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(I) Detection of logging roads with ClasLite and estimation of logged forest cover 

Detection of logging routes 

Gaveau et al. (2014) published maps of deforestation and logging for the whole of Borneo, 

revealing for the first time the extent of forest loss and logging over the last 40 years. Before 

the publication of this paper, we independently carried out a survey of logging routes 

development and logging extent with focus on the Mawas area. There are some differences 

between our approach and theirs, but our results are similar. 

Gaveau et al. (2014) detected logging “roads” using Landsat MSS, TM, and ETM+ 

imagery with 30 × 30 m pixels, which was visually interpreted (data available for download 

at: http://gislab.cifor.cgiar.org/wm/borneo/). We used Landsat TM, ETM+ and OLI/TIRS 

imagery listed in Table S1. Contrary to Gaveau et al. (2014) though, prior to conducting a 

visual survey for logging roads we processed the Landsat imagery using CLASLite to give 

subpixel-level information on fraction of ground, non-photosynthetic biomass and live 

vegetation (Asner, 2009), following so the approach of Bryan et al. (2013). We visually 

supervised all images and recorded all linear human-made features. While Gaveau et al. 

(2014) detected logging routes in the area up to the year 2000, which marked the end of 

concessionary logging, we continued to map a development of logging routes beyond that 

year. Post-2000 logging was illegal as no concessions were granted and the area was 

protected as a ‘conservation forest’ since 2003 (‘hutan konservasi’ and ‘hutan lindung’). 

Our logging-road maps obtained from the satellite imagery of 1994 to 2000 identified 

395 km of roads that were also recorded by Gaveau et al. (2014), and 150 km of routes which 

they had missed (Fig. S1a). They found an additional 31 km that we had failed to spot. We 

combine data from Gaveau et al. (2014) and our data to create the most complete map yet 

available of logging routes in the Mawas area up to the year 2000. Post-2000 we detected 190 

km of illegal logging routes. Most of them were within areas already affected by logging up 

to 2000 (Fig S1b). 
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Table S1. Landsat images used to classify forest cover and detect logging routes. 

Path Row Day Month Year 

118 61 08 07 1994 

118 61 01 08 1997 

118 61 16 07 2000 

118 61 01 06 2001 

118 61 27 01 2002 

118 61 16 05 2004 

118 61 07 02 2009 

118 61 08 13 2013 

118 61 09 30 2013 

 

 

(a) Pre-2000 concessionary logging, 
comparison Gaveau et al. 2014 (yellow) and 
this study (dashed) 

(b) Post-2000 illegal logging (red) around the 
existing pre-2000 logging route network 
(yellow) 

 
 

 

Figure S1. Logging routes in the Mawas area: (a) comparison of logging routes found by 

Gaveau et al. (2014) (yellow), and logging routes found by us (dashed) until the year 2000; 

(b) illegal expansion of illegal logging routes detected between the year 2000 and 2013 (red) 

around the existing pre-2000 logging route network (yellow). 
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Forest cover affected by logging 

CLASlite transforms Landsat imagery to a reflectance image and then applies a probabilistic 

spectral un-mixing model to yield sub-pixel fractional cover maps, where each pixel is 

characterised by fractions of photosynthetic vegetation, non-photosynthetic vegetation, and 

bare soil. We delineated forest cover by selecting pixels with a photosynthetic vegetation 

fraction > 80% and a bare soil fraction < 20%, as recommended by the developers (Asner, 

2009). 

The width of the buffer zones used to estimate the extent of forest affected by logging 

routes varies among studies. Gaveau et al. (2014) chose to apply a single buffer width of 700 

m around logging roads across the whole of Borneo to estimate the area of logged forest. 

Access is more difficult in peat swamp forests, however, and Franke et al. (2012) report that 

trees were usually removed up to 500 m from logging railways or routes. 

