahowald et al., 2008).

The averaged fractions of Mg and Mn in dust were underestimated by the model
at all observational sites. It should be noted that there are some uncertainities when
comparing elemental fractions. When the elemental concentration is divided by particle
mass concentration to obtain the elemental fraction, the errors are amplified due to er-
ror propagation associated with the combination of the error on the particle mass and
that of the element concentrations. Even though the available observational data were
chosen from source sites or dust event in non-source regions, the contribution from
other sources could be important, especially for fine mode particles. The modeled frac-
tion of Mn and Al in fine particle showed a larger inconsistency than that those in TSP
when compared with observations. Some of the descrepancies may be because the
model only includes particles up to 10 um in diameter, while the observations include
larger particle fractions such as TSPs. In South Asia, the elemental fractions in dust
except for Mn, were always much lower than at another sites, perhaps due to anthro-
pogenic contributions to elemental particle matter concentrations. In particular, many
metals in insoluble forms in dust particles could be from other sources such as the
refractories and steel industries, construction, biomass burning or volcanic emissions
(Castillo et al., 2008; Gaudichet et al., 1995; Hinkley et al., 1999; Paris et al., 2010).

The daily elemental fractions across all times and sites where there is data showed
that while the mean of the model was similar to the mean of the observations, there
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were some systematic differences (Fig. 11a and b). The modeled elemental fractios
were not as variable as the observations. This could be due to several issues. First
there is a greater variability in the soil mineralogy and elemental composition of miner-
als than those included in the model (we only include the average values).

Secondly, the dust model could introduce systematic errors, or there could be some-
unaccounted anthropogenic particulate sources, modifying the dust aerosol. Also in-
consistencies in the collection methods and differences in aerosol sampling periods
and times, could yield the observed variations in elements as concluded by Lawrence
and Neff (2009).

However, the ranges of the modeled fractions of P, Ca, Fe, K and Al were close
to the dominant range of the observational fractions (Fig. 11a and b). The fractions of
elements in dust measured are reported to be 0.5-2.3 % for Mg, 0.065-0.2 % for P, 1.0—
10.2 % for Ca, 0.028—0.124 % for Mn, 1.3-7.8 % for Fe, 1.2—4.6 % for K, 3.7-12.7 % for
Al, and 22.4-35.7 % for Si (Wilke et al., 1984; Reheis and Kihl, 1995; Stoorvogel et al.,
1997; Zhang et al., 1998; Yadav and Rajamani, 2004; Goudie and Middleton, 2006;
Moreno et al., 2006; Jeong, 2008; Lawrence and Neff, 2009; Formenti et al., 2008;
Desboeufs et al., 2010). The modeled elemental fraction in dust for P, Ca, Fe, K and
Al and Si were similar to observations. However, the modeled fractions of Mg and Mn
were lower (3.4 times and 3.5 times respectively in Table 3) than the observed ones
for samples used in this study or of the above cited results. Underestimation of Mg and
Mn could be due to a deficiency of minerals contaning high concentrations of Mg and
Mn in our model, as dolomite (MgCO3) or palygorskyte ((Mg, Al),Si,O4,(OH)-4(H,0))
are often identified in dust particles for Mg (e.g. Diaz-Hernandes et al., 2011; Kalderon
et al., 2009). Moreover, it is known that the chemical composition of minerals could
be variable according to the regional origin of minerals and possible impurities. For
example, the Mg content in calcite ranges from 0 to 2.7 % in the natural environment
(Titschack et al., 2011).

For reference we show the comparison of the modeled deposition vs. observed de-
position (Fig. 12). The modeled dust deposition flux agreed well with observations. The
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Corelation coefficient between modeled and observed dust deposition is 0.86. The
median of model to observation ratio is 1.15. Overall the model has been tuned to rep-
resent dust deposition, concentration and Aerosol Optical Depth (AOD) (Albani et al.,
2014), however the model has difficulty matching both deposition and concentration
observations, similar to other models (Huneeus et al., 2011), suggesting more work on
dust emission, transport and deposition processes is needed.

