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Abstract. Forests with high above-ground biomass (AGB),

including those growing on peat swamps, have historically

not been thought suitable for biomass mapping and change

detection using synthetic aperture radar (SAR). However, by

integrating L-band (λ= 0.23 m) SAR from the ALOS and li-

dar from the ICESat Earth-Observing satellites with 56 field

plots, we were able to create a forest biomass and change

map for a 10.7 Mha section of eastern Sumatra that still con-

tains high AGB peat swamp forest. Using a time series of

SAR data we estimated changes in both forest area and AGB.

We estimate that there was 274± 68 Tg AGB remaining in

natural forest (≥ 20 m height) in the study area in 2007,

with this stock reducing by approximately 11.4 % over the

subsequent 3 years. A total of 137.4 kha of the study area

was deforested between 2007 and 2010, an average rate of

3.8 % yr−1.

The ability to attribute forest loss to different initial

biomass values allows for far more effective monitoring

and baseline modelling for avoided deforestation projects

than traditional, optical-based remote sensing. Furthermore,

given SAR’s ability to penetrate the smoke and cloud which

normally obscure land cover change in this region, SAR-

based forest monitoring can be relied on to provide fre-

quent imagery. This study demonstrates that, even at L-

band, which typically saturates at medium biomass levels

(ca. 150 Mg ha−1), in conjunction with lidar data, it is pos-

sible to make reliable estimates of not just the area but also

the carbon emissions resulting from land use change.

1 Introduction

Tropical forests provide multiple ecosystem services such as

climate regulation and water filtration (Naidoo et al., 2008).

However, markets fail to value forests and their services fully,

with multiple direct and indirect processes driving exten-

sive deforestation (complete removal of tree cover) and for-

est degradation (removal of a proportion of forest biomass),

considered together as “DD” Bulte and Engel, 2006. DD in

developing countries accounts for between 7 and 20 % of an-

thropogenic CO2 emissions, e.g. 18 % (Grace et al., 2014),

15 % with a range of 8–20 % (van der Werf et al., 2009), and

7–14 % (Harris, 2012). Ultimately this is leading to between

0.9 and 2.2 Pg C yr−1 being transferred to the atmosphere

(Houghton, 2010). By contrast, the release of carbon dioxide

from fossil fuel burning in the tropics is just 0.74 Pg C yr−1

(Boden et al., 2010), so DD dominates anthropogenic CO2

emissions from tropical countries. Furthermore, there is ex-

tensive evidence that intact and secondary forests in the trop-

ics are acting as a significant carbon sink, absorbing at least

as much carbon dioxide as is released through tropical defor-

estation (Lewis et al., 2009; Grace et al., 2014). Preventing

dangerous climate change will therefore be much more dif-

ficult if tropical deforestation is not reduced or reversed. DD

is also leading to extensive losses of biodiversity and other

ecosystem services (Koh and Sodhi, 2010). Hence there are

multiple environmental benefits to be achieved by slowing or

reversing these processes. Consequently, in the private sector,

investors and consumers are pressuring companies trading in

commodities like soy, palm oil, and timber (hereafter col-
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lectively “high-deforestation-risk commodities”, HDRCs) to

monitor and reduce their impact on the world’s forests.

In the public and third sectors (non-governmental organi-

sations, NGOs), there has been intense activity in the devel-

opment of REDD+ (Reducing Emissions from Deforestation

and forest Degradation; the sustainable management, conser-

vation, and enhancement of forest carbon stocks in devel-

oping countries; (UNFCCC, 2010)). This currently takes the

form of, inter alia, bilateral arrangements (e.g. governments

of Norway and Indonesia’s USD 1 billion REDD+ Letter of

Intent), large multilateral programmes (e.g. the UK govern-

ment’s GBP 3 billion International Climate Fund, the World

Bank’s Forest Carbon Partnership Facility, and the UN-

REDD programme), and localised projects financed through

the voluntary carbon market (e.g. see Goldstein et al., 2014).

HDRC compliance and REDD+ will require (Task I) the

quantification of above-ground forest biomass (AGB), and

both will certainly require (Task II) monitoring change in for-

est over time. This paper addresses the technical aspects of

both of these tasks, focusing on the quantification of AGB

and its change over time in the same analysis. However, Task

II can be achieved without initially quantifying AGB (Joshi

et al., 2015), e.g. measuring solely the area deforested.

The forest areas of concern are vast and remote, necessi-

tating the use of remote sensing (RS) techniques, typically

the analysis of images captured from satellites or aircraft.

With existing techniques and cloud-free optical data it is rel-

atively simple to detect forest change. However, ideally an-

alysts would use time series of high-resolution AGB maps

(e.g. from lidar) to accurately detect DD and any forest re-

growth and to quantify the associated biomass changes si-

multaneously. Yet there are major challenges to measuring

biomass: no satellite sensor directly measures it (Woodhouse

et al., 2012), and relationships between remote sensing data

and biomass tend to break down at medium to high AGB

levels, meaning there is a loss of sensitivity to high-biomass

forest (Mitchard et al., 2009). Hence the initial AGB map (at

time t0) will contain errors, as will maps for subsequent time

periods (t1, t2, . . . , n). Therefore detecting biomass change

over time is a more troublesome proposition still, since the

errors in each map must be well understood in order to be

able to correctly infer change over time. In the absence of

such well-understood uncertainties, Tasks I and II must be

integrated to measure AGB change. We postulate that by

distinguishing between these tasks, uncertainty in the car-

bon stocks (typically quite high) can be separated from un-

certainty in the change maps (often low). This should pro-

duce change estimates with narrower and better-defined con-

fidence intervals than those created by directly differencing

biomass maps

1.1 Task I: AGB estimation

For Task I, Mitchard et al. (2012) characterised the options

available as (a) the classification of forest into land cover

types, which are then attributed a mean AGB value based

upon field or remote sensing measurements, or (b) the direct

regression, or more complex machine-learning algorithms,

between point AGB estimates and a single variable or set of

remote sensing variables. Approach (a) largely maps onto the

Tier 1 and Tier 2 approaches for REDD+ monitoring pro-

posed by the United Nations Framework Convention on Cli-

mate Change (UNFCCC).

Tier 3, which involves local modelling, probably involves

approach (b) (Arino et al., 2009). Option (a), forest classi-

fication, can be performed using the properties of sunlight

reflected from the surface of the forest canopy (passive op-

tical remote sensing, e.g. using the LANDSAT satellite se-

ries). It also can be undertaken using active sensing tech-

nologies such as synthetic aperture radar (SAR) acquired at

low (e.g. L-band) frequencies. Sensors operating at L-band

include the ALOS PALSAR or ALOS-2 PALSAR-2. How-

ever, this forest-classification approach does not reflect vari-

ations in forest within classes, leading to coarse AGB maps.

Furthermore, optical imagery typically suffers from interfer-

ence from cloud and smoke over forest areas; hence multiple

image acquisitions are required to make the final forest clas-

sification. For these reasons, option (b) (direct estimation) is

more attractive.