To decide upon a suitable buffer around concessionary logging routes, we constructed 

22 virtual 1- km transects perpendicular to logging routes and recorded the mean height of 

the canopy height model (CHM) from ALS in 20-m-diameter circles at 20-m intervals along 

that transect. We fitted a loess-smoothing curve to the relationship between mean canopy 

height and distance to logging routes (Fig. S2) and observed that, in most cases, mean height 

is low close to the logging route and increases until stabilising at around 500 m, and 

subsequently decreases again. This decrease of mean canopy height is probably linked to the 

underlying peat depth gradient: concessionary logging was mostly concentrated on shallow 

peats so peat depth increases with distance from the logging routes; these deeper peats are 

associated with shorter forests. From the available evidence, we argue that 500 m is a more 

suitable buffer zone for this peat swamp than the universal 700-m zone used by Gaveau et al 

(2014), as the larger zone includes the effects of peat depth variability as well as logging 

effects. Furthermore, we noted that logging routes established within the concessions were 

organised as grids that were mostly 1000 m apart and were presumably spaced so that all 

forests between railways could be accessed. Thus in our study, forest zones within 500 m of 

concessionary logging routes are classified as logged. 
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Figure S2. Mean canopy height (mean height of CHM) as measured from ALS with distance 

to logging roads. We interpret that the general increase in mean height between 0 to ~200m is 

due to decrease of effect of logging with distance to the logging route. The often-observed 

decrease in mean height after ~500 m (hard line) away from logging routes is probably due to 

natural variation in peat swamp forest height with peat depth. Gaveau et al. (2014) used a 700 

m buffer around logging roads (dashed line) which we deem too broad here as it encompass 

logging effects as well as environmental effects on mean canopy height. 

 

(II) Comparison of the left-truncated pareto and the finite left-truncated pareto 

Canopy gap size frequency distributions have traditionally been described by the pareto 

distribution, but these have ‘fat tails’ which can lead to an overestimation of very large events 

(Schoenberg and Patel, 2012). We used a finite power law consisting of a power law and an 

exponential term. The distribution function is given as: 

𝐹(𝑥) = 1 − (
𝑥𝑚𝑖𝑛

𝑥
)

𝛾

× 𝑒𝑥𝑝 (
𝑥𝑚𝑖𝑛−𝑥

𝜃
), 

where xmin is the lower truncation point, 𝛾 the scaling parameter of the pareto term and θ the 

transition parameter. θ influences the rate of the exponential and influences the zone of the 

transition from the pareto to exponential (Schoenberg & Patel 2012). When θ >> (xmin-x), 
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𝑒𝑥𝑝 (
𝑥𝑚𝑖𝑛−𝑥

𝜃
) → 0 and 𝐹(𝑥) → 1 − (

𝑥𝑚𝑖𝑛

𝑥
)

𝛾

 which is akin to the left-truncated pareto 

distribution. 

When x is similar or larger than the tapering parameter θ, x ~ θ, then the term 

(
𝑥𝑚𝑖𝑛

𝑥
)

𝛼

changes less rapidly than 𝑒𝑥𝑝 (
𝑥𝑚𝑖𝑛−𝑥

𝜃
) with increasing x, and 𝐹(𝑥) → 1 −

𝑒𝑥𝑝 (
𝑥𝑚𝑖𝑛−𝑥

𝜃
) which rapidly goes to zero. 

The left-truncated pareto is given by the cumulative distribution function: 

𝐹(𝑥) = 1 − (
𝑥𝑚𝑖𝑛

𝑥
)

𝛼

, 

where xmin is the lower truncation point, here the smallest gap size considered (9 m
2
), and α is 

the scaling parameter. We differentiate it to give the probability distribution function: 

𝑓(𝑥) = 𝛾 × 𝑥𝑚𝑖𝑛
𝛼 × 𝑥−𝛼−1 

On a log-log scale, this function gives a straight line: 

𝑙𝑜𝑔(𝑝) = 𝑙𝑜𝑔( 𝛼 ×  𝑥𝑚𝑖𝑛
𝛼) − (𝛼 + 1) × 𝑙𝑜𝑔 (𝑥), 

where the first term is a constant and α+1 is the slope of the power law. 

The scaling exponent of the pareto distribution that we used corresponds thus to 

[α+1]. In order to make this scaling exponent comparable to the scaling exponents reported in 

other studies (Asner et al., 2013; Kellner and Asner, 2009), we need to sum 1 to the estimated 

parameter 𝛾. We report α=𝛾+1. 

