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Abstract. We investigate variability in the surface ocean car-

bonate ion concentration ([CO2−
3 ]) on the basis of a long

control simulation with an Earth System Model. The sim-

ulation is run with a prescribed, pre-industrial atmospheric

CO2 concentration for 1000 years, permitting investigation

of natural [CO2−
3 ] variability on interannual to multi-decadal

timescales. We find high interannual variability in surface

[CO2−
3 ] in the tropical Pacific and at the boundaries between

the subtropical and subpolar gyres in the Northern Hemi-

sphere, and relatively low interannual variability in the cen-

ters of the subtropical gyres and in the Southern Ocean.

Statistical analysis of modeled [CO2−
3 ] variance and auto-

correlation suggests that significant anthropogenic trends in

the saturation state of aragonite (�aragonite) are already or

nearly detectable at the sustained, open-ocean time series

sites, whereas several decades of observations are required

to detect anthropogenic trends in �aragonite in the tropical

Pacific, North Pacific, and North Atlantic. The detection

timescale for anthropogenic trends in pH is shorter than that

for �aragonite, due to smaller noise-to-signal ratios and lower

autocorrelation in pH. In the tropical Pacific, the leading

mode of surface [CO2−
3 ] variability is primarily driven by

variations in the vertical advection of dissolved inorganic car-

bon (DIC) in association with El Niño–Southern Oscillation.

In the North Pacific, surface [CO2−
3 ] variability is caused

by circulation-driven variations in surface DIC and strongly

correlated with the Pacific Decadal Oscillation, with peak

spectral power at 20–30-year periods. North Atlantic [CO2−
3 ]

variability is also driven by variations in surface DIC, and ex-

hibits weak correlations with both the North Atlantic Oscilla-

tion and the Atlantic Multidecadal Oscillation. As the scien-

tific community seeks to detect the anthropogenic influence

on ocean carbonate chemistry, these results will aid the inter-

pretation of trends calculated from spatially and temporally

sparse observations.

1 Introduction

The global ocean has absorbed ∼ 30 % of the carbon diox-

ide (CO2) released by human activities since 1765 (Ciais and

Sabine, 2013). While ocean uptake of CO2 plays a key role

in mitigating anthropogenic climate change, it also modifies

ocean carbonate chemistry (Feely et al., 2004). The dissolu-

tion of excess CO2 in the surface ocean drives an increase

in the dissolved inorganic carbon (DIC) concentration with-

out changing the alkalinity (Alk). The result is a surface

ocean characterized by decreasing carbonate ion concentra-

tion ([CO2−
3 ]) and pH (Feely et al., 2009). This acidification

of the surface ocean reduces the saturation state of the cal-

cium carbonate minerals calcite and aragonite (�calcite and

�aragonite, respectively) and may reduce biogenic calcifica-

tion and enhance calcium carbonate dissolution (Doney et al.,

2009).

Observations collected at sustained open ocean time se-

ries stations (e.g., HOT, BATS) indicate significant anthro-

pogenic changes in surface DIC, [CO2−
3 ], pH, and �aragonite

relative to background natural variability (Bates et al., 2014).

The detection of statistically robust trends in carbonate

chemistry at these stations benefits from frequent sampling

(3–16 times per year), long records (15 to 30 years), and low

natural variability (Le Quéré et al., 2000; Brix et al., 2004;

Bates et al., 2014). In the rest of the global ocean, however,

sparse spatial and temporal sampling, coupled with poten-

tially large natural variability challenges the detection of an-

thropogenic changes in carbonate chemistry from observa-
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tions. In the equatorial Pacific, Sutton et al. (2014) report

decreasing pH from 1997 to 2011 using mooring observa-

tions, but they attribute approximately 40 % of this decrease

to natural variability. Based on measurements from repeat

hydrographic surveys, Feely et al. (2012) report an average

decrease in�aragonite and�calcite of 0.34 %yr−1 in the Pacific

Ocean. In the South Pacific, the trend is primarily driven by

uptake of anthropogenic CO2, while the trends in the North

Pacific Subtropical Gyre and the California Current are at-

tributed to natural variability in ocean circulation. On the

global scale, Lauvset et al. (2015) find a mean rate of de-

crease in surface ocean pH of 0.0018 yr−1 over 1991–2011,

using observations of fCO2 aggregated into 17 biogeograph-

ical biomes. They find a substantial amount of interannual

variability in pH in many of the biomes (RMSE ranging from

0.01 and 0.04 pH units) that is of a similar magnitude to the

cumulative trend in pH.

Internal climate variability arises from the coupled inter-

action of atmospheric, oceanic, terrestrial, and cryospheric

processes (Deser et al., 2012a) and complicates our ability to

detect anthropogenically forced trends from sparse observa-

tions. In the tropics, the dominant mode of internal climate

variability is the El Niño–Southern Oscillation (ENSO). In

the extratropics, three major climate modes drive variability:

the North Atlantic Oscillation (NAO), the Pacific Decadal

Oscillation (PDO), and the Southern Annular Mode (SAM).