3.5 Deposition of total and soluble dust elements over the ocean, land and ice
sheets

Comparisons between observations and the model simulations presented here sug-
gest some bias in the model results (Fig. 11 and Table 3), subsequently the model
deposition values were adjusted to better match observed measurements (Table 3;
Fig. 13). This study suggests significant variability in the elemental fractions in dust
deposits (Fig. 13, Table 4), and showed that assumption that the fixed composition of
dust being deposited over oceans is unlikely to be correct. Consistent with Mahowald
et al. (2008), most dust deposition occurred downwind of dust generating regions bor-
dering the North Atlantic, North Pacific and North Indian Ocean. The Greenland ice
sheet accounted for the dominant part of to receive elemental deposition into ice sheets
regions, receiving an equal summed amount of elements as those deposited in the
whole of South Atlantic Ocean. Iron and P are key elements in the marine ecosys-
tem, with 6.3 Tg Fe and 184 GgP being added annually to all oceans and ice sheets
(Table 5).

Also, the amounts of soluble dust element deposition were determined over different
regions (see Sect. 2.1) (Fig. 14). No atmospheric processing of natural dust or other
sources of particles (e.g. anthropogenic sources) was included in this simulation. To
better understand the uncertainties of soluble elements deposition, estimates from two
methods were used (Sect. 2.1) in simulating soluble elemental emission, transport and
deposition. Fractional solubility of elements could not be estimated due to the lack of
total element data from Method 2 (Sillanpaéa, 1982). Spatial variations in fractional sol-
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ubility of elements are identified by Method 1 (mineral method) (Fig. 14). Fractional
solubility of Ca increases with distance from source regions because its solubility is
higher in clay than in silt (Table 1b). Fractional solubility of modeled P in deposition
ranged from 5 to 15 %, with Saharan and Australia dust sources having solubilities av-
eraging ~ 10 %, consistent with Baker et al. (20064, b). Previous observations suggest
a fractional solubility for P of 7-100 % (e.g., Graham and Duce, 1982; Chen et al., 1985;
Bergametti et al., 1992; Herut et al., 1999, 2002; Ridame and Guieu, 2002). Fractional
solubility of Fe was 0.8—1.2% in regions (Fig. 14) where clay minerals such as illite
play an important role (Journet et al., 2008) with a mean value of 1.17 % of fractional
Fe solubility (Table 1b). There were obvious North—South gradient in distribution of
fractional solubility of Fe and Al, but with opposing magnitude (Fig. 14). The fractional
solubility could not be calculated using Method 2 since total elemental fractions in soil
was not reported in Sillianpaa (1982). Thus, the proportions of soluble Fe and K in total
dust using two methods were compared with each other. It shows similar distribution
pattern but values are different as presented in Fig. 15. The mineral method resulted
in lower soluble Ca deposition and higher soluble Mg, P, Mn (Fig. 15). Our results sug-
gest significant differences in the spatial distribution of solubility depending on which
dataset is used to estimate soil solubility of elements. It should be noted that the solu-
bility measurements by Sillanpaa (1982) were performed at different pH values (pH of 7
vs. 2) and media of extraction (acidified ultrapure waters vs. organic ligands solutions).
It is known that pH and organic complexation influence highly the fractional solubility,
at least for Fe (e.g. Paris et al., 2011). Thus, that would explain the differences in ele-
mental solubility that we computed for the dust. The soluble elemental deposition over
ocean basins and ice sheets were determined using two methods and listed in Table 5.
Annual inputs of soluble Mg, P, Ca, Mn, Fe and K from mineral dust using method
M1 (M2) were 0.28 (0.30) Tg, 16.89 (7.52) Gg, 1.32 (3.35) Tg, 22.84 (6.95) Gg, 0.068
(0.06) Tg, and 0.15 (0.25) Tg to oceans and ice sheets.
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4 Summary and conclusions

A new technique combining soil and mineralogical datasets was introduced to estimate
the global emission inventory of soil associated elements Mg, P, Ca, Mn, Fe, K, Al,
and Si. The spatial elemental dust emissions, transport and deposition were simulated
using CESM from 2001-2010. Spatial variability of soil element fractions was char-
acterized globally (Fig. 2), and showed that the use of a constant element fraction in
dust across the globe is not consistent with existing observational data for Ca and Al
(Figs. 10 and 11). There are few observations for elemental distributions in source re-
gions to verify these emission, concentration and deposition simulations, but for some
elements (Ca and Al), the soil elemental distribution combined with the transported
dust flux in the model better captured the percentage of chemical elements in dust
concentrations observed (Figs. 10 and 11). However, both Mg and Mn levels were un-
derestimated by the model using the mineral maps. The correlation of the percent of
element at different sites was not statistically significant for several elements (Mg, Mn,
P and K), suggesting that improvements in the soil inventories or simulations is re-
quired, although these results could also be due to low number of observations. The
observations and model results suggest the elemental fractions in dust varied globally
and between different dust production regions, especially for Ca with highest values of
30 % and lowest of 1 %. The ratio of Ca/Al, ranged between 0.1-5.0, and is confirmed
as an indicator of dust source regions (Zhang et al., 1997, 2003; Sun et al., 2004a, b;
Shen et al., 2007). For Fe in TSP, the median of modeled fraction was 2.90 %, less than
3.5 %, a flat value usually used in dust model study (e.g. Luo et al., 2008; Mahowald
et al., 2008).