 

(III) RSTAN code to fit a tapered pareto distribution to gap sizes and model 

convergence 

The R code used to fit a tapered left-truncated pareto distribution to gap sizes by Bayesian 

inference and using the package RStan is reproduced below. We used a normally distributed 

prior with a mean of 1 and a standard deviation of 1 for the scaling parameter α and a 

normally distributed prior with a mean of 0.01 and a standard deviation of 0.5 for the inverse 

of the tapering point θ (the tapering point is large, hence its inverse is close to 0). We ran 

three chains with a burn-in phase of 2000 iterations and a sampling phase of 3000 iterations 

and saved each second iteration to generate the posterior distribution. 

########################################################################################## 



6 
 

##STAN model to fit a tapered left-truncated pareto distribution to gap sizes 

## the parameters are fitted at plot level 

 

#load RSTAN library 

library(rstan) 

 

#load the data: the data should contain 1 column informing the plot ID (here: plotID) and a column informing 

#the sizes of gaps (here: area) 

data=read.csv(###) 

 

#define the STAN model 

gapmodel <- " 

data{ 

int<lower=0> N;    //number of observations 

int<lower = 0> Nplot;   //number of plots 

vector<lower=0>[N] tgaparea;  //the gap size data 

vector<lower=0>[N] invtgaparea;  //the inverse of the gap size data (= 1/tgaparea, calculated in R) 

real<lower=0> b;    //left-truncation point 

int<lower = 0> plot[N];   //plot index 

} 

 

parameters{ 

real<lower=0> a[Nplot]; 

real<lower=0> invt[Nplot]; 

} 

 

model{ 

real a1[N]; 

real invt1[N]; 

for (i in 1:N) { 

a1[i] <-  a[plot[i]]; 

invt1[i] <- invt[plot[i]];  

} 

 

a ~ normal(###,###);   //prior for a 

invt ~ normal(###,###);   //prior for invt 

 

//the log-likelihood is log(a /x + t)+a*log(b/x) +(b-x)*t where b is lower truncation point, a is the shape 

parameter and invt is the inverse of the location of the taper 

for (i in 1:N) 

increment_log_prob(log((a1[i]*invtgaparea[i]) + invt1[i])  + a1[i]*log(b*invtgaparea[i])+  (b-

tgaparea[i])*invt1[i]) ; 

}" 

 

#define where to take the data from 

STANdata <- list(N = length(data$area),  #number of observed gaps 

                     Nplot = length(unique(data$plotID)), #number of plots 

                     tgaparea = data$area, 

                     invtgaparea = 1/tgaparea, 

                     plot = as.numeric(data$plotID),  #numeric plot index 

                     b = ###)    #left truncation, to be set according to data 

 

fit_model <- stan(model_code = gapmodel, 

                    data = STANdata, 

                    pars = NA, 

                    chains = ###, 

                    iter = ###, 

                    warmup = ###, 

                    thin = ###, 

                    refresh = ###, 
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                    diagnostic_file=paste('###'), 

                    sample_file=paste('###')) 

 

#extract fitted parameter values 

r <- as.data.frame(summary(fit_model, pars=c("a", "invt","lp__"))) 

 

#plot the fit of the model 

plot(fit_model) 

 

########################################################################################## 

 

Model convergence 

We visually inspected the chain traces to ensure good mixing of posterior distributions and 

visually ensured stabilization of the log-likelihood within the burn-in phase. For each 

posterior sample, the potential scale reduction factor 𝑅̂ was provided in the RStan output. 

This factor indicates the extent to which the confidence intervals around a parameter could be 

reduced if the model was run infinitely. All 𝑅̂ values were 1 (and hence smaller than the 

prescribed threshold of 1.1), indicating that the model had successfully converged and the 

three chains had mixed (Gelman and Hill, 2007). Finally, the effective number of simulation 

draws reported as neff in the RStan diagnostic output was always well above 100, indicating 

independence of simulation draws (Gelman and Hill, 2007). 