One of the most promising RS variables for option (b),

direct regression, is SAR backscatter. SAR involves focus-

ing a beam of microwave energy at the forest and using the

backscattered energy to make inferences about the proper-

ties of the target. The longer (than visible light) wavelengths

of SAR mean that the signal does not interact with water or

particulates in the atmosphere; hence it can “see” through

cloud and smoke. Since the radiation interacts with the struc-

ture of the forest itself, it can be statistically related to AGB

(Mitchard et al., 2012; Morel et al., 2011). However the SAR

signal saturates at some level of forest biomass typically be-

tween 60 and 150 Mg ha−1 for L band, depending on the po-

larisation and environmental conditions (Lu, 2006; Mitchard

et al., 2009). Hence AGB modelling must be limited at this

maximum level of sensitivity, or else any pixel with AGB

greater than this value can be ascribed a “high-biomass for-

est” value, e.g. as taken from forest plots. Longer wavelength

SAR has potential for much higher saturation points, but no

satellite collecting data longer than L-band currently exists.

However, the P-band BIOMASS satellite has been funded by

the European Space Agency, and should launch in 2020 (Le

Toan, 2011).

The only operational RS technology that can estimate the

biomass of tropical forest without saturation at this level is

light detection and ranging (lidar). This active sensing ap-

proach involves emitting pulses of laser light at a target

(the forest) to determine structural information and thereafter

AGB (Lefsky, 2010; Asner et al., 2010). Yet landscape cov-

erage to make AGB maps is only possible using aeroplanes

as the sensor platform. For instance, Asner et al. (2010) mea-

sured 514.3 kha in Peru at a spatial resolution of < 1 m, yet
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these data needed to be integrated with moderate resolution

(30 m) satellite data to produce a final landscape-level map.

Moreover, using aeroplanes as the platform makes data ac-

quisition very expensive, and costs rise further due to com-

plex data processing requirements, especially when repeated

acquisition is required for monitoring. This cost represents a

significant barrier to lidar’s wide adoption and operationali-

sation as a forest-monitoring tool.

Hence, there is a monitoring problem: optical imagery typ-

ically cannot be related directly to AGB and hence relies on

classification techniques, and is plagued with the problems of

cloud cover. A SAR signal can penetrate cloud and smoke,

increasing the regularity of usable observations (effectively

whenever a SAR image is captured, compared with only a

small subset of optical images). Moreover, SAR backscatter

can be directly related to AGB given a sufficiently long wave-

length. However SAR signals saturate at AGB levels well be-

low those found in mature tropical forests. Lidar can provide

AGB estimates, yet the mapping of large areas still requires

integration with other data sets.

Here we present one solution to this problem that may

be implemented now, by combining the options set out

above. This possibility arises because lidar footprints from

the Ice, Cloud and land Elevation Satellite (ICESat) Geo-

science Laser Altimeter System (GLAS) sensor provided dis-

persed lidar samples across the Earth’s surface, including

over tropical forests. These data can be statistically related

to – and used in conjunction with – other freely available

remote sensing data from sensors like SAR which do pro-

vide full coverage and actively sense forest structure (Shugart

et al., 2010). This is because both approaches actively sense

forest structure, measured either through differentiated laser

light returns in lidar, e.g. from forest floor and canopy, and,

in the present case, the degree of volume scattering in SAR

returns. Though these lidar data are the same fundamental

input, the method we propose is different to that in Saatchi

et al. (2011), which involves a machine-learning approach at

a coarse resolution, and that of Mitchard et al. (2012), which

uses SAR data to perform a classification and then populate

the classes with AGB based on the lidar. Our approach in-

volves two stages: direct regression for AGB mapping us-

ing a single year of SAR data, followed by an independent

change detection process using multi-temporal SAR data.

Specifically, our approach is to integrate L-band SAR

(Phased Array type L-band Synthetic Aperture Radar, PAL-

SAR, λ 0.23 m; on board the Advanced Land Observing

Satellite, ALOS) with 4 years of data from the spaceborne

lidar sensor (ICESat GLAS; 10 944 footprints from 2003 to

2007) in order to greatly supplement a small biomass field

data set of 56 field plots. By modelling relationships between

these three data sets, we are able to quantify AGB in the

reference year 2007, with an increased sensitivity to higher-

biomass forest than would be the case using SAR alone.

1.2 Task II: forest and AGB change detection

For Task II, the options are to characterise the possible states

of the forest system and to measure the change in state over

time. Typically this involves some form of categorising or

“binning” forest into classes. For instance, an area of forest

may change from intact forest to degraded forest, from de-

graded forest to non-forest, or from non-forest to plantation.

The changed pixels can be related back to an original AGB

map (if available) and AGB loss and carbon flux calculated;

otherwise, statistics on the areas of forest lost and degraded

can be generated.

Historically such change assessments have been under-

taken by using optical satellite imagery. For instance, in an

assessment of the impacts of protected areas (PAs) in Suma-

tra, Gaveau et al. (2009) used Landsat images from 1990

and 2000 to measure deforestation, whilst more recent efforts

integrate Moderate Resolution Imaging Spectroradiometer

(MODIS) data in addition to Landsat. Broich et al. (2011a)

used this combination to map forest change across Suma-

tra and Kalimantan. This work highlighted the central prob-

lems of both identifying forest type from optical remote sens-

ing imagery and using composite images from several dif-

ferent time periods. Composites are necessary when clouds

obscure parts of the study area in the first image collected;

using cloud-free sections of later images ultimately allows

the creation of a largely cloud-free image. Yet cloud-free im-

agery for those areas obscured in the first image may not

be available for months or even years after the first image

is collected. Since forest is being cleared and replaced with

plantations very rapidly in places like Indonesia, this means

that composite images do not incorporate the deforestation

and regrowth that has occurred in the time period during

which the composite was created (Hansen et al., 2008, 2009).

Change detection based on these composites may therefore

underestimate the extent of forest change. One solution is

to use algorithms to develop pixel forest histories (Broich

et al., 2011b), yet this approach seeks a solution more in in-

ference than in data. In a more recent Sumatra-wide study

using Landsat and lidar, Margono et al. (2012) reiterate these

interacting monitoring challenges of high cloud cover and

rapid regrowth. Nonetheless, optical data have been used to

produce impressive multi-year global forest change products

across habitat types (Hansen et al., 2013).