Studies conducted using ocean physical and biogeochemical

models run in hindcast mode (i.e., forced with the historically

observed atmospheric state) suggest that ENSO, NAO, PDO,

and SAM impact regional ocean biogeochemistry. Le Quéré

et al. (2000) and Long et al. (2013) find reduced CO2 out-

gassing in the tropical Pacific during El Niño events as a re-

sult of changes in dynamics reducing the vertical advection

and diffusion of DIC into the surface ocean. In the North At-

lantic, the NAO drives shifts of the subpolar/subtropical in-

tergyre boundary that affect the vertical and lateral advection

of DIC and air–sea CO2 flux (Thomas et al., 2008). On the

basis of seven biogeochemical models run in hindcast mode,

McKinley et al. (2006) show that the positive phase of the

PDO is associated with an increased surface DIC tendency

in the subtropical and western subpolar gyres of the North

Pacific. In the Southern Ocean, multiple hindcast modeling

studies find large interannual variability in surface DIC and

Alk driven by the SAM (Lenton and Matear, 2007; Loven-

duski et al., 2007; Verdy et al., 2007).

Model hindcast studies are useful for quantifying the im-

pact of climate variability on ocean carbonate chemistry, but

are limited in their temporal scope to the period of time for

which we have abundant observations of the global atmo-

sphere (typically 1948 to the present day). Large-scale modes

of climate variability such as PDO, NAO, and SAM have

spectral power at low frequencies. While hindcast studies can

capture the observed chronology of these modes, they cannot

capture the full spectrum of internal variability in the climate

system. Long model simulations (order 1000 years) can cap-

ture multiple realizations of climate variability on decadal

and multi-decadal timescales, and have shown to be use-

ful in the study of ocean carbon cycle variability on these

timescales (Doney et al., 2006; Séférian et al., 2013, 2014;

Keller et al., 2014; Lehner et al., 2015; Resplandy et al.,

2015).

Here, we assess the influence of internal climate variabil-

ity on surface ocean carbonate chemistry by analyzing out-

put from a 1000-year control simulation of a coupled Earth

System Model. Interaction between the model’s atmosphere,

ocean, terrestrial biosphere, and cryosphere generates inter-

nal climate variability on timescales ranging from interan-

nual to multi-decadal and longer. We aim to quantify and

mechanistically understand the drivers of variability in sur-

face ocean carbonate chemistry on these timescales. In doing

so, we will gain perspective on the statistical confidence in

the anthropogenic carbonate chemistry trends reported in the

literature.

Our study builds upon two recent studies of natural vari-

ability in ocean carbonate chemistry from long integrations

of Earth System Models (ESMs). Friedrich et al. (2012)

use MPI-ESM to quantify the natural variability in surface

�aragonite and compare it to the anthropogenic trend over

the years 800–2099. They suggest that recent anthropogenic

trends in surface �aragonite exceed natural variability by 30

times on regional scales, but do not focus on detectability in

the observational record or on the mechanisms driving vari-

ability. Séférian et al. (2013) analyze output from a fully cou-

pled 1000-year control simulation of IPSL-CM5A-LR and

describe decadal to multi-decadal variability in air–sea CO2

flux and its driving factors in the North Atlantic, North Pa-

cific, and the Southern Ocean. They find that a large frac-

tion of the variance in CO2 flux is driven by internal climate

variability in the various regions, due to circulation-mediated

variability in the upwelling of DIC to the surface ocean, but

only very briefly discuss the implications of this for carbon-

ate ion variability. Here, we analyze output from a 1000-year

control simulation of the Community Earth System Model

(CESM) with a focus on quantifying and understanding the

drivers of variability in surface ocean carbonate chemistry.

Unlike the simulation analyzed in Friedrich et al. (2012), the

CESM control simulation does not include any external forc-

ing, such as anthropogenic CO2 emissions, volcanic erup-

tions, or solar variability. This allows us to cleanly ascribe

surface carbonate variability to internal variability (unforced

natural variability) of the physical climate system. Further,

unlike the simulations analyzed in Friedrich et al. (2012)

and Séférian et al. (2013), we analyze output from a simu-

lation with constant, prescribed atmospheric CO2 concentra-

tion, so variability in ocean biogeochemistry is only affected

by the physical state of the atmosphere and ocean and not

by variability in atmospheric CO2. This simplifies our quan-

tification of the mechanisms driving variability in carbonate

chemistry. Finally, we focus on variability in surface ocean

[CO2−
3 ], as it is the primary source of variability in�aragonite,
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and is likely to be influenced by internal climate variabil-

ity ([CO2−
3 ] ≈ Alk−DIC). As such, our results will be use-

ful for determining the detectability of anthropogenic trends

in �aragonite over background internal climate variability on

a global scale.

2 Model description

We analyze output from a 1000-year pre-industrial control

simulation of the Community Earth System Model. CESM is

a state-of-the-art coupled climate model consisting of atmo-

sphere, ocean, land, and sea ice component models (Hurrell

et al., 2013). The atmosphere model is the Community At-

mosphere Model, version 4 (CAM4), with a horizontal res-

olution of 1.25◦× 0.9◦ and 26 vertical levels (Neale et al.,

2013). The Community Land Model (Lawrence et al., 2011)

operates on the same horizontal grid as CAM4. The sea

ice model is the Community Ice Code, version 4 (Hunke

and Lipscomb, 2008), and the dynamic land ice compo-

nent is inactive. The ocean physical model is identical to

the ocean component of the Community Climate System

Model version 4 (CCSM4) (Danabasoglu et al., 2012), ex-

cept that shortwave absorption in the ocean is computed us-

ing prognostic chlorophyll fields, rather than a fixed satellite-

derived monthly climatology as in CCSM4. The ocean model

has nominal 1◦ horizontal resolution and 60 vertical levels.