Seasonal variability of emissions and thus concentration and deposition of most ele-
ments were simulated in the model. Also, different soluble elemental datasets showed
that the fractional solubility of elements varied spatially. Mineral dust elements deposi-
tion fluxes into ocean basins were updated using variable fractional elemental inven-
tory and could have potentially important impacts on evaluating their biogeochemical
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effects. This study shows that soil emission inventories do a fairly good job at predict-
ing dust elemental concentrations during dust events, except for Mg and Mn. The high
spatial heterogeneity in elemental distributions was not captured in the model. In fu-
ture, these dust emission inventories can be combined with anthropogenic elemental
inventories to further improve our understanding of elemental deposition to the oceans.

The Supplement related to this article is available online at
doi:10.5194/bgd-11-17491-2014-supplement.
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Table 1a. Generalized mineral compositions (%) applied in this study.

Mineral Mg P Ca Mn Fe Al Si K

Smectite  1.21 0.17 0.91 0.083 255 857 27.44 0.27
Ilite 0.85 0.09 145 0.03 4.01 10.47 2411 4.28
Hematite 0.09 0.18 0.12 0.07 5750 267 2.11 0.07
Feldspar 0.15 0.09 3.84 0.01 0.34 10.96 25.24 5.08
Kaolinite  0.02 0.16 0.03 0.01 0.24 20.42 20.27 0.00
Calcite 0.00 0.00 40.00 0.00 0.00 0.00 0.00 0.00
Quartz 0.00 0.00 0.00 0.00 0.00 0.00 46.70 0.00
Gypsum  0.00 0.00 23.30 0.00 0.00 0.00 0.00 0.00
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Table 1b. Elemental solubility as a percentage of the element contained in the minerals (%).

Mineral Mg P Ca Mn Fe Al Si K
Smectite 14.09 293 7920 2535 260 0.00 0.05 31.41
lllite 7.80 30.58 50.96 2493 1.17 0.15 0.05 2.87
Hematite 0.00 0.00 0.00 339 0.01 0.00 0.00 0.00
Feldspar 5.17 0.00 446 471 3.01 0.12 0.02 4.53
Kaolinite 22.32 0.00 2197 0.00 426 0.38 0.37 0.00
Calcite 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00
Quartz 0.00 0.00 0.00 000 0.00 0.00 0.0003 0.00
Gypsum  0.00 0.00 056 0.00 0.00 0.00 0.00 0.00

Fe content came from Journet et al. (2008), the other elements were from personal communication

with E. Journet, 2012.
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Table 2. Ten year averaged emission rates (Tg yr'1) and percentages of elements over desert
regions (%).