Our novel solution for Task II is to use interannual

threshold-delimited differencing of L-band SAR data to pro-

vide annual DD estimates. We use these changes in conjunc-

tion with the map produced as a solution for Task I in order

to measure AGB loss and estimate CO2 emissions. We test

this approach for a section of Sumatra, Indonesia. This is an

ideal study site because Indonesia has an extremely high de-

forestation rate, which reached 2 Mha yr−1 in 2011 to 2012

(Hansen et al., 2013). At the same time, there is considerable

action required to be taken in order to address this, including

the proliferation of REDD+ and HDRC monitoring activity,
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Figure 1. A map of the western islands of the Indonesian archipelago. The island oriented north-west to south-east is Sumatra. The section

highlighted is our study area of 10.7 Mha. The underlying data for that section constitute our estimate of AGB for 2007. Dark-green areas

are those with high AGB, and lighter coloured areas have very low AGB. In the northernmost tip of the image is the dark green of Berbak

National Park, reflecting its relatively intact status. It was from this site that we gathered our field data via ZSL, which operates a pilot

REDD+ project there. The south of the study area terminates at the Bukit Barisan mountain range.

for instance with Norway committing USD 1 billion to a bi-

lateral REDD+ deal (Norwegian Embassy, 2011; Solheim

and Natalegawa, 2010), and via the Roundtable on Sustain-

able Palm Oil (RSPO).

2 Methods

2.1 Field site

Our forest plot data are from Berbak National Park (BNP;

104◦20′ E, 1◦27′ S), a peat swamp in Jambi province, Suma-

tra, covering 140 000 ha. It is habitat for the critically en-

dangered Sumatran tiger (Panthera tigris sumatrae; IUCN,

2013) and 23 species of palms, making it the most palm-rich

peatland swamp known in SE Asia. The Zoological Society

of London (ZSL) has established a pilot REDD+ project here

known as the Berbak Carbon Initiative (BCI), managed in

partnership with the government of Indonesia (GoI). How-

ever, since the SAR data for this study were available at a far

larger extent than that of the project site, we expanded the

analysis to a scene which covered portions of both Jambi and

South Sumatra provinces, covering 10.7 Mha. A map of the

study area is provided in Fig. 1.

These provinces were once entirely covered by mega-

diverse Sundaland lowland rainforest, supporting, inter alia,

the world’s largest (Rafflesia sp.) and tallest (Amorphophal-

lus sp.) flowers, the Sumatran rhinoceros (Dicerorhinus

sumatrensis), and stands of ironwood (Eusideroxylon zwa-

geri; Whitten et al., 1984). The forest types range from

mangrove forest, lowland peat swamp forest, and lowland

terra firme forest through to hill and montane forest in the

Bukit Barisan mountains (ibid.). However, this description

is now largely historical: the expansion of industrial log-

ging, followed by transmigration of Javanese settlers, and

oil palm (Elaeis guineensis) plantation development has led

to extensive DD (e.g. Whitten et al., 1984; Gaveau, 2013;

Broich et al., 2011a; Broich et al., 2011b; Miettinen et al.,

2011). Hence anthropogenic land cover is increasingly dom-

inant, in particular with oil palm and “fastwood” (Acacia

sp.) plantations expanding to meet international food, energy

and wood pulp demand, whilst coconut plantations have ex-

panded along the coastline.

Using land use planning GIS shapefiles provided by the

Indonesian government to ZSL, we calculated that 1 % of

the area is designated as community forest, 26 % as produc-

tion forest, and 10 % protected forest. The majority is des-

ignated for non-forest use (60 %), e.g. for cities and agricul-

ture. It should be noted that these are aspirant land use des-

ignations: their implementation in Indonesia is complicated

(Collins et al., 2011).

2.2 Field plot data

ZSL undertook a carbon stock assessment during the ini-

tial phase of the REDD + pilot project, collecting data be-
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tween October 2010 and August 2011. This involved includ-

ing forest AGB estimation using forest plots. Plot locations

were chosen through stratified random sampling, based upon

a habitat classification map of Berbak National Park using

2008 SPOT V imagery analysed by ZSL Indonesia. In the

field, plot locations were verified with a Garmin 60CSx hand-

held GPS unit. A total of 56 plots were sampled, with 36 in

primary swamp forest, 14 in swamp bush, and 6 in secondary

peat swamp forest. The plots were nested, constituting the

following:

1. the main plot of 20× 125 m plot recording stem

≥ 1.05 m circumference,

2. a 20× 20 m subplot recording stems > 0.30 m and

< 1.05 m circumference,

3. a 10× 10 m subplot recording stems ≥ 0.15 m and

≤ 0.30 m circumference.

The AGB for each tree in each subplot was then calculated

using an allometric equation for wet tropical forests, where

AGB= exp
(
−2.557+ 0.940× ln

(
ρd2η

))
, (1)

where ρ is oven-dry wood over green volume (wood density,

g cm−3), d is diameter (cm) at breast height (DBH; 1.3 m),

η is tree height (metres) (Chave et al., 2005). Wood den-

sities were collected from the literature for Indonesia peat

swamp trees (Murdiyarso et al., 2010). There were no palms

recorded in the plot data, yet they may be among the 5.3 %

of the stems that were unidentified by the field team. Fu-

ture research may identify these species and identify specific

allometric equations and wood densities. However, for the

present analysis, we followed the Food and Agriculture Or-

ganization recommendation of the use of an arithmetic mean

for tree wood density where trees are not individually identi-

fiable in the field plots. This is 0.57 g cm−3 for Asia (Reyes

et al., 1992), or a generic 0.58 g cm−3 (Chave et al., 2004).

We used the former figure.

2.2.1 Calculating tree height

Tree height data were not recorded from the forest plots by

the field team. Equations published by Morel et al. (2011)

were therefore used to relate tree height to DBH for SE Asian

trees, whereby height η, for stems where d < 20 cm, is

η = 8.61× ln(d)+ (−8.85) (2)

and where d > 20 cm is

η = 16.41× ln(d)+ (−33.22). (3)

The estimated height for each stem was then used to calculate

Lorey’s height (L) for each of the plots. We did this because

L is the closest to what the ICESat GLAS waveforms mea-

sure (Lefsky, 2010). Lorey’s height weights the contribution

of trees to the stand height by their basal area. It is calculated

by multiplying tree height η by its basal area α and then di-

viding the sum of this by the total stand basal area.

L =

∑
(η×α)∑
(α)

(4)

2.2.2 Estimating the relationship between the

measured biomass and height

The next step was to calibrate the relationship between plot-

level AGB estimates and Lorey’s height estimated in the

steps above. This involved following the approach of Saatchi

et al. (2011) and Mitchard et al. (2012), which is to estimate

a non-linear least-squares regression: y = a× (xb). We es-

timated this using the NLS function in R (R Core Team,

2013). We performed the final regression excluding the 14

swamp bush plots to avoid bias of elevated R2 values, and

reduced RMSE values. This changed neither the regression

coefficient nor exponent.

2.3 SAR and lidar data

We downloaded ALOS-PALSAR mosaics from 2007 to 2010

from the Japanese Aerospace Exploration Agency (JAXA)

website (JAXA, 2014). The PALSAR data are collected in

two polarisations – horizontal send, horizontal receive (HH)

and horizontal send, vertical receive (HV) – and are provided

at 25 m resolution. We aggregated this by taking the mean of

a 4× 4 pixel window, as a multilooking procedure to reduce

speckle. Since an initial change detection produced noisy im-

ages, we then used an enhanced Lee filter with a 3× 3 win-

dow on each of the now 100 m HH and HV rasters, using

ENVI (Exelis) and the default parameters.