Mesoscale eddy transport is parameterized with an updated

version of (Gent and McWilliams, 1990), where the eddy-

induced advection coefficient, κ , is diagnosed as a function

of space and time. Diapycnal mixing is represented using the

K-Profile Parameterization of Large et al. (1994), and mixed-

layer restratification by submesoscale eddies is parameter-

ized using the method of Fox-Kemper et al. (2011). The

biogeochemical-ecosystem ocean model incorporates multi-

nutrient co-limitation on phytoplankton growth and specific

phytoplankton functional groups (Moore et al., 2004, 2013),

full carbonate system thermodynamics, sea–air CO2 fluxes,

and a dynamic iron cycle (Doney et al., 2006; Moore and

Braucher, 2008). Phytoplankton calcification in the model is

unaffected by variations in the saturation state of calcite or

aragonite. Previous studies conducted with hindcast simula-

tions of this model configuration reveal that the ocean physi-

cal state and air–sea CO2 fluxes compare favorably with ob-

servations (Danabasoglu et al., 2012; Long et al., 2013).

Biogeochemical fields were initialized using data-based

climatologies; for instance, DIC was from the Global Ocean

Data Analysis Project (GLODAP; Key et al., 2004) and nutri-

ents were from the World Ocean Atlas (Garcia et al., 2010).

Subsequently, the fully coupled model was integrated for

a period of 1000 years to allow the deep ocean to approach

equilibrium; the tracer fields resulting from this spin-up pro-

cedure were used to initialize a 1000-year control simula-

tion (Lindsay et al., 2014), in which atmospheric CO2 was

held constant at preindustrial levels (pCOatm
2 = 284.7 ppm).

By prescribing atmospheric CO2, this control simulation

generates sea–air CO2 flux variance that differs slightly

from a control simulation using prognostic atmospheric CO2

(Lindsay et al., 2014), owing to a lack of communication be-

tween land and ocean carbon reservoirs. Following Doney

et al. (2006), variability in the control simulation is generated

entirely from internal processes. During the first 100 years of

the simulation, ocean [CO2−
3 ] was not saved to disk, so our

analysis is limited to the final 900 years of the simulation.

Over this time, the global ocean drift in surface [CO2−
3 ] is

small (0.0029 mmolm−3 yr−1).

3 Model evaluation

Confidence in our interpretation of model output relies on the

ability of the model to reproduce realistic estimates of mean

surface [CO2−
3 ] and its variability. We compare the annual-

mean surface [CO2−
3 ] in the pre-industrial control simulation

with reconstructed, pre-industrial surface [CO2−
3 ] in Fig. 1.

Pre-industrial surface [CO2−
3 ] is reconstructed from obser-

vations of pre-industrial surface DIC (present-day DIC mi-

nus anthropogenic DIC) and present-day Alk as estimated

by GLODAP (Key et al., 2004), combined with present-

day estimates of temperature, salinity, silicate, and phosphate

from the World Ocean Atlas (Locarnini et al., 2010; Antonov

et al., 2010; Garcia et al., 2010) using a program developed

for CO2 system calculations (CO2SYS) with the preferred

dissociation constants. Computing [CO2−
3 ] this way is not

strictly correct, owing to non-linear relationships between

[CO2−
3 ] and state variables, but no synthesized climatology

of [CO2−
3 ] from bottle sites exists. The model captures the

large-scale distribution of surface [CO2−
3 ] as estimated by the

pre-industrial reconstruction (Fig. 1). Pre-industrial surface

[CO2−
3 ] is elevated in the tropical oceans, with the excep-

tion of the tropical Pacific cold tongue region, where persis-

tent upwelling of DIC maintains low surface [CO2−
3 ]. High

latitude, pre-industrial surface [CO2−
3 ] is substantially lower

than that in the tropics, due to upwelling of waters enriched

in DIC and enhanced CO2 solubility in these cold regions

(Feely et al., 2004; Fabry et al., 2009). The model-estimated,

pre-industrial surface [CO2−
3 ] is noticeably lower than ob-

served. The globally averaged surface [CO2−
3 ] bias in the

model is −16 mmolm−3, excluding the Arctic Ocean and

marginal seas. This model bias is caused by low biases in

both surface Alk and DIC. The former bias is larger in mag-

nitude and results from a combination of the prescribed car-

bonate dissolution profile, the representation of calcification,

and a lack of riverine inputs in the model (Long et al., 2013).

We investigate the vertical distribution of salinity-

normalized DIC (sDIC) and salinity-normalized Alk (sAlk)

in the eastern Equatorial Pacific and compare with the verti-

cal distribution of reconstructed pre-industrial sDIC and sAlk

from observations in Fig. 2. As we will see later, the response

www.biogeosciences.net/12/6321/2015/ Biogeosciences, 12, 6321–6335, 2015
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Figure 1. (a) Reconstructed, pre-industrial and (b) model-estimated surface ocean carbonate ion concentration (mmolm−3).