 

(IV) Predicting peat depth for plots 

We used relationships between canopy top height (99
th

 quantile), peat depth and distance to 

rivers to predict peat depth for plots where this information was missing. A total of 327 peat 

depth measurements were available for the research area. Peat depth was measured by 

inserting an auger into the soft peat until hitting the harder clay subsoil (KFCP, unpublished 

data). We calculated canopy top height in a circular neighbourhood with a 100 m radius 

around each peat depth measurement. To achieve this, we extracted the value of 10,000 

random pixels (1 m
2
) of the ALS-derived canopy height model within the given 

neighbourhood. We used the 99
th

 quantile (H99) that represented the height of the 100 

highest pixels, corresponding to the tallest trees. Furthermore, we measured the distance to 

the closest river (Kapuas river bordered by shallow peat in the west and Mantangai river 

bordered by deep peat in the east) from each peat depth point. Peat depth measurement points 

and associated top canopy height were classified as logged if they fell within 500 m of a 

logging route (see section (I) in supplement). 
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We first tested for the effect of logging on canopy top height (H99) in this 

independent dataset. We fitted the linear model H99 = a+b×peat depth and tested for a 

possible effect of logging by either adding logging as a factor (yes, no) or testing for the 

interaction between logging and peat depth. No significant logging effect is detected and the 

simple linear model gives H99 = 34.9-1.0×peat depth with R
2
=0.77. The absence of logging 

effect can be explained by the fact that selective logging does not remove all large trees. 

Since logging does not significantly affect H99, H99 can be safely used to predict peat depth 

across the peat dome. 

Peat depth was overall well predicted by H99 (peat depth= 28.0-0.8×H99, R
2
=0.77, 

Fig. S3a), except on shallow peat (< 4 m; Fig. S3a) close to the Kapuas river. There in turn, 

the relationship between peat depth and distance to river was well-defined (peat depth = 

0.31+0.002×distance to Kapuas river (km), R
2
 = 0.59, Fig. S3b). 

For our 1 km
2
 sampling plots (Section 2.2 in main text), we predicted their peat depth 

based on distance to river if plots were within 3000 m of the Kapuas river. Else, we predicted 

plot peat depth based on canopy top height. This yielded a fit going through the origin and 

with an R
2
 = 0.88 between predicted and measured peat values in the 33 plots where those 

were available. 

 

Figure S3. Relationships between peat depth, canopy top height, and distance to rivers across 

the Mawas peat dome: (a) relationship between canopy top height (99
th

 quantile) and peat 

depth across the whole peat dome and (b) increase in peat depth with distance to the Kapuas 
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river adjacent to shallow peat. Plots affected by logging are in red, while old-growth plots are 

in black. 

(V) Impact of logging pressure on canopy structure 

The logging pressure indices were devised to test for potential differences in the level of 

logging impact in different logged plots. Since no logging records were available, logging 

pressure was approximated by the density of logging routes as detected by satellite imagery. 

We used the Line Density tool in the ArcMap 10.2 Spatial Analyst library (ESRI, 2013) to 

create rasters of the density of new logging routes (km km
-2

) in the years 2000, 2009 and 

2013 and of the cumulative density of all logging routes up to the year 2013. A pixel’s 

logging route density was determined by the total length of logging routes within a circular 

neighbourhood with a radius of 500 m. We then calculated an average new, or cumulative, 

logging route density value per plot using the Zonal Statistics tool in the same library. The 

cumulative LPI weighted all logging routes equally. The ‘logging pressure index’ LPI for 

new logging routes for each logged plot was calculated as: 

𝐿𝑃𝐼 =  𝑑𝑒𝑛𝑠2000 · 𝑤2000 + 𝑑𝑒𝑛𝑠2009 · 𝑤2009 + 𝑑𝑒𝑛𝑠2013 · 𝑤2013, 

where dens is the density of new logging routes for respective years. A weight w is given to 

that density according to logging route age. We tested different sets of weights (w2000 = 1, 

w2009 = 10, w2013 = 14; w2000 = 1, w2009 = 10, w2013 = 24, w2000 = 5, w2009 = 10, w2013 = 24) 

giving more or less importance to old and recent logging routes. The density of old logging 

routes always received a smaller weight than the density of newer logging routes, as we 

assumed that forest recovery was greater and logging impact was smaller along older routes. 
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Supplementary tables 

Table S2. Airborne laser scanning (ALS) acquisition specifications. For further technical 

details refer to Ballhorn et al. (2014). 