Lidar data were taken from the ICESat GLAS sensor.

These data were collected between 2003 and 2007, and pro-

vide waveforms for transects across the Earth’s surface. The

final data used here were the estimates of Lorey’s height from

each waveform derived from coincident tropical ground data,

as used by Saatchi et al. (2011). On examining the data in a

GIS, there were clearly many footprints over areas that were

known to be covered in forest (from field observations) but

that were influenced by smoke and cloud cover because they

had Lorey’s height values of 0 m. To resolve this problem we

used an independent land cover data set from the European

Space Agency (ESA) called GlobCover (Bicheron et al.,

2009). This provides estimated land cover type across the

study area, and at 300 m resolution it is the highest-resolution

land cover data available. We extracted the GlobCover land

cover type for each footprint and then filtered the lidar foot-

prints for any false negatives by removing those footprints

which had Lorey’s height values of 0 m but which were clas-

sified as forest in GlobCover. We excluded any data points

which were over non-forest areas. Through use of this pro-
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cess, 11 031 lidar footprints were removed, leaving 10 944

points remaining for calibrating the SAR data.

2.4 Calculating natural forest AGB stocks

2.4.1 Calibration of SAR and lidar data: creating a

forest height map

For 2007 we calibrated the SAR data in decibels (dB) with

the lidar data by modelling a functional relationship between

the Lorey’s height measurements and the HV backscatter

value of the pixels in which the lidar footprints fell.

However, lidar data over this type of mixed and degraded

forest landscape typically contain many more data points

at lower values of Lorey’s height, with very few readings

greater than 30 m. We wanted to develop the best functional

relationship between these values to allow for a prediction

of height. For such an ideal regression a similar number of

Lorey’s height estimates are necessary at all SAR backscatter

levels. By contrast, a regression on all values would be biased

towards a fit at smaller values of both variables. Therefore we

binned the data, whereby we calculated the mean backscatter

at each Lorey’s height interval (0, 1, 2, . . ., 25 m) using the

aggregate function in R (R Core Team, 2013).

A physical limitation of the L-band SAR data is that

they do not fully penetrate the forest canopy, and the sig-

nal saturates at higher biomass levels (Mitchard et al., 2009,

2011). This is demonstrated by a change in the functional

relationship between the Lorey’s height measurement from

lidar and the HV backscatter, which occurs at approxi-

mately 25 m Lorey’s height in this instance, corresponding

to 190.6 Mg ha−1, as shown in Fig. 3. Therefore we mod-

elled the relationship using a non-linear regression estimated

in R, taking the natural logarithm of the Lorey’s height, i.e.

HVdB
2007 = β ln(L)+ e. (5)

The relationships using the HV backscatter were superior to

those developed using the HH backscatter, and so we contin-

ued the analysis using only this polarisation (e.g. Mitchard

et al., 2009).

We then applied the functional relationships between

backscatter and Lorey’s height to the 2007 HV backscatter

raster using Eq. 1. In practice this meant calculating Lorey’s

height L using

L2007 = e
((

HVdB
2007+α

)
/β
)
. (6)

This created a map for 2007 which estimated Lorey’s height

per pixel.

2.4.2 Excluding agriculture and plantations from the

Lorey’s height map

Since our analysis concerns the loss of natural forest only

rather than AGB in all land cover types, we excluded those

.

Figure 2. Relationship between Lorey’s height and biomass as mea-

sured in the forest plot data from Berbak National Park. We per-

formed the final regression excluding the 14 swamp bush plots to

avoid bias of elevated R2 values, and reduced RMSE values. This

changed neither the regression coefficient nor exponent. R2
= 0.61;

RMSE= 113 Mg ha−1

pixels which had a modelled Lorey’s height < 20 m from

the subsequent analysis. We considered that trees at this

height would be natural forest rather than plantation. Fur-

ther, our model estimates that forest 20 m high has AGB

of 123.7 Mg ha−1, whereas a study on neighbouring Borneo

also using ALOS PALSAR found that the mean biomass of

plantations was 53 Mg ha−1, with values above this on aver-

age representing natural forests (Morel et al., 2011). There-

fore, by choosing this forest height limit of 20 m, and hence

AGB of 123.7 Mg ha−1, we greatly increase our confidence

that we have excluded plantations from our maps and hence

also plantation cropping cycles in the subsequent change

analyses. We also deemed our restriction to be in keeping

with the definition of “forest” under the Marrakesh Accords

(UNFCCC, 2001).

Next we undertook spatial filtering. We wrote a moving

window function in R based on the focal function from the

raster package (Hijmans, 2013) and applied it to the 2007
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Figure 3. Non-linear relationship between HV backscatter and

Lorey’s height. This diagram demonstrates the logic behind the se-

lection of the 10 m height threshold for the definition of deforesta-

tion. Values in the upper right of the graph have both high Lorey’s

height values and high HV backscatter values, which we interpret

as being natural high-biomass forest. In the bottom left of the image

are data points which have low AGB and low Lorey’s height values,

which we interpret as being degraded forest through to cleared for-

est. If the value of a pixel moves from the upper right of the plot

to the lower left, such that the height reduction is ≥ 10 m during 1

year, we interpret this as a deforestation event. This process is rep-

resented by the arrow pointing downwards to the left.

Lorey’s height map. For each 5× 5 pixel window, if ≥ 20

(80 %) of the pixels were estimated to contain forest of

≥ 20 m Lorey’s height, we included all of those pixels in

the subsequent analysis. Otherwise, if < 20 pixels were esti-

mated as forest, we excluded all these pixels. This will result

in the exclusion of small patches of remnant natural forest

and hence ultimately to underestimation of the 2007 AGB

stocks. However, it further allows us to increase our confi-

dence that we are excluding plantations from the analysis,

and allows us to focus instead upon mapping the biomass and

the deforestation of Sumatra’s last intact contiguous high-

biomass forest. Visual comparisons of the resulting map with

Google Earth data and our own field knowledge suggested

that these processes had indeed masked out plantations with-

out removing any large areas of natural forest.

2.4.3 Creating the 2007 biomass map

In order to create the final biomass map for 2007, we ap-

plied the relationship between Lorey’s height and forest plot

biomass (Eq. 10) to the Lorey’s height raster created above.

We processed all data with UTM projection (48S) at 100 m

resolution in order to readily calculate biomass stocks per

hectare.

To account for the saturation of the HV backscatter signal

and hence functional relationship at this point, we limited the

modelled biomass estimate at 196.6 Mg ha−1. For any pixel

> 196.6 Mg ha−1, we attributed a mean biomass value taken

from the Berbak forest plots with > 25 m Lorey’s height. This

was 236.5 Mg ha−1 (n= 8; SD= 75.7 Mg ha−1). This figure

is more conservative than the generic 350 Mg ha−1 for Asian

forests as suggested by the IPCC (Penman et al., 2003; IPCC,

2006).