1900 2000 2100 2200 2300 2400 2500 2600
 1000

 900

 800

 700

 600

 500

 400

 300

 200

 100

0

modeled sDIC
observed sDIC
modeled sAlk
observed sAlk

sDIC, sAlk (mmol m-3)

de
pt

h 
(m

)

Figure 2. The vertical distribution of pre-industrial sDIC and sAlk

in the eastern equatorial Pacific as estimated by the model and re-

constructed from observations.

of these tracers to ENSO variability depends on the their ver-

tical gradients in this region. We define the eastern equato-

rial Pacific region according to the corresponding location of

the biogeographical biome presented in Fay and McKinley

(2014). In our model, the eastern equatorial Pacific is charac-

terized by a large vertical gradient in sDIC, and a relatively

small vertical gradient in sAlk, in general agreement with the

observations in this region. Notably, the vertical gradient of

modeled sDIC in the upper 1000 m is∼ 25 % larger than that

estimated from observations. Thus, the influence of ENSO

on surface [CO2−
3 ] is likely to be slightly exaggerated in the

model.

We use the approach outlined in Friedrich et al. (2012)

to evaluate simulated interannual variability and to compare

it with observations collected at two open-ocean time series

stations (BATS and HOT). At the model grid cells corre-

sponding to the observational records, we generate probabil-

ity density distributions of the standard deviation of annual-

mean surface [CO2−
3 ] over a period of record sampled from

the model that is the same length as the observational time

series. At BATS, we calculate the standard deviation for 30

independent 30-year periods (Fig. 3a), and at HOT, we calcu-

late the standard deviation for 36 independent 25-year peri-

ods (Fig. 3b). These are compared to the interannual standard

deviation in de-trended, annual-mean surface [CO2−
3 ] from

the observational record, which is 30-years long at BATS

and 25 years long at HOT (Bates et al., 2014). Figure 3 il-

lustrates that the model underestimates interannual variabil-

ity as compared to the observational data. This underestimate

may be due to the mismatch in the spatiotemporal scales of

model and observations; we would expect higher variance in

the point-source observational record than in the smoothed

model. As a result of the model’s low variance bias, we ex-

pect our estimate of the detection timescale for the anthro-

pogenic trend in [CO2−
3 ] to be biased low, discussed next.

4 Surface carbonate variability and trend detection

We find the highest simulated interannual variability in pre-

industrial surface [CO2−
3 ] in the eastern equatorial Pacific

and at the boundaries between the subtropical and subpolar

gyres (Fig. 4a). In the eastern equatorial Pacific, our model

simulates a large vertical gradient in [CO2−
3 ] (≈ Alk−DIC;

Fig. 2), so variability is likely driven by changes in vertical

motion here. The boundaries between the gyres exhibit the

largest horizontal gradients in surface [CO2−
3 ] (Fig. 1b), so

changes in the shape of these gyres could have a large impact

on local variability here (Friedrich et al., 2012). In the North

Atlantic and North Pacific, the inter-gyre regions exhibit high

variance on decadal (Fig. 4b) and longer timescales, as well,

suggesting an influence from low-frequency climate variabil-

ity. Finally, we note that simulated surface [CO2−
3 ] exhibits

low interannual variability in the Southern Ocean, consistent

with previous modeling studies (Orr et al., 2005; Friedrich

et al., 2012; Conrad and Lovenduski, 2015).

Biogeosciences, 12, 6321–6335, 2015 www.biogeosciences.net/12/6321/2015/
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Figure 3. Blue bars: probability density of interannual standard deviation of simulated [CO2−
3

] at (a) BATS, based on 30 independent 30-year

periods and (b) HOT, based on 36 independent 25-year periods. Black line: interannual standard deviation of surface [CO2−
3

] at (a) BATS

and (b) HOT, based on detrended annual-mean observations.

Figure 4. Variance in the surface ocean carbonate ion concentration for (a) annual-mean and (b) 10-year filtered model output (log10

(mmolm−3)2).

How does the magnitude of the variability in surface

[CO2−
3 ] affect the detection of anthropogenic trends in

�aragonite? We use monthly model output to investigate the

length of the time series needed to detect an anthropogenic

trend in �aragonite with 90 % confidence, using the method of

Weatherhead et al. (1998),

n∗ =

[
3.3σN

|ω0|

√
1+φ

1−φ

]2/3

. (1)

At each location, we calculate the standard deviation (σN )

and autocorrelation (φ) in the de-seasonalized, monthly

anomalies of surface [CO2−
3 ] and solve for the detection

time (n∗, Fig. 5a). This statistical technique has been ap-

plied successfully to ocean biogeochemical data in several

previous studies (Henson et al., 2010; Beaulieu et al., 2013;

Majkut et al., 2014; Lovenduski et al., 2015); it provides

a way to quantify the importance of the variance and auto-

correlation on the detection of the trend. It differs in practice

from other statistical methods that estimate detectability or

time of emergence of the trend (Ilyina et al., 2009; Friedrich

et al., 2012; Hauri et al., 2013; Keller et al., 2014), in that

it also includes the influence of temporal autocorrelation

which affects sample size (Bretherton et al., 1999) and there-

fore trend detectability (Beaulieu et al., 2013). We note that

the Weatherhead et al. (1998) method assumes a first-order

auto-regressive process (AR(1)), and previous literature sug-

gests that ocean carbon fluxes may be better represented by

a higher-order auto-regressive process (e.g., AR(3); Séférian

et al., 2013). As such, our detection times represent minimum

values.