Laser pulse frequency 100 KHz 

Scan frequency 45 

Half scan angle 22° 
Flying height 800 m above-ground 

Speed 110 knots 

Side overlap 30% 

Net swath width 450 m 

Calculated pulse density 2.8 pts/m
2
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Table S3. Parameter values (with SEM) of the most parsimonious models selected to describe changes of canopy height and gap metrics with 

peat depth (peatM) and with logging (logg) for plots on 6-12 m deep peat. For gap metrics we give the parameters estimated for each cross-

section CS (2-12 m for mean gap area and gap fraction; respectively 5-12 m for α and θ) going up into the vertical forest profile. We report the 

model with lowest AICc, except in cases where two models had similar fits (i.e. ΔAICc < 2), in which cases we favoured the simpler model. *: p 

< 0.05, **: p < 0.01, *** p < 0.001, n.s. = non-significant. 

Canopy structure metrics CS model
ǂ
 a  b 

 
c 

 
d 

 Height           
logit(canopy shape) - a+b·peatM+c·logg 0.39 (0.07) *** -0.02 (0.02) n.s. -0.30 (0.07) ***   

           
Gaps 

  

        

log(mean gap area) 2 m a+b·peatM 2.78 (0.06) *** -0.02 (0.02) n.s.     

 3 m a+b·peatM 2.90 (0.04) *** -0.03 (0.01) *     
 4 m a+b·peatM 2.98 (0.04) *** -0.03 (0.01) ***     

 5 m a+b·peatM+c·logg 3.03 (0.03) *** -0.05 (0.01) *** 0.06 (0.03) *   
 6 m a+b·peatM+c·logg 3.10 (0.03) *** -0.06 (0.03) *** 0.07 (0.03) *   

 

7 m a+b·peatM+c·logg 3.19 (0.04) *** -0.08 (0.01) *** 0.10 (0.03) **   

 
8 m a+b·peatM+c·logg+d·peat:logg 3.35 (0.06) *** -0.11 (0.01) *** -0.05 (0.09) n.s. 0.07 (0.02) ** 

 9 m a+b·peatM+c·logg+d·peat:logg 3.49 (0.07) *** -0.10 (0.02) *** -0.07 (0.12) n.s. 0.10 (0.3) ** 

 10 m a+b·peatM+c·logg+d·peat:logg 3.63 (0.10) *** -0.11 (0.03) *** -0.05 (0.16) n.s. 0.12 (0.04) ** 

 

11 m a+b·peatM+c·logg+d·peat:logg 3.79 (0.13) *** -0.08 (0.04) * -0.01 (0.21) n.s. 0.14 (0.06) * 

 12 m a+b·peatM+c·logg 3.73 (0.15) *** 0.05 (0.04) n.s. 0.61 (0.14) ***   

   

        

logit(gap fraction) 2 m a+b·peatM -6.41 (0.28) *** -0.56 (0.07) ***     

 3 m a+b·peatM -5.58 (0.25) *** -0.54 (0.07) ***     
 4 m a+b·peatM -4.93 (0.24) *** -0.53 (0.07) ***     

 
5 m a+b·peatM+c·logg -4.56 (0.25) *** -0.50 (0.06) *** 0.45 (0.23) n.s.   

 6 m a+b·peatM+c·logg -4.09 (0.25) *** -0.44 (0.06) *** 0.48 (0.23) *   

 7 m a+b·peatM+c·logg -3.70 (0.23) *** -0.35 (0.06) *** 0.52 (0.22) *   

 
8 m a+b·peatM+c·logg+d·peat:logg -3.04 (0.25) *** -0.33 (0.07) *** -0.21(0.41) n.s. 0.23 (0.11) * 

 9 m a+b·peatM+c·logg+d·peat:logg -2.70 (0.24) *** -0.21 (0.06) *** -0.17 (0.38) n.s. 0.21 (0.10) * 

 10 m a+b·peatM+c·logg -2.60 (0.19) *** -0.03 (0.05) *** -0.12 (0.32) n.s.   