2.5 Calculating errors and uncertainties

In a study estimating biomass there are a combination of ran-

dom and systematic errors propagating throughout the cal-

culations. Mitchard et al. (2011) characterise the errors as

those concerning (a) accuracy and (b) precision. Accuracy

concerns the distance of the mean from the true value and

hence systematic biases. Precision concerns the distance of

a measurement from the mean of multiple measurements of

the same attribute and is this due to random errors. In a com-

prehensive review of errors in biomass estimations, Chave

et al. (2004) highlight how in practice these errors can occur

when, for instance, taking the measurements of the individ-

ual trees themselves, random errors in the identification of

tree species, and spatial errors relating to geo-location.

We considered each of the potential sources of error in

turn, namely those deriving from the binary forest map from

the ESA; the tree species identification, and height and AGB

estimations; errors in the lidar data and Lorey’s height es-

timates; and the relationships estimated between lidar and

SAR backscatter. In order to combine these multiple errors,

which we assume to be uncorrelated, we used the following

formula to determine uncertainty (U ; Saatchi et al., 2011):

Utotal =

√
U2

1 + . . .+U
2
n . (7)

2.6 Deforestation detection

2.6.1 Radiometric normalisation of the 2008 : 2010 HV

backscatter rasters to the 2007 data set, and

additional processing

Annual variations in measurement conditions, such as mois-

ture on the ground and in vegetation, introduce variance in

backscatter between years which does not constitute changes

in forest state. In the wet tropics these changes can be large.

For change analysis this represents a problem. Any differenc-

ing between data sets over time for change detection could

result in errors whereby backscatter changes reflect differ-

ences in moisture rather than real changes in the forest. In or-

der to correct for this, the data need to be radiometrically nor-

malised such that the measured properties of a pixel in year

t0 approximate the properties of the pixel in year t1 where

no land use change has occurred. In order to do this with the

SAR data, we randomly extracted 25 000 pixels from all four

HV backscatter mosaics from 2007 : 2010 in order to ensure
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a distribution of backscatter values. We used these data to

develop a linear relationship between each pixel over time,

using a reduced major axis regression model estimated in R

(Legendre, 2014) and on the basis that any sampled pixels

which were deforested during the study period would con-

stitute errors in the regression. We applied the resulting rela-

tionships to the 2008 : 2010 data so that the mean backscatter

of each scene approximated that of 2007. We demonstrate

the results of this process in Fig. 6. The figure shows the

distribution of values of 48 977 pixels extracted from sta-

ble core forest areas of Berbak National Park. Prior to the

normalisation procedure, there is interannual variation in the

backscatter values, particularly in 2009. However, following

the procedure the distributions converge. Hence we increased

confidence that any large changes in the backscatter values

per pixel were attributable to changes in the properties of the

SAR target, specifically deforestation. Finally, the data pro-

vided by JAXA are already terrain-corrected and provided in

gamma nought (γ 0) geometry. Hence we did not apply any

further terrain correction.

2.6.2 Exclusion of flooded areas

Seasonal flooding can cause changes in SAR backscatter

that could subsequently be misinterpreted as deforestation,

which is unlikely to be corrected using radiometric cali-

bration. Flooded forest has high backscatter values in the

horizontal-send, horizontal-receive (HH) polarisation rela-

tive to the horizontal-send, vertical-receive (HV) polarisa-

tion. This is because, in the HH polarisation, there is a double

bounce of the SAR signal between the water surface and the

structure of the forest which increases the HH backscatter

value relative to HV. Thus flooded forest can be detected by

looking at changes across space in the ratio of these two po-

larisations. We excluded any areas identified as natural forest

(calculated in the section above) ≥ 20 m height but which

had an HH value of >−5 dB. These excluded areas appear

as white “ribbons” through the intact forest blocks in Fig. 4,

alongside the region’s rivers. Additional visual verification

of the efficacy of the approach is provided in Fig. S1 in the

Supplement.

2.7 Change detection: the determination of

deforestation

In order to determine deforestation we calculated the dif-

ference in Lorey’s height for each time step: 2007–2008,

2008–2009, and 2009–2010. We used the Lorey’s height

maps for two reasons. First, the relationship between Lorey’s

height and HV backscatter is non-linear. Hence the change

in backscatter in a pixel implies a change in Lorey’s height

and therefore forest state that is conditional upon the original

backscatter value of that pixel. This means it was not possi-

ble to simply take a difference in the HV backscatter between

years to detect change. Second, forest height is a more intu-

itive property than HV backscatter.

Whilst there is small-scale degradation in addition to de-

forestation at the study site, we are concerned here with

land use change as a binary, exclusive event in natural high-

biomass forest. The threshold we used to define change be-

tween years represents a tradeoff between sensitivity and un-

certainty. The lower the threshold for change detection, the

more sensitive the process is. However, the more sensitive

the process is, the greater the chances that SAR speckle is

detected as false positive deforestation. Ultimately we used

a threshold of 10 m reduction in Lorey’s height per pixel

per year to indicate deforestation. This is because a change

of this magnitude in a pixel we had assessed to be natural,

non-flooded forest in 2007 would necessarily reflect a move-

ment from high HV backscatter, high Lorey’s height, and

high biomass (i.e. intact high-biomass natural forest) to a low

backscatter value associated with low Lorey’s height and low

biomass (deforested pixel). This explanation is more readily

understood with reference to Fig. 3.

In practice, to detect change, we had to both calculate a

series of Lorey’s height maps and account for how the er-

rors in the HV Lorey’s height relationship would propagate

into the change maps. First, to produce Lorey’s height maps

for each year, we applied Eq. (6) to each of the radiomet-

rically corrected annual SAR scenes 2008, 2009, and 2010.

We then considered the proportional errors (δ; ratio of regres-

sion error RMSE to maximum height estimated, 25 m) in the

relationship between HV backscatter and Lorey’s height. To

be conservative, for each time step, we calculated the min-

imum estimated Lorey’s height for time t (Ltmin ), and from

this we subtracted the maximum estimated Lorey’s height for

t + 1 (Lt+1max ). We calculated the minimum Lorey’s height

estimate by multiplying the Lorey’s height estimate map by

1− δ, and we calculated the maximum Lorey’s height esti-

mate by multiplying the Lorey’s height map by 1+ δ.

Therefore the forest height change (1L) calculation for a

given time step was

1L = (Ltmin)− (Lt+1max). (8)

We may now substitute in Eq. (6) for each of the Lorey’s

height estimates and apply the minimum and maximum error

calculations:

1L=
((
e
((

HVdB
t +α

)
/β
))
× (1− δ)

)
−

((
e

((
HVdB

t+1+α
)
/β
))
× (1+ δ)

)
. (9)

This provided change maps between 2007 and 2008, between

2008 and 2009, and between 2009 and 2010. Once a pixel

had been detected as deforested or heavily degraded, it was

excluded from consideration in the next time step.