Jaded uoissnosiq

Modeling the global
emission, transport

Source Regions Mg P Ca Mn Fe K Al Si Dust and dePOSItIOI‘I of
(Tayr™) (Ggyr™) (Tgyr™) (Ggyr™") (Tgyr™") (Tgyr™") (Tgyr™") (Tgyr™") (Tgyr™) g mineral elements
WAsia 0.91 17727 1273 35.28 5.53 3.70 16.71 7243 25117 =
NCAsia 0.50 92.73 6.05 18.03 2.26 1.90 8.36 37.99 12859 )
CAsia 0.13 25.40 1.57 4.98 0.70 0.55 2.35 9.77 33.82 g- Y. Zhang et al.
SCAsia 0.05 10.71 0.54 1.93 0.29 0.22 1.04 4.07 13.91 5
EAsia 0.21 43.78 1.62 8.16 1.28 0.85 422 18.27 58.90 )
Asian Region 1.79 349.89 2252 68.39 10.06 7.23 3267 14254  486.4 =
ESah 1.23 27368  11.98 48.28 6.62 5.41 26.45 10259  346.16 ® _
WSah 2.62 53145  30.67 10075  14.25 11.04 50.35  208.70  712.00 -
SNAf 0.02 11.65 0.17 1.47 0.37 0.12 1.25 4.33 13.98
SAf 0.01 3.10 0.18 0.59 0.11 0.06 0.31 1.34 4.46 o - -
textbfAfrica 3.89 819.88  42.99  151.09 21.34 16.63 78.36  316.96 1076.6
NWNAm 0.00002 0.0047  0.0001  0.0008 0.0002 0.0001 0.0005 0.0019  0.030 9 - -
SWNAm 0.02 3.01 0.16 0.60 0.10 0.07 0.29 1.27 4.20 Z
North America 0.02 3.02 0.16 0.60 0.10 0.07 0.29 1.27 4.2 & - -
SAm 0.0005 0.12 0.01 0.02 0.003 0.002 0.01 0.04 0.15 n
Patag 0.03 6.79 0.27 1.32 0.20 0.13 0.62 2.82 9.08 o
South America 0.03 6.91 0.27 1.34 0.21 0.13 0.63 2.86 9.2 =
WAStr 0.0005 0.13 0.003 0.02 0.003 0.002 0.01 0.05 0.16 Q'JU - -
EAstr 0.02 5.13 0.20 0.91 0.16 0.10 0.48 1.78 6.11 ©
Australia region 0.02 5.26 0.20 0.93 0.17 0.10 0.49 1.83 6.3 @ - -
Global 575 1184.96 66.14 22234  31.87 2415 11244 46546 15827
Global mean % element 0.36 0.07 4.18 0.01 2.01 1.53 7.10 29.41 / - - -
Min. % element in 15 SR" 0.17 0.07 1.19 0.01 1.67 0.86 6.50 28.84 /
Max. % element in 15 SR™  0.39 0.08 5.07 0.02 2.68 1.63 8.96 31.38 / g _
* SR refer to source regions. 2
(o)
>
' Ineracive Discussion
[
©
@

(8)
K ()
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Table 3. Comparison of modeled and observed fractions of chemical elements in TSP and

tuning ratio based on 13-sites measurements.

Mg P Ca Mn Fe K Al
Corr. coeff. Of Averaged fractions 0.14 -0.32 0.75 -0.51 0.29 -0.16 0.72
Median of Obs. (%) 145 0.09 542 0.070 3.10 1.79 5.26
Median of Mod. (%) 043 0.08 341 0.020 2.29 1.54 7.81
Obs./Mod. Median Ratio 3.4 1.1 1.6 35 14 1.2 07
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Table 4. Fractions (%) of elements in dust deposition into ifferent ocean basins and ice sheets®. and deposition of

% mineral elements

Ocean Basins/Glacier Mg P Ca Mn Fe K Al Si° g
Y. Zh |.

North Atlantic 143 010 536 006 3.05 189 596 2832 - ang eta
South Atlantic 150 0.10 536 0.06 335 1.84 6.01 28.07 %
North Pacific 156 0.10 592 0.06 326 1.90 5.78 28.01 =
South Pacific 147 0.10 530 0.06 387 1.86 6.15 27.61 w _
North Indian 1.3 0.08 790 0.05 3.13 1.81 495 28.29
South Indian 153 0.10 650 0.06 364 1.87 5.88 27.33 - -
Southern Ocean 156 0.10 512 0.06 3.74 1.88 588 28.25 o - -
Arctic 160 0.10 6.23 0.06 331 196 5.76 27.76 §
Mediterranean 1.37 0.08 7.14 0.05 290 1.88 4.85 29.14 @ - -
Antarctic ice sheets 150 0.10 490 0.06 354 182 555 29.17 g'
Greenland ice sheets 1.50 0.09 7.49 0.06 2.82 1.89 524 28.00 T - -
Averaged 149 0.10 6.11 0.06 3.33 1.87 5.64 28.18 % - -
2 After timing tuned ratios (Table 3) except for Si.
® Not tunned. - - -
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Table 5. Comparison of modeled and observed fractions of chemical elements in TSP and
tuning ratio based on 13-site measurements. Deposition of dust elements into different oceans

and ice sheets”.