 

11 m a+b·peatM+c·logg -2.25 (0.17) *** 0.05 (0.04) n.s. 0.45 (0.16) **   

 

12 m a+b·peatM+c·logg -1.91 (0.16) *** 0.13 (0.04) **. 0.43 (0.15) **   

           
           

           
α 5 m a+b·peatM 2.31 (0.08) *** 0.04 (0.02) n.s.     
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Canopy structure metrics CS model
ǂ
 a  b 

 
c 

 
d 

  6 m a+b·peatM 2.28 (0.07) *** 0.07 (0.02) ***     
 7 m a+b·peatM+c·logg 2.14 (0.08) *** 0.15 (0.02) *** -0.16 (0.07) *   

 8 m a+b·peatM+c·logg+d·peat:logg 1.97 (0.10) *** 0.19 (0.03) *** 0.09 (0.16) n.s. -0.12 (0.4) ** 

 9 m a+b·peatM+c·logg+d·peat:logg 1.94 (0.07) *** 0.15 (0.02) *** 0.08 (0.12) n.s. -0.10 (0.03) ** 
 10 m a+b·peatM+c·logg+d·peat:logg 1.92 (0.06) *** 0.10 (0.02) *** 0.00 (0.10) n.s. -0.06 (0.03) * 

 11 m a+b·peatM+c·logg 1.93 (0.05) *** 0.04 (0.01) *** -0.12 (0.04) **   

 

12 m a+b·peatM+c·logg 1.85 (0.03) *** 0.02 (0.01) ** -0.04 (0.03) n.s   

           
θ 5 m a+b·peatM+c·logg 99.7 (18.9) *** -16.4 (4.7) *** 47.1 (17.9) **   

 6 m a+b·peatM+c·logg 121.4 (20.0) *** -16.6 (4.2) *** 35.7 (15.8) *   

 7 m a+b·peatM 122.5 (15.8) *** -9.5 (4.2) *     
 8 m a+b·peatM 132.7 (23.5) *** -2.6 (6.3) n.s.     

 9 m a+b·peatM 242.7 (136.9) n.s. -2.0 (36.5) n.s.     
 10 m a+b·peatM 922.0 (1016.9) n.s. -15.2 (271.2) n.s.     

 11 m a+b·peatM+c·logg 2765.9 (3739.0) n.s. 285.3 (997.3) n.s. -579.7 (3863.1) n.s.   

 12 m a+b·peatM+c·logg -6845.9 (8698.2) n.s. 2673.6 (2163.1) n.s. 28922 (8072.2) ***   

ǂ peatM= peat depth -6 
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Table S4. Parameter values (with SEM) of models describing changes of canopy height and 

gap metrics with peat depth (peat) for plots on 0-5 m deep peat where no comparison between 

old-growth and logged forest could be done. *: p < 0.05, **: p < 0.01, *** p < 0.001, n.s. = 

non-significant. 

Canopy structure metrics CS model a  b  

Height       

logit(canopy shape) - a+b·peat -0.27 (0.08) *** -0.02 (0.02) n.s. 

       

Gaps       

log(mean gap area) 2 m a+b·peat 2.97 (0.07) *** -0.02 (0.02) n.s. 

 3 m a+b·peat 3.06 (0.07) *** -0.02 (0.02) n.s. 

 4 m a+b·peat 3.15 (0.06) *** -0.02 (0.02) n.s. 

 5 m a+b·peat 3.23 (0.06) *** -0.03 (0.02) n.s. 

 6 m a+b·peat 3.28 (0.06) *** -0.02 (0.02) n.s. 

 7 m a+b·peat 3.37 (0.06) *** -0.03 (0.02) n.s. 

 8 m a+b·peat 3.47 (0.07) *** -0.04 (0.02) n.s. 