In summary, a pixel was only classified as having lost

forest if it contained forest ≥ 20 m height in 2007, was not
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.

Figure 4. (a) Location of study area on Sumatra, Indonesia. (b) Study area. Non-forest, mangrove forest, and forest of low height (< 20 m

in 2007) in white, which are areas that were excluded from the analysis, and forest in green (height ≥ 20 m in 2007). Few large blocks of

intact forest remain except Berbak National Park, obvious as an area of dark green in the far north. The large area in the centre of the park

burned in the 1996/1997 fires. The “ribbons” of non-forest areas running through the park indicate where we have removed flooded forest.

Deforestation after 2007 is orange, blue and pink for each subsequent year. (c) We are able to detect deforestation infrastructure development,

here a road/canal connecting different areas of plantation. (d) Demonstrates the annual progression of forest loss in large geometric patterns

consistent with forest clearance for roads, canals and plantations. (e) High-resolution Google Earth image from 8 May 2009, providing optical

verification of changes detected using SAR. This image may be viewed at full resolution in Google Earth at 1◦53′40.71′′ S, 103◦52′56.69′′ E.

The deforestation map is available online in a repository at http://datadryad.org/resource/doi:10.5061/dryad.4cc5m.

flooded (exclude HH >−5 dB ), had its height reduced by

> (10 m) in the subsequent year, and had not experienced de-

forestation in any of the previous time periods.

3 Results

3.1 The relationships between Lorey’s height and

forest plot biomass

The forest plot data from Berbak National Park yielded

a power relationship between estimated values of Lorey’s

height and AGB, which explained almost two-thirds of the

variation in the data (R2 = 0.61; RMSE= 113 Mg ha−1). The

plot data range from those with very few trees and hence low

AGB and Lorey’s height values through to the primary forest

plots of AGB > 300 Mg ha−1 and Lorey’s height values of

≈ 30 m. The resulting equation is shown in Eq. (10) and is

plotted in Fig. 2.

AGB= 0.37L1.94 (10)

3.2 The relationship between SAR HV backscatter and

Lorey’s height from lidar

The relationship between HV backscatter and Lorey’s height

appears to be approximately linear from very low values of

Lorey’s height clustered at a mean of ≈ 0 m through to high

values of≈ 25 m. Figure 3 illustrates this relationship. Values
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Figure 5. Left image: uncertainty of the 2007 AGB for our 10.7 Mha study area. We created the uncertainty map by applying the 24.7 % total

uncertainty across the landscape. Hence those areas which have higher estimates of AGB have the highest absolute uncertainties associated

with them. The uncertainties appear to be fairly constant across the landscape because we are considering only the high-biomass forests in

the analysis. Right image: the AGB map for 2007. The AGB legend is scaled continuously between minimum and maximum values. The

largest remaining block of forest in the north-east of the image is Berbak National Park, as well as the forests of ZSL’s pilot REDD+ project,

the Berbak Carbon Initiative. The AGB map is available online in a repository at http://datadryad.org/resource/doi:10.5061/dryad.4cc5m.

in the upper-right portion of the graph have both high Lorey’s

height values and high HV backscatter values. We interpret

these as representing mature forest with high AGB. In the

bottom left of the graph are data points which have low AGB

and low Lorey’s height values, which we interpret as being

deforested.

This graph is also central to the change detection proce-

dure since it demonstrates the logic behind the choice of the

10 m height change threshold. If a pixel with forest ≥ 20 m

in t (top right of graph) experiences a height reduction of

> 10 m in time t + 1 (moves to the lower left of the graph),

we interpret this as a deforestation event (though note Eq. 9,

which illustrates how we deal with error propagation). This

is the deforestation process with respect to HV backscatter

and is represented by the arrow pointing downwards to the

left. The functional form of this relationship is summarised

in Table 1.

3.3 Forest biomass stocks

By integrating the field plot data, the Lorey’s height data,

and the HV backscatter data; excluding flooded forest pixels;

and summing the stocks across all the 100 m× 100 m pixels,

Table 1. Regression equation for relationship between 2007 HV

backscatter and the binned Lorey’s height data taken from the ICE-

Sat data set.

RMA regression: PALSAR dB RMSE R2 n

HV to Lorey’s height

Lorey’s height t= e
(((

HVdB
t +14.9

)
/0.88

))
3.31 m 0.91 26

we estimate 274 Tg AGB stored in forest ≥ 20 m in height

across the 10.7 M ha study area in 2007. We provide an AGB

and uncertainty map in Fig. 5. Relatively little high-biomass

forest remained in 2007, and what did still remain was highly

fragmented. The largest block of remaining intact forest in

the study area was Berbak National Park/BCI in the north-

east tip of the scene. The large treeless area in the centre of

the park in this image is a burn scar from the devastating El

Niño fires of 1996/1997.
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3.4 Change detection and AGB loss

Our analyses suggest that a total of 137 367 one-hectare pix-

els were deforested between 2007 and 2010 in our study area.

This represents a loss of 11.4 % of the 2007 high-biomass

forest cover, a mean deforestation rate of 3.8 % yr−1. This

deforestation constitutes a loss of 11.3 % of the 2007 AGB.

The figures differ since not all (89 %) of the deforested pix-

els were in the highest biomass forest of 236.5 Mg ha−1. This

suggests first that deforestation is occurring in different for-

est types, both in the last remaining old-growth high-AGB

forest and in the lower-AGB intact forest (the minimum for-

est height we consider is 20 m; 123.7 Mg ha−1). Second, a

visual inspection of the patterns of forest loss suggests two

different types of deforestation across space. The first may

be characterised as scattered losses in forest that was already

highly fragmented in 2007. We suggest that this represents

clearance by small-scale loggers and farmers. This kind of

deforestation is typified by the forest lost between 2007 and

2008 in the central-southern part of Fig. 4b. The second type

of deforestation we observe is large-scale geometric patterns,

which we suggest are characteristic of timber concessions

development and their conversions into plantations, a pro-

cess through which virtually all AGB is removed. This is

typified by Fig. 4d. In the west of this image, we observe

forest clearance which advances into the remaining natural

forest in annual waves from 2007 to 2010, which we visually

verified using high-resolution imagery from 8 May 2009 in

Google Earth at 1◦53′40.71′′ S, 103◦52′56.69′′ E, as shown

in Fig. 4e. In 2008–2009 we observe the construction of a

road or canal running NE–SW, connecting two large clear-

ings (the feature is shown in the centre of Fig. 4d, zoomed in

upon in Fig. 4c). This particular image demonstrates well the

level of detail which is possible to map using this approach.

Discussions with the ZSL team suggest that the deforestation

in the east of Fig. 4d was the result of a road-building project

linking Jambi to South Sumatra provinces, whilst the forest

either side of the road was affected by illegal logging.