The estimate of the detection time is strongly influenced

by the size of the anthropogenic trend to be detected (ω0).

Since n∗ is proportional to (1/ω0)
2/3, it takes longer to de-

tect smaller trends and vice versa. As the simulation we an-

alyze here is a pre-industrial control, carbonate chemistry is

not influenced by anthropogenic factors, and we must turn

elsewhere for an estimate of ω0. Bates et al. (2014) report

www.biogeosciences.net/12/6321/2015/ Biogeosciences, 12, 6321–6335, 2015
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Figure 5. Model-estimated length of time series in years needed to detect (a) an �aragonite trend of −0.0078 yr−1, and (b) a pH trend of

−0.0018 yr−1 with at least 90 % confidence. White circled xs indicate the locations of the time series stations discussed in Bates et al. (2014).

Figure 6. (1st column) The noise-to-signal ratio (σN/ω0, years) and (2nd column) lag-1 autocorrelation in monthly, de-seasonalized surface

ocean (1st row) [CO2−
3

], and (2nd row) pH anomalies.

trends in �aragonite for seven global open-ocean time series

stations and note that the time series exhibit very consistent

changes in�aragonite, with an average trend of−0.0078 yr−1.

�aragonite can be approximated as

�aragonite ≈

[
CO2−

3

]
[
CO2−

3

]
sat, aragonite

, (2)

where [CO2−
3 ]sat, aragonite is the carbonate ion concentra-

tion in equilibrium with mineral aragonite, which is pri-

marily a function of pressure. Since variability in surface

[CO2−
3 ]sat, aragonite is an order of magnitude smaller than vari-

ability in surface [CO2−
3 ] (not shown), we approximate the

local, anthropogenic trend in surface [CO2−
3 ] (ω0) as the

product of the global-mean, anthropogenic trend in�aragonite

(−0.0078 yr−1) and the local, model-estimated value of

[CO2−
3 ]sat, aragonite.

The length of the time series needed to detect an anthro-

pogenic �aragonite trend of −0.0078 yr−1 (n∗) is shown in

Fig. 5a. This detection time is spatially heterogeneous and

ranges from 5 years at some locations to > 50 years at oth-

ers. Equation (1) reveals that detection time is influenced

by the ratio of the standard deviation to the trend (i.e., the

noise-to-signal ratio, σN/ω0, Fig. 6a) and the autocorrela-

tion (φ, Fig. 6b). Further, the noise-to-signal ratio spatial pat-

tern (Fig. 6a) is dominated by the noise (i.e., the variance,

Biogeosciences, 12, 6321–6335, 2015 www.biogeosciences.net/12/6321/2015/
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Table 1. The standard deviation (σN ) and autocorrelation (φ) in the

de-seasonalized monthly anomalies of surface [CO2−
3

] (mmolm−3)

and pH, and the length of the time series in years (n∗) needed

to detect an �aragonite trend of −0.0078 yr−1, and a pH trend of

−0.0018 yr−1 with 90 % confidence at the stations discussed in

Bates et al. (2014). Boldfaced values of n∗ indicate that the detec-

tion timescale is shorter than the length of the observational record

at that location.

[CO2−
3

] pH

Location σN φ n∗ σN φ n∗

Iceland Sea 5.4 0.69 18 1.88 0.62 17

Irminger Sea 5.5 0.30 13 1.26 0.14 9

BATS 2.4 0.78 12 0.41 0.58 6

ESTOC 2.9 0.80 15 0.41 0.66 7

HOT 2.3 0.94 20 0.50 0.77 9

CARIACO 2.7 0.81 15 0.37 0.81 8

Munida 7.2 0.42 17 1.85 0.41 14

Fig. 4a). Generally, we find long detection times in regions

with high variance and high autocorrelation, such as at the

boundaries between the subtropical and subpolar gyres in

the Northern Hemisphere and in the Pacific cold tongue re-

gion, and short detection times in regions with low variance

and low autocorrelation, such as in the Southern Ocean (cf.

Figs. 6a and b, 5a). We note an additional area with high de-

tection time in the eastern North Pacific Subtropical Gyre,

adjacent to the California Current System, where variance is

moderate, but autocorrelation is at a maximum.

[CO2−
3 ] and �aragonite are not directly measured in seawa-

ter, but rather derived from the measurement of other car-

bonate system variables, such as fCO2, pH, DIC, and Alk.