 9 m a+b·peat 3.59 (0.08) *** -0.04 (0.02) n.s. 

 10 m a+b·peat 3.75 (0.09) *** -0.05 (0.02) n.s. 

 11 m a+b·peat 3.94 (0.11) *** -0.05 (0.03) n.s. 

 12 m a+b·peat 4.22 (0.14) *** -0.05 (0.04) n.s. 

       

logit(gap fraction) 2 m a+b·peat -6.17 (0.26) *** -0.08 (0.08) n.s. 

 3 m a+b·peat -5.46 (0.24) *** -0.08 (0.07) n.s. 

 4 m a+b·peat -4.91 (0.22) *** -0.07 (0.07) n.s. 

 5 m a+b·peat -4.43 (0.22) *** -0.07 (0.07) n.s. 

 6 m a+b·peat -3.99 (0.21) *** -0.07 (0.06) n.s. 

 7 m a+b·peat -3.58 (0.21) *** -0.06 (0.06) n.s. 

 8 m a+b·peat -3.18 (0.20) *** -0.05 (0.06) n.s. 

 9 m a+b·peat -2.78 (0.20) *** -0.04 (0.06) n.s. 

 10 m a+b·peat -2.38 (0.19) *** -0.04 (0.06) n.s. 

 11 m a+b·peat -1.99 (0.20) *** -0.04 (0.06) n.s. 

 12 m a+b·peat -1.61 (0.20) *** -0.04 (0.06) n.s. 

       

α 5 m a+b·peat 2.19 (0.06) *** 0.02 (0.02) n.s. 

 6 m a+b·peat 2.14 (0.06) *** 0.01 (0.02) n.s. 

 7 m a+b·peat 2.07 (0.06) *** 0.01 (0.02) n.s. 

 8 m a+b·peat 2.00 (0.05) *** 0.01 (0.02) n.s. 

 9 m a+b·peat 1.91 (0.04) *** 0.02 (0.02) n.s. 

 10 m a+b·peat 1.86 (0.03) *** 0.01 (0.01) n.s. 

 11 m a+b·peat 1.81 (0.03) *** 0.00 (0.01) n.s. 

 12 m a+b·peat 1.74 (0.02) *** 0.01 (0.01) n.s. 

       

θ 5 m a+b·peat 142.6 (43.3) ** -7.5 (13.0) n.s. 

 6 m a+b·peat 156.2 (34.6) *** -11.0 (10.4) n.s. 

 7 m a+b·peat 157.8 (30.3) *** -9.1 (9.1) n.s. 

 8 m a+b·peat 175.5 (32.5) *** -12.0 (9.8) n.s. 

 9 m a+b·peat 206.3 (37.9) *** -15.6 (11.4) n.s. 

 10 m a+b·peat 312.7 (58.5) *** -36.1 (17.6) * 

 11 m a+b·peat 542.4 (125.2) *** -75.3 (37.7) n.s. 

 12 m a+b·peat 1762.0 (679.8) * -305.4 (204.4) n.s. 
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Table S5. Linear relationship between canopy top height (H99) and canopy gap metrics 

(mean gap area, α) in old-growth and logged peat swamp forest 

  a b R
2
 p 

Old-growth H99 = a+b·mean gap area 25.9 2.1 0.81 <0.001 

 H99 = a+b·α 2.11 -0.19 0.75 <0.001 

Logged H99 = a+b·mean gap area 25.0 0.9 0.27 <0.001 

 H99 = a+b·α 2.25 -0.04 0.37 <0.001 
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Table S6. Effect of cumulative logging pressure index (LPI) and peat depth (peat) on mean 

gap area at the 2 m and 3 m height cross-sections (CS) 

 CS a b c R
2
 p 

LPI = a+b·peat+c·mean gap area 2 m 18.2 -0.4 1.7 0.14 <0.01 

LPI = a+b·peat+c·mean gap area 3 m 20.5 -0.5 1.8 0.27 <0.001 
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Supplementary figures 

 

Figure S4. Location of 100 virtual plots in the study area. Distribution of plots in areas 

affected by pre-2000 concessionary selective logging and subsequent illegal selective logging 

(red) and in old-growth forest unaffected by logging (grey) as detected by satellite imagery. 