Berbak National Park is experiencing no large-scale defor-

estation; however, the maps do show more scattered pockets

of small-scale forest loss which are more typical of the cre-

ation of small fields and small-scale illegal logging opera-

tions that affected many of Indonesia’s national parks during

the study period (Collins et al., 2011).

By aggregating all the changes across the scene we were

able to estimate the total amount of AGB removed from

the study area annually. We also provide potential emissions

from this loss of AGB, based on an extreme scenario in

which all the AGB was completely oxidised following its re-

moval from the landscape. However, there are uncertainties

involved in these calculations. Their estimation and subse-

quent integration into the final results are discussed below.

Figure 6. The figure displays the frequency distributions of HV

backscatter (dB) before and after the relative normalisation proce-

dure. These data are extracted from areas of stable core forest in

Berbak National Park. The top figure displays interannual varia-

tions in the pixel values over the stable (pseudo-invariant) forest,

particularly in 2009 prior to the normalisation procedure. The bot-

tom image shows how, this difference is greatly reduced and the dis-

tributions converge after the normalisation procedure. This suggests

that we have consistent backscatter values over time over unchang-

ing forest and hence that any large changes in backscatter values per

pixel between years may be attributed to significant changes in the

SAR target, i.e. the clearance of forest.
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3.5 Errors and uncertainties

3.5.1 Binary forest map from ESA

We used a binary forest/non-forest map from the 2005 ESA

GlobCover (MERIS) to remove lidar points which had a

value of zero, but which were over forest areas, hence expe-

rienced cloud and smoke interference. This had the potential

to cause three potential problems. (1) This land cover clas-

sification contains errors, which are introduced into lidar-

backscatter relationships for non-forest vegetation. Indeed

the classification’s creators describe forest area overestima-

tion where data are poor (Bicheron et al., 2009). (2) The

lidar data were collected between 2003 and 2007 and thus

overlap with the MERIS data set. Nonetheless, given the rate

of change observed in this study, land cover change could

have occurred between the collection of the two data sets. (3)

The GlobCover data have a relatively coarse resolution of

300 m, meaning some non-forest areas will have been classi-

fied incorrectly as forest and vice versa. Artefacts relating to

these errors will increase noise in the relationship shown in

Fig. 3 but should not change the absolute relationship, which

is dominated by the signal in the data. We do not believe that

these errors are significant; see Fig. 3 for the clear relation-

ship between lidar-derived Lorey’s height and HV backscat-

ter, with the fit having an R2 of 0.91.

3.5.2 Tree species identification, height estimations,

and AGB estimations on forest plots

Tree identification is an ongoing endeavour in Indonesian

peat swamp forests. Accordingly, the field team botanist had

difficulty identifying some tree species (5.3 % stems). Hence

it was not possible to specify wood densities for these indi-

viduals. Were improved tree identification and wood densi-

ties to become available, we would be able to increase the

accuracy of the biomass map. In addition, the forest plots

data did not contain tree height measurements, requiring use

of a published height-to-DBH relationship for SE Asia from

Morel et al. (2011). Yet morphological differences between

peat swamp trees and those measured by Morel may intro-

duce errors into our biomass estimations. In addition, the

model for stems where d < 20 cm was poor, with anR2 value

of only 0.16. This means that the predictions for the smaller

stems are likely to have quite low accuracy, which is ex-

pected to have introduced further errors into the estimates of

height. However, the majority of forest biomass is typically

found in large trees (Slik et al., 2013), rendering this prob-

lem of marginal importance. Nonetheless, more forest plot

data that included tree height measurements would improve

our calibrations. A further consideration is that the relatively

small plot size may have introduced errors into our calibra-

tions (Rejou-Mechain et al., 2014). Nonetheless, it should be

noted that the relationships we detect here between Lorey’s

height and AGB, and between GLAS footprint-based Lorey’s

height and radar backscatter, are identical in form and simi-

lar in parameter to those described elsewhere (Saatchi et al.,

2011; Mitchard et al., 2012). This increases our confidence

in the robustness of the calibrations.

A final issue is that, in order to calculate AGB, it was

necessary to use pan-tropical rather than regional allometric

equations. In order to account for the errors in the estimation

of biomass in our plots and potential regional differences in

estimates of biomass, we ascribe a 20.3 % error (Djomo et al.,

2010).

3.5.3 Lidar and Lorey’s height estimates

The relationship that was used to develop estimates of

Lorey’s height from lidar returns is based upon field plots in

the Amazon (Lefsky, 2010). To deal with the errors that this

will create, a 5 % error is ascribed to potential differences in

regional estimates of Lorey’s height from the waveforms as

suggested by Mitchard et al. (2012).

3.5.4 Relationship between lidar and SAR backscatter

There are errors in the estimated relationship between the es-

timated Lorey’s height and SAR backscatter. The RMSE was

used to quantify this, which is a measure of the difference

between the values implied by an estimator in a statistical

relationship and the true value of the parameter being esti-

mated. For the relationship estimated between the 2007 HV

backscatter data and the Lorey’s height data, the RMSE is

3.3 m. We calculated the percentage by dividing the RMSE

by the maximum forest height we used from the lidar data,

multiplied by 100. That is, (3.3/25)× 100= 13.2 %.

3.5.5 Combining uncertainties, and final forest change

results

With 20.3 % error for the biomass calculations for the trees

and 5 % Lorey’s height errors, and 13.2 % error for the re-

lationship between Lorey’s height and HV backscatter, we

estimate 24.7 % total uncertainty using Eq. (7). We applied

these uncertainties to the biomass and change calculations to

produce the final results:

– 2007–2008: 27.7 kha forest containing 6.3±1.6 Tg

AGB cleared; 2.3 % of the 2007 AGB total; potential

emissions of 11.5± 2.9 Tg CO2e.

– 2008–2009: 75.3 kha forest containing 16.9±4.2 Tg

AGB cleared; 6.2 % of the 2007 AGB total; potential

emissions of 30.9± 7.7 Tg CO2e.

– 2009–2010: 33 955 kha forest containing 7.8±1.9 Tg

AGB cleared; 2.8 % of the 2007 AGB total; potential

emissions of 14.2± 3.5 Tg CO2e.

We illustrate the uncertainty in the AGB map in Fig. 5.
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3.6 Calibration over space

We calibrated the SAR data using ground plots from the peat

swamps of Berbak. However, the relationship may differ in

other forest types type, and so the analysis may be enhanced

by having calibrations in different areas by partitioning the

backscatter data and using additional regional plot data. Un-

fortunately, in the absence of additional forest plot data sets,

this was not possible.

3.6.1 Detecting biomass in mangrove forests

Not all ecosystems are equally well detected by SAR. One

example is mangrove forest. This may be because mangrove

forest’s low, open canopy and extensive prop root networks

absorb much of the L-band radiation. There is even evidence

that the relationship between AGB and HH backscatter is

negative (Cohen, 2014). This is relevant because there is a

mangrove forest in our study area to the south-east of Berbak,

within Sembilang National Park. We removed this mangrove

forest from the analysis during the process whereby all pixels

in the modelled height raster with a value ≤ 20 m were ex-

cluded, verified by visual examination of the resulting maps,

as shown in Fig. 4.