It is thus of interest to know how the detection timescale

for trends in [CO2−
3 ] or �aragonite compares to the detec-

tion timescale for trends in the measured parameters. Fig-

ure 5b shows the model-estimated detection time for a spa-

tially uniform pH trend of −0.0018 yr−1 (the average pH

trend of the seven time series analyzed in Bates et al. (2014),

and the global-mean pH trend reported in Lauvset et al.,

2015). As for �aragonite, the pH trend detection time is ele-

vated in the equatorial Pacific and inter-gyre regions, but we

find much shorter detection times overall for the pH trend

(cf. Fig. 5a and b). Figure 6 reveals that the shorter detec-

tion time for pH results from lower noise-to-signal ratios and

lower autocorrelation than for [CO2−
3 ]. Thus, results from

our model suggest that the anthropogenic trend in pH is de-

tectable sooner than the anthropogenic trend in �aragonite.

These results imply that significant trends in pH will emerge

before significant trends in �aragonite at nearly every loca-

tion in the ocean (with perhaps the exception of the Arctic

Ocean).

We detail the model-estimated detection times for trends

in �aragonite and pH at the seven open ocean time series sites

(Bates et al., 2014) in Table 1. For reference, the locations of

the time series sites are shown as white circled xs in Fig. 5.

The time series sites are ideally located in places with low

variability in [CO2−
3 ] and pH, so significant trends emerge

more quickly there relative to other locations with high vari-

ance in these properties, such as the equatorial Pacific and

inter-gyre regions (Fig. 4). According to our model calcula-

tions, the observational record is of sufficient length to de-

tect the anthropogenic trends in �aragonite and pH at all sta-

tions except Munida in the Southern Hemisphere, where the

�aragonite trend is not yet detectable (Table 1). Bates et al.

(2014) report significant (at the 99 % level) decreases in

�aragonite and pH at all stations, with the exception of the Ice-

land Sea, where the trend in �aragonite is not significant. That

the model and observational records both suggest detectable

anthropogenic trends at the time series sites is encouraging,

but the agreement must be interpreted with some caution. We

previously demonstrated that the model underestimates inter-

annual variability at two of these sites, and our calculation of

detection time from model output (see Eq. 1) assumes per-

fect temporal coverage at the sites. Taken together, the model

detection time at the time series sites is likely to be an under-

estimate.

5 Modes and drivers of variability in surface carbonate

Given the important role of variance in trend detection, and

the high magnitude of surface [CO2−
3 ] variance in the Trop-

ical Pacific, North Pacific, and North Atlantic (Fig. 4), it

behooves us to characterize and understand the large-scale

drivers of variability in these regions. Figure 7a shows the

leading empirical orthogonal function (EOF) in tropical Pa-

cific (18◦ S–18◦ N) surface [CO2−
3 ]. This EOF captures 55 %

of the interannual variance in tropical Pacific surface [CO2−
3 ]

and its spatial pattern resembles that of ENSO SST vari-

ability. The wavelet power spectrum of the leading princi-

pal component (PC) in this region shows statistically sig-

nificant spectral power on timescales associated with ENSO

variability (3–7 years; Fig. 8a). We construct an ENSO in-

dex, defined as the annual-mean SST in a box bounded by

5◦ S to 5◦ N and 120–170◦W (Nino 3.4 region), from pre-

industrial control simulation model output. We note that,

while the main characteristics of ENSO are well-captured

by the model, the overall magnitude of ENSO in CCSM4 is

overestimated (Deser et al., 2012b). Nevertheless, the mod-

eled ENSO index is highly correlated with the leading PC of

surface [CO2−
3 ] (r =−0.94). This suggests that ENSO exerts

a strong control on surface [CO2−
3 ] variability in the tropical

Pacific.

We investigate the drivers of variability in tropical Pacific

surface [CO2−
3 ] by decomposing the leading EOF into contri-

butions from surface DIC, Alk, temperature (T ), and salinity
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Figure 7. (a) Leading EOF of tropical Pacific surface ocean [CO2−
3

], and the contributions from (b) sDIC, (c) sAlk, (d) freshwater, (e)

temperature, and (f) salinity as in Eq. (4) (mmolm−3).

P
er

io
d 

(y
ea

rs
)

4

8

16

32

64

128

256

0 1 2 3 4

(a)Trop. 
Pacific

P
er

io
d 

(y
ea

rs
)

4

8

16

32

64

128

256

(b)North 
Pacific

model year

P
er

io
d 

(y
ea

rs
)

200 400 600 800 1000

4

8

16

32

64

128

256

(c)North 
Atlantic

Figure 8. The wavelet time-frequency spectrum for the leading principal component of surface ocean [CO2−
3

] in the (a) tropical Pacific, (b)

North Pacific, and (c) North Atlantic regions (mmolm−3)2. Black contours indicate statistically significant (> 95 %) spectral power.