The centroid point of each plot is shown; the plot size is 1×1 km. No plots were located in 

areas affected by illegal logging only after the year 2000 (not shown). 
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Figure S5. Rationale for stopping gap analysis at the 12 m height cross-section. Relationship 

between number of gaps and height layers across the vertical forest profile show a point of 

inflection at 12 m above-ground. Above the 12 m height layer, gaps from singular origins 

start merging together and the total number of canopy gaps decreases. Each point corresponds 

to a plot. 
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Figure S6. Logging effects with height above ground. Changes in (a) mean gap area, (b) gap 

fraction, (c) scaling exponent α of the GSFD and (d) transition parameter θ of the GSFD with 

height above-ground, going up vertically into the forest profile, in old-growth (grey, closed 

circles) and logged (red, open circles) peat swamp forest. Parameters α and θ are only plotted 

for the cross-sections at which the fitted distribution to the GSFD was valid (cross-sections ≥ 

5 m height) and parameters were different from 0. Averages for sites with peat depth ≥ 6 m 

(Nold-growth = 45, Nlogged = 18) are plotted with 95% confidence intervals. 

  



19 
 

References 

Asner, G. P.: Automated mapping of tropical deforestation and forest degradation: CLASlite, 

J. Appl. Remote Sens., 3(1), 033543, DOI: 10.1117/1.3223675, 2009. 

Asner, G. P., Kellner, J. R., Kennedy-Bowdoin, T., Knapp, D. E., Anderson, C. and Martin, 

R. E.: Forest canopy gap distributions in the southern peruvian Amazon., PLoS One, 8(4), 

e60875, DOI: 10.1371/journal.pone.0060875, 2013. 

Ballhorn, U., Navratil, P., Jubanski, J. and Siegert, F.: LiDAR survey of the Kalimantan 

Forests and Climate Partnership (KFCP) project site and EMRP area in Central Kalimantan, 

Indonesia. [online] Available from: http://issuu.com/iafcp/docs/lidar_721f1a92e190ba 

(accessed 13/07/2015), 2014. 

Bryan, J. E., Shearman, P. L., Asner, G. P., Knapp, D. E., Aoro, G. and Lokes, B.: Extreme 

differences in forest degradation in Borneo: comparing practices in Sarawak, Sabah, and 

Brunei., PLoS One, 8(7), e69679, DOI: 10.1371/journal.pone.0069679, 2013. 

Englhart, S., Jubanski, J. and Siegert, F.: Quantifying Dynamics in Tropical Peat Swamp 

Forest Biomass with Multi-Temporal LiDAR Datasets, Remote Sens., 5(5), 2368–2388, 

2013. 

ESRI: ArcGIS Desktop: Release 10.2. Redlands, CA: Environmental Systems Research 

Institute, 2013. 

Franke, J., Navratil, P., Keuck, V., Peterson, K. and Siegert, F.: Monitoring Fire and 

Selective Logging Activities in Tropical Peat Swamp Forests, IEEE J. Sel. Top. Appl. Earth 

Obs. Remote Sens., 5(6), 1811–1820, 2012. 

Gaveau, D. L. A., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N. K., Ancrenaz, M., 

Nasi, R., Quinones, M., Wielaard, N. and Meijaard, E.: Four Decades of Forest Persistence, 

Clearance and Logging on Borneo, edited by K. Bawa, PLoS One, 9(7), e101654, DOI: 

10.1371/journal.pone.0101654, 2014. 

Gelman, A. and Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical 

Models., Cambridge University Press., Cambridge., 2007. 

Kellner, J. R. and Asner, G. P.: Convergent structural responses of tropical forests to diverse 

disturbance regimes., Ecol. Lett., 12(9), 887–897, 2009. 

Schoenberg, F. P. and Patel, R. D.: Comparison of Pareto and tapered Pareto distributions for 

environmental phenomena, Eur. Phys. J. Spec. Top., 205(1), 159–166, 2012.  

 

http://issuu.com/iafcp/docs/lidar_721f1a92e190ba