Oceanfice sheet Mg (Tgyr™") P (Ggyr™") Ca (Tgyr™") Mn (Ggyr™") Fe (Tgyr™") K (Tgyr™)

Total Sol-1 Sol-2  Total Sol-1  Sol-2 Total Sol-1 ol-2  Total Sol-1  Sol-2 Total Sol-1 Sol-2 Total Sol-1 Sol-2
North Atlantic 1.50 0.16 0.14 103.12 8.81 410 564 068 1.81 58.90 12.08 3.87 3.20 0.036 0.033 1.99 0.008 0.136
South Atlantic 0.13 0.01 0.02 8.84 0.79 0.38 047 0.06 0.17 5.17 1.07 0.34 0.30 0.003 0.003 0.16  0.007 0.014
North Pacific 0.28 0.03 0.03 17.47 1.66 0.65 1.06 0.13 0.33 1058 225 0.58 0.58 0.007 0.006 0.34 0.014 0.025
South Pacific 0.01 0.001 0.001 0.86 0.07 0.04 0.04 0.006 0.01 0.50 0.10 0.03 0.03 0.0003 0.000 0.02 0.0007 0.001
North Indian 0.56 0.06 0.06 34.38 3.54 152 323 029 0.63 21.86 4.62 1.35 128 0.013 0.013 0.74 0.03 0.049
South Indian 0.05 0.005 0.005 3.03 0.30 020 020 0.02 0.05 1.85 0.39 0.16 0.1 0.001 0.001 0.06 0.002 0.004
Southern Ocean 0.002 0.0003 0.0003 0.15 0.01 0.01 0.01 0.001 0.003 0.09 0.02 0.01 0.01  0.0001 0.0001  0.00 0.0001 0.0002
Arctic 0.02 0.002 0.0020 1.34 0.13 005 0.09 0.01 0.02 0.83 0.18 0.04 0.05 0.0005 0.0004 0.03 0.001 0.002
Mediterranean 0.18  0.02 0.02 1066 107 036 092 0.09 022 6.76 142 036 0.37 0.004 0.004 0.24 0.011 0.017
Antarctic ice sheets 0.001 0.0001 0.0001 0.08 0.007 0.003 0.00 0.001 0.002 0.05 0.01 0.003 0.00 0.00003 0.00003 0.00 0.0001 0.0001
Greenland ice sheets  0.09 0.01 0.01 5.39 0.49 0.21 044 004 0.10 3.30 0.71 0.19 0.17  0.002 0.002 0.11  0.005 0.007
Total 2.83 0.30 0.28 185.32 16.89 7.52 1211 1.32 3.35 109.89 22.84 6.95 6.10 0.068 0.06 3.69 0.153 0.25

* After timing tuned ratio (Table 3).
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Figure 1. Observational sites (S1: Hetian, China; S2: Tazhong, China; S3: Yu Lin, China; S4:
Duolun, China; S5: Shengsi, China; S6: Hanoi, Vietnam; S7: Marnila, Philippines; S8: Balad,
Iraq; S9: Balad, Iraq; S10: Taji, Iraq; S11: Eilat; S12: Cape Verde Atmospheric Observatory
(CVAO); S13: Muswellbrook, Australia; S14: Richmond, Australia; S15: Tamanrasset, Algeria;
S16: Banizoumbou, Niger; S17-Douz, Tunisia) and dust-producing regions (WAsia: West Asia;
NC-As: North Central Asia; CAsia:Central Asia; SC-As: South Central Asia; EAsia:East Asia;
WN-Af: North West Africa; EN-Af: North East Africa; S-NAf: Southern North Africa; SAf: South-
ern Africa; MWNAmM: Middle North West America; SWNAm: Southern North West America;
SAm1: Northern South America; SAm2: Southern South America; WAus: West Austrilia; EAus:
East Australia).
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Figure 2. Global elemental distributions (in mass percentage) in a1: Clay Mg, a2: Clay P, a3: - _
Clay Ca, a4: Clay Mn, a5: Clay Fe, a6: Clay K, a7:, Clay Al, a8: Clay Si; b1: Silt Mg, b2: Silt P, 3
b3: Silt Ca, b4: Silt Mn, b5: Silt Fe, b6: Silt K, b7: Silt Al, b8: Silt Si. .

17528


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/11/17491/2014/bgd-11-17491-2014-print.pdf
http://www.biogeosciences-discuss.net/11/17491/2014/bgd-11-17491-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

15

10

Percentage (% )

15

I & i
— L
—
I

Mg (x10) P &100)

@)Elem ents n dustem issn

€Ca Mn&100) Fe K Al  8i&0.1)

10

Percentage (% )

A soic by
[ soilsilt

b)Elem ents 1 soil

||I-|-|| Il
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Figure 5. Ratio of mass fractions of elements in dust deposition to that in atmospheric dust: (a)
Mg, (b) P, (c) Ca, (d) Mn, (e) Fe, (f) K, (g) Al, (h) Si.
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Figure 15. Proportions (%.) of soluble elements in total dust deposition using (a) M1 and (b)
M2, M1 refer to mineral method after tuning, M2 refer to Sillanpda method described in the

Sect. 2.
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