(S) using a linear Taylor expansion,

1
[
CO2−

3

]
=

∂
[
CO2−

3

]
∂DIC

1DIC+
∂
[
CO2−

3

]
∂Alk

1Alk

+

∂
[
CO2−

3

]
∂T

1T +
∂
[
CO2−

3

]
∂S

1S, (3)

where the 1 terms are the perturbations in state variables as-

sociated with ENSO, which we estimate using the regression

coefficients of the local value with the leading PC of surface

[CO2−
3 ] in the tropical Pacific region, and the partial deriva-

tives are estimated from CO2SYS using finite difference ap-

proximation. We separate the contribution from freshwater

(fw) fluxes on DIC and Alk by expanding the derivatives to

include sDIC and sAlk (see Appendix for more details). Sub-
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Figure 9. As in Fig. 7, but for the North Pacific.

stituting Eqs. (A1)–(A3) into Eq. (3) yields

1
[
CO2−

3

]
=
S

S0

∂
[
CO2−

3

]
∂DIC

1sDIC+
S

S0

∂
[
CO2−

3

]
∂Alk

1sAlk

+

∂
[
CO2−

3

]
∂fw

1fw +
∂
[
CO2−

3

]
∂T

1T

+

∂
[
CO2−

3

]
∂S

1S, (4)

whose individual terms are shown in Fig. 7. Cross-

correlations among the variables in the Taylor sum may lead

to imprecise results in some locations.

Our analysis demonstrates that variations in sDIC are the

primary driver of [CO2−
3 ] variability in the tropical Pacific,

with smaller, opposing contributions from sAlk and fresh-

water (Fig. 7). Contributions from temperature and salinity

play comparatively smaller roles. As the east/central equato-

rial Pacific is associated with a large vertical gradient in sDIC

(Fig. 2), variations in vertical exchange here likely domi-

nate surface sDIC variability. El Niño events are associated

with relaxed trade winds and less upwelling of DIC-rich wa-

ter in the east/central equatorial Pacific, raising the surface

[CO2−
3 ]; the opposite is true during La Niña events, when

we would expect anomalously low surface [CO2−
3 ] in these

regions. In our simulation, the ENSO index has a strong neg-

ative (positive) correlation with surface sDIC ([CO2−
3 ]) in the

east/central equatorial Pacific (not shown).

The leading EOF of surface [CO2−
3 ] variability in the

North Pacific (20–70◦ N) is characterized by a broad,

horseshoe-shaped area of [CO2−
3 ] off the coast of North

America that is out of phase with [CO2−
3 ] in the western sub-

tropical gyre (Fig. 9a). This EOF explains 35 % of the vari-

ance in surface [CO2−
3 ] in the North Pacific basin and its spa-

tial pattern resembles the PDO. The wavelet spectrum for the

associated first PC (Fig. 8b) reveals high spectral power at

20–30 year periods, similar to the PDO, but also detects sig-

nificant spectral power at high frequencies (3–7 years), and

low frequencies (> 60 years). We define a model PDO as

the leading EOF of sea surface temperature anomalies in the

North Pacific (20–70◦ N); it has a generally realistic spatial

pattern and amplitude (Deser et al., 2012b). The model PDO

is highly correlated with the leading PC of surface [CO2−
3 ] in

the North Pacific (r =−0.94), suggesting that the PDO has

a large influence on surface [CO2−
3 ] in this region.

We decompose the leading EOF of surface [CO2−
3 ] in the

North Pacific into contributions from sDIC, sAlk, freshwa-

ter, temperature, and salinity using Eq. (4). Our analysis re-

veals that sDIC contributes to most of the variability in sur-

face [CO2−
3 ] in this region, with smaller, opposing contribu-

tions from sAlk and freshwater, and near-zero contributions

from temperature and salinity (Fig. 9). Positive/warm phases

of the PDO are associated with southerly winds off the coast

of California, suppressing the upwelling of carbon-rich wa-

ter and elevating surface [CO2−
3 ], while the western subtrop-

ical gyre experiences increased upwelling of DIC and lower

surface [CO2−
3 ]. The opposite is true during negative/cold

phases of the PDO, when we find anomalously high (low)

surface [CO2−
3 ] in the eastern (western) North Pacific. We

find a significant positive correlation between the PDO and

surface [CO2−
3 ] off the coast of California and a significant

negative correlation between the PDO and surface [CO2−
3 ] in

the western North Pacific subtropical gyre (not shown).

In the North Atlantic (40–80◦ N), the leading EOF of sur-

face [CO2−
3 ] explains 18 % of the variance and is character-

ized by a tripole pattern, with nodes centered in the sub-

polar gyre, the inter-gyre region, and the subtropical gyre

(Fig. 10). The wavelet time-frequency diagram of the lead-
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Figure 10. As in Fig. 7, but for the North Atlantic.

ing PC (Fig. 8c) looks like a red noise process (Torrence and

Compo, 1998) with significant spectral power at 20–40 year

and longer periods. A Taylor series decomposition of the

variability in this region using Eq. (4) reveals that, similar to

the other two regions, sDIC variability is the dominant driver

of [CO2−
3 ] variations here, with smaller, opposing contribu-

tions from sAlk, freshwater, and salinity in the inter-gyre re-

gion (Fig. 10) where variance in [CO2−
3 ] is at a maximum

(Fig. 4). The leading PC of [CO2−
3 ] in this region is weakly

correlated with the NAO (r =−0.16) and the Atlantic Multi-

decadal Oscillation (AMO, r =−0.33). Positive phases of

the NAO and AMO are associated with anomalously high

[CO2−
3 ] in the subpolar and subtropical gyres and anoma-

lously low [CO2−
3 ] in the inter-gyre region, though the weak

correlations preclude further investigation of the mechanistic

link between these modes of climate variability and surface

[CO2−
3 ] in this region.