3.6.2 Underestimation of biomass loss overall

The biomass loss and emissions estimates provided are con-

servative. First, the maximum biomass estimate of mature

forest is limited, due to SAR backscatter saturation. Sec-

ond, mangrove forest biomass is excluded. Third, the large

below-ground biomass emissions associated with the clear-

ance of forest on peat soils are not included (Page et al.,

2002). Fourth, the forest plots from Berbak are not likely

to be representative of all the forest types across Sumatra.

Fifth, we apply a very restrictive threshold of forest > 20 m

height, plus a majority-value window to focus solely on the

intact high-biomass forests in the change analyses. There-

fore we strongly expect the true carbon loss values to exceed

those given here by an undetermined amount. The bottom of

our confidence intervals should be considered the minimum

emissions that have resulted from this land use change, pro-

viding a conservative estimate that could be used in a GHG

accounting framework.

4 Discussion and conclusion

We have demonstrated for the first time that it is possible to

employ a fusion of SAR, lidar, and forest plot data to map

AGB and its change across a tropical forest landscape. From

a broader perspective our findings have implications (a) for

forest-monitoring technology and methodologies, as well as

(b) for, inter alia, biodiversity and ecosystem services, par-

ticularly climate regulation.

4.1 Forest monitoring technology and methodologies

Concerning the first set of issues, our results demonstrate

the value of integrating multiple existing data sets in order

to map AGB in an area with high-biomass forest, includ-

ing peatlands. This was enabled by the establishment of ro-

bust relationships between (i) AGB and Lorey’s height esti-

mates from field plots and (ii) HV backscatter and Lorey’s

height estimates from lidar data, which increases by 2 orders

of magnitude the number of observations of Lorey’s height

which we have from the 56 forest plots alone.

Rapidly changing forest provides a challenging context for

analysis: the deforestation rates we observed would appear to

substantiate the concern that multi-year optical composites

to remove cloud cover may mask the very changes that the

researcher intends to detect in the first instance (Hansen et al.,

2008, 2009). Hence, our approach may be used as either an

alternative to traditional optical analyses or as a complement

for those areas particularly affected by cloud and smoke.

Examining the per-pixel HV backscatter values over time

allowed us to make spatially explicit estimates of forest

biomass loss annually, and with quantified uncertainties. This

represents a methodological deviation from the work to map

deforestation using optical data. This provides a contribution

to the call for accurate forest-monitoring data for Indonesia

to contribute to REDD+ (Broich et al., 2011a). Being able to

directly map biomass at 100 m spatial resolution unencum-

bered by cloud or atmospheric particulates represents a sig-

nificant advance in the ability to monitor tropical forests for

many stakeholders, and should be of interest to governments

as well as firms in HDRC sectors, in addition to NGOs inter-

ested in forestry.

Nonetheless, there are some technical barriers to contin-

ued efforts using the methodology we present. Principally,

following the failure of the sensor on ALOS, L-band SAR

data were not collected again until 2014 with the launch

of ALOS-2, leaving a 3-year data gap. Nonetheless, it ap-

peared whilst browsing the Landsat archives for images of

Berbak that the majority of images were obscured by cloud

and smoke, meaning that, despite the data gap from ALOS

being suboptimal, it is nonetheless comparable with LAND-

SAT data over that same period.

Finally, the estimation of per-pixel AGB requires contem-

poraneous lidar data for calibrating the AGB map. However,

the only freely available data set (ICESat) stopped collect-

ing data in 2007. Yet plans are afoot for the deployment of

ICESat-2 and GEDI, which will allow calibration of future

SAR images. Furthermore, demand for forest monitoring has

spurred a development in other options, particularly aerial li-

dar transect sampling. This takes the same approach as ICE-

Sat, using lidar as a sampling tool only, recording data in

transects rather than across the landscape. This offers some

of the benefits of landscape-level lidar mapping by enabling

the provision of accurate AGB estimates for different forest

types, but with lower costs since only transects are recorded.
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Such data could be used as an alternative to ICESat-2 data

for calibrating L-band data to produce AGB maps. In addi-

tion, future work may not be restricted to ALOS2 data, with

Argentina’s SAOCOM and NASA’s NISA L-band satellites

planned for launch during this decade. These additional satel-

lites may increase data availability and frequency of observa-

tions.

4.2 Significance of deforestation and forest degradation

on Sumatra

Concerning the second set of issues, our results have broad

implications. Indonesia is already widely known to have very

high deforestation rates. However, even in this context, for-

est loss in Sumatra is particularly high. By 2010, the eastern

regions of Sumatra had lost approximately half of the peat

swamp forests existing a decade earlier, an extremely high

loss rate of 5 % yr−1 (Miettinen et al., 2011). In one case in

June 2013, 140 000 ha of forest was destroyed by fire in a

3.5 M ha area in Riau province (Gaveau, 2013). Even on the

conservative and unlikely assumption that the entire area was

forested previously, this represents the extraordinary loss of

4 % of the remaining forest in a single month. Our results

serve to confirm these findings: the high national means of

forest loss in Indonesia mask remarkably high losses on a

local scale.

Such extensive forest loss on Sumatra is having large

impacts on biodiversity losses. Flagship species like tigers

(Panthera tigris sumatrae) are critically endangered (IUCN,

2013). Even a decade ago, tiger biologists were already con-

cerned about tigers being scattered as a meta-population liv-

ing in increasingly disconnected forest fragments (Linkie

et al., 2006): the rapid deforestation we have observed thus

simply represents a ongoing and unmitigated trend in habi-

tat loss. Our maps show how very little high-biomass natural

forest now remains in this part of Sumatra.

As Sumatra’s forest is cleared, there are huge associated

CO2 emissions both from fires and organic decomposition of

AGB, as well as from below-ground biomass. These emis-

sions are particularly high in the eastern Sumatran lowlands

due to the presence of a blanket of peat which may contain

an order of magnitude more carbon than the forest growing

on it (Page et al., 2002; Jaenicke et al., 2008; Hooijer et al.,

2010, 2012). Hence there is a spatially explicit issue: defor-

estation in peat swamps is likely contributing disproportion-

ately highly to climate forcing compared to forest loss else-

where, with peatland drainage and oxidation now accounting

for up to 3 % of total anthropogenic CO2 emissions (van der

Werf et al., 2009).

Optimistically, the increase in the range of technologies

available to monitor forest, including peatland forest, irre-

spective of cloud and smoke cover, may go some way to im-

proving the transparency and sustainability of land use man-

agement practices. For instance, better data may contribute

to the monitoring and verification of pulp paper and oil palm

firms’ commitments to zero deforestation, hence mitigating

some of the impacts of the very rapid environmental change

we have quantified here.
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