6 Conclusions

We analyze output from a 1000-year, pre-industrial control

simulation of an Earth System Model in order to quantify,

characterize, and understand the drivers of variability in the

surface ocean carbonate ion concentration. We find the high-

est variability in the tropical Pacific, where the model simu-

lates large vertical gradients in [CO2−
3 ], and at the boundaries

between the subtropical and subpolar gyres in the North-

ern Hemisphere. High variance coupled with high autocor-

relation results in long detection times (> 50 years) for an-

thropogenic trends in �aragonite at these locations, whereas

we find short detection times (∼ 15 years) at the open ocean

time series sites and in the Southern Ocean, where vari-

ance is at a minimum. Our results suggest that the detec-

tion timescale for anthropogenic trends in pH is shorter than

that for�aragonite, owing to smaller noise-to-signal ratios and

lower autocorrelation in pH. We further characterize the sur-

face [CO2−
3 ] variance in the Tropical Pacific, North Pacific,

and North Atlantic using EOF and wavelet analysis. The

leading mode of variability in the tropical Pacific exhibits

statistically significant spectral power at 3–7 year timescales

and is highly correlated with ENSO. In the North Pacific,

the leading EOF of [CO2−
3 ] has the characteristic horseshoe

pattern of the PDO, with peak spectral power at 20–30 year

timescales. In the North Atlantic, the wavelet decomposition

of the leading mode of variability appears similar to a red

noise process, with weak correlations with the NAO and

AMO. In all locations, surface [CO2−
3 ] variability is driven

by variability in sDIC, with smaller opposing contributions

from sAlk and freshwater dilution. Temperature and salinity

variability contributes very little to [CO2−
3 ] variance. In all

regions, climate variability imposes changes in ocean circu-

lation that likely mediate the vertical and lateral advection of

DIC into the surface ocean.

While the spatial pattern of surface [CO2−
3 ] variability in

our model is similar to that reported in other studies (e.g.,

Friedrich et al., 2012), a recent study of natural carbon uptake

variability from centuries-long simulations of six ESMs sug-

gests that we should expect the magnitude of this variability

to differ from model to model (Resplandy et al., 2015). Thus,

the detection times for trends in [CO2−
3 ] and pH, which them-

selves are a function of the variability, are also likely to differ
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from model to model. Future investigations characterizing

the uncertainty in internal variability from ESM ensembles

are therefore needed.

Our results provide meaningful perspective on the trends

in �aragonite and pH reported in the literature. Our statistical

analysis of model output suggests that, due to low variance in

[CO2−
3 ] and pH, significant anthropogenic trends in�aragonite

and pH are already or nearly detectable at the open-ocean

time series sites, whereas high variability and autocorrelation

in [CO2−
3 ] may obscure the detection of anthropogenic trends

in �aragonite in the tropical Pacific, North Pacific, and North

Atlantic. Our characterization of the spatial pattern and fre-

quency of natural [CO2−
3 ] variability in these high variance

regions suggests that it is largely driven by large-scale modes

of internal climate variability, such as ENSO, PDO, NAO,

and AMO. One should consider the phasing of these modes

of climate variability, therefore, when interpreting trends cal-

culated from carbonate chemistry data collected in these re-

gions.

Ongoing efforts aimed at optimizing the ocean acidifica-

tion observational network (e.g., the Global Ocean Acidifica-

tion Observing Network, GOA-ON) stand to benefit from the

results presented here. Our analysis suggests that frequent,

sustained observations are required to capture the natural

variability that is key to detecting significant anthropogenic

trends in surface�aragonite and pH. In regions where variabil-

ity is muted (e.g., the subtropical gyres), detectable trends

can emerge from sparse or short records, whereas, in regions

with heightened variability (e.g., the equatorial Pacific), the

observational record must be denser and longer in order to

detect the same trend. Further, our finding that the detec-

tion timescale for pH is shorter than that for �aragonite nearly

everywhere highlights the need for continued underway and

float-based pH measurements.
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Appendix A: Freshwater contributions to [CO2−
3 ]

variability

To separate the contribution from freshwater fluxes on DIC

and Alk, we use the following two equations for the first and

second terms of Eq. (3),

∂
[
CO2−

3

]
∂DIC

1DIC =
∂
[
CO2−

3

]
∂(S/S0sDIC)

1(S/S0sDIC)

=
sDIC

S0

∂
[
CO2−

3

]
∂DIC

1S

+
S

S0

∂
[
CO2−

3

]
∂DIC

1sDIC (A1)

∂
[
CO2−

3

]
∂Alk

1Alk =
∂
[
CO2−

3

]
∂(S/S0sAlk)

1(S/S0sAlk)

=
sAlk

S0

∂
[
CO2−

3

]
∂Alk

1S

+
S

S0

∂
[
CO2−

3

]
∂Alk

1sAlk. (A2)

We extract the first terms from Eqs. (A1) and (A2), as they

represent the contribution from freshwater forcing (fw) on

[CO2−
3 ],

∂
[
CO2−

3

]
∂fw

1fw =
sDIC

S0

∂
[
CO2−

3

]
∂DIC

1S

+
sAlk

S0

∂
[
CO2−

3

]
∂Alk

1S. (A3)